def __init__(self, layers):
     self.__comm = Epetra.PyComm()
     self.__layers = layers
     self.__single_proc_map, self.__multiple_proc_map = self.generate_maps()
     self.__importer = Epetra.Import(self.__multiple_proc_map,
                                     self.__single_proc_map)
     self.__exporter = Epetra.Export(self.__multiple_proc_map,
                                     self.__single_proc_map)
 def __init__(self, graph, layers):
     self.__comm = Epetra.PyComm()
     self.__layers = layers
     self.__single_proc_map, self.__multiple_proc_map = self.generate_maps()
     self.__importer = Epetra.Import(self.__multiple_proc_map,
                                     self.__single_proc_map)
     self.__exporter = Epetra.Export(self.__multiple_proc_map,
                                     self.__single_proc_map)
     self.__nproc = self.__comm.NumProc()
     self.__block_matrix_layout = procmap(blockmap(graph), self.__nproc)
     self.__scheduler = partition(self.__block_matrix_layout)
Example #3
0
    def __init_overlap_import_export(self):
        """
           Initialize Jacobian based on the row and column maps of the balanced
           neighborhood graph.
        """

        balanced_map = self.get_balanced_map()
        field_balanced_map = self.get_balanced_field_map()

        overlap_map = self.get_overlap_map()
        field_overlap_map = self.get_field_overlap_map()

        self.overlap_importer = Epetra.Import(balanced_map, overlap_map)
        self.overlap_exporter = Epetra.Export(overlap_map, balanced_map)
        self.field_overlap_importer = Epetra.Import(field_balanced_map,
                                                    field_overlap_map)

        self.field_overlap_exporter = Epetra.Export(field_overlap_map,
                                                    field_balanced_map)

        return
Example #4
0
 parameter_list.set("Partitioning Method","RCB")
 if not VERBOSE:
     parameter_sublist = parameter_list.sublist("ZOLTAN")
     parameter_sublist.set("DEBUG_LEVEL", "0")
 #Create a partitioner to load balance the grid
 partitioner = Isorropia.Epetra.Partitioner(my_nodes, parameter_list)
 #And a redistributer
 redistributer = Isorropia.Epetra.Redistributor(partitioner)
 #Redistribute nodes
 my_nodes_balanced = redistributer.redistribute(my_nodes)
 #The new load balanced map
 balanced_map = my_nodes_balanced.Map()
 #Create importer and exporters to move data between banlanced and 
 #unbalanced maps
 importer = Epetra.Import(balanced_map, unbalanced_map)
 exporter = Epetra.Export(balanced_map, unbalanced_map)
 #Create distributed vectors to store the balanced node positions
 my_x = Epetra.Vector(balanced_map)
 my_y = Epetra.Vector(balanced_map)
 my_families_balanced = Epetra.MultiVector(balanced_map, max_family_length)
 #Import the balanced node positions and family information
 my_x.Import(my_nodes[0],importer, Epetra.Insert)
 my_y.Import(my_nodes[1],importer, Epetra.Insert)
 my_families_balanced.Import(my_families,importer, Epetra.Insert)
 #Convert to integer data type for indexing purposes later
 my_families = np.array(my_families_balanced.T, dtype=np.int32)
 #Create a flattened list of all family global indices (locally owned 
 #+ ghosts)
 my_global_ids_required = np.unique(my_families[my_families != -1])
 #Create a list of locally owned global ids
 my_owned_ids = np.array(balanced_map.MyGlobalElements())
Example #5
0
    def T(self):
        """Transpose matrix

        After https://github.com/trilinos/Trilinos_tutorial/wiki/Tpetra_Exercises_Advanced_CrsMatrix_ExplicitTranspose#how-to-compute-the-transpose-of-a-crsmatrix

        Sadly, `EpetraExt.RowMatrix_Transpose` isn't exposed in PyTrilinos.

        Returns
        -------
        ~fipy.matrices.trilinosMatrix._TrilinosMatrix

        Examples
        --------

        >>> import fipy as fp

        >>> mesh = fp.Grid1D(nx=10)
        >>> ids = fp.CellVariable(mesh=mesh, value=mesh._globalOverlappingCellIDs)

        >>> mat = _TrilinosColMeshMatrix(mesh=mesh, rows=1)
        >>> mat.put(vector=ids.value,
        ...         id1=[fp.parallelComm.procID] * mesh.numberOfCells,
        ...         id2=mesh._localOverlappingCellIDs,
        ...         overlapping=True)

        >>> print(mat.T.numpyArray) # doctest: +SERIAL
        [[ 0.]
         [ 1.]
         [ 2.]
         [ 3.]
         [ 4.]
         [ 5.]
         [ 6.]
         [ 7.]
         [ 8.]
         [ 9.]]
        >>> print(mat.T.numpyArray) # doctest: +PARALLEL_2
        [[ 0.  0.]
         [ 1.  0.]
         [ 2.  0.]
         [ 3.  3.]
         [ 4.  4.]
         [ 5.  5.]
         [ 6.  6.]
         [ 0.  7.]
         [ 0.  8.]
         [ 0.  9.]]
        """
        self.finalize()

        # transpose the maps
        rowMap = self.matrix.ColMap()
        colMap = self.matrix.RowMap()
        domainMap = self.matrix.RangeMap()
        rangeMap = self.matrix.DomainMap()

        # 2. Create a new CrsMatrix AT, with A's column Map as AT's row Map.
        numEntriesPerRow = self.matrix.NumGlobalNonzeros(
        ) // self.matrix.NumGlobalCols()
        A_T = Epetra.CrsMatrix(
            Epetra.Copy,
            rowMap,
            # RuntimeError: InsertMyValues cannot be
            # called on Epetra_CrsMatrix that does not
            # have a column map
            colMap,
            numEntriesPerRow)

        # 1. On each process, extract and transpose the local data.
        for irow in range(self.matrix.NumMyRows()):
            # "Returns a two-tuple of numpy arrays of the same size; the first is
            # an array of integers that represent the nonzero columns on the
            # matrix"
            #
            # No, it's not. Returns values *then* indices
            val, jcol = self.matrix.ExtractMyRowCopy(irow)

            # 3. Insert the transposed local data into AT.
            # Note that the column Map owns all of AT's local data.  This
            # means that Step 3 can use local indices.
            A_T.InsertMyValues(jcol, [irow] * len(jcol), val)

        # 4.  Fill complete AT (you'll need to supply the domain and range
        # Map, because the row Map of AT is not one to one in general).
        A_T.FillComplete(domainMap, rangeMap)

        # 5.  If desired, redistribute AT (using an Export) to have a
        # one-to-one row Map.
        exporter = Epetra.Export(rowMap, rangeMap)
        A_T_bis = Epetra.CrsMatrix(Epetra.Copy, rangeMap, numEntriesPerRow)
        A_T_bis.Export(A_T, exporter, Epetra.Insert)
        A_T_bis.FillComplete(domainMap, rangeMap)

        return _TrilinosMatrix(matrix=A_T_bis)