Example #1
0
	def annotate(self, img_folder):
		total_num = img_count(img_folder)
		for img in img_folder:
			SendToQt(img)
			record_annot_info()
			write_annot()
			SENDTOQt("Finish annotation [X/total_num]")
	def visualize(self, img_path, model_path=None):
		img_mat = cv2.imread(img_path)
		if not os.path.exists(model_path):
			return -1
		pred = model(img_mat)
		result_img = plot_vis_det(pred, self.label)
		SendToQt(plot_img)
		return 0
Example #3
0
	def visualize_webcam(self, model_path=None):
		model = load_model(self.model_path)
		while True:
			img_mat = capture(0)
			pred = model(img_mat)
			result_img = plot_vis_pose(pred, self.threshold)
			SendToQt(plot_img)
			if stop:
				break
		return 0
Example #4
0
	def visualize(self, img_path, model_path=None):
		if self.level < 0:
			return -1
		img_mat = cv2.imread(img_path)
		if model_path:
			model = load_model(model_path)
		else:
			model = load_model(self.model_path[self.level])
		pred = model(img_mat)
		result_img = plot_vis_det(pred, self.label)
		SendToQt(plot_img)
	def visualize_webcam(self, model_path=None):
		self.stop = False
		if not os.path.exists(model_path):
			return -1
		while True:
			img_mat = cv2.VideoCapture(0)
			pred = model(img_mat)
			result_img = plot_vis_det(pred, self.label)
			SendToQt(plot_img)
			if self.stop:
				break
		return 0
	def visualize_webcam(self, model_path=None):
		self.stop = False
		if not os.path.exists(model_path):
			return -1
		# try:
		while True:
			img_mat = capture(0)
			pred = model(img_mat)
			result_img = plot_vis_cls(pred, self.label)
			SendToQt(plot_img)
			if self.stop:
				break
		# except:
		# 	return -2
		return 0
Example #7
0
	def visualize_webcam(self, model_path=None):
		self.stop = False
		if self.level < 0:
			return -1
		if model_path:
			model = load_model(model_path)
		else:
			model = load_model(self.model_path[self.level])
		while True:
			img_mat = capture(0)
			pred = model(img_mat)
			result_img = plot_vis_det(pred, self.label)
			SendToQt(plot_img)
			if self.stop:
				break
		return 0
Example #8
0
	def train(self, epochs, img_path, model_path=None):
		self.training_log = {"training acc": [], "training loss": [], "validation acc": [], "validation loss": []}
		if not check_format_cls(img_path):
			return -3

		img_num = img_count(img_path)
		self.level = determine_level(img_num * epochs)

		for epoch in epochs:
			SendToQt("Training loss: XXX, Training acc: XXX")
			self.training_log["training acc"].append(acc)
			self.training_log["training loss"].append(acc)
			.........

		if model_path:
			move_model(model_path, self.level)
Example #9
0
	def train(self, epochs, img_path, model_path=None):
		self.training_log = {"ave classification loss": [], "ave objectness loss": [], "ave iou loss": []}
		if not check_format_det(img_path):
			return -3

		img_num = img_count(img_path)
		self.level = determine_level(img_num * epochs)

		for epoch in epochs:
			SendToQt("ave classification loss: XXX, ave objectness loss: XXX, ave iou loss: XXX")
			self.training_log["ave classification loss"].append(cls_loss)
			self.training_log["ave objectness loss"].append(obj_loss)
			self.training_log["ave iou loss"].append(iou_loss)
			.........

		if model_path:
			move_model(model_path, self.level)
Example #10
0
	def train(self, epochs, img_path, model_path=None):
		self.training_log = {"loss": [], "PCK": [], "PCKH": [], "mse": []}
		if not check_format_pose(img_path):
			return -3

		img_num = img_count(img_path)
		self.threshold = determine_threshold(img_num * epochs)

		for epoch in epochs:
			SendToQt("Epoch: epoch [X/X], loss: XXX, PCK: XXX, PCKH: XXX, mse: XXX")
			self.training_log["loss"].append(loss)
			self.training_log["PCK"].append(PCK)
			self.training_log["mse"].append(mse)
			self.training_log["PCKH"].append(PCKH)
			.........

		if model_path:
			save(model_path)
	def train(self, epochs, img_path, model_path="model.pth"):
		if not check_format_det(img_path):
			return -3
		img_num = img_count(img_path)

		load_model()
		load_data()
		self.label = load_label()
		self.training_results = {"ave classification loss": [], "ave objectness loss": [], "ave iou loss": []}

		for epoch in epochs:
			for inputs, labels in data_loader:
				SendToQt("ave classification loss: XXX, ave objectness loss: XXX, ave iou loss: XXX")
				self.training_results["ave classification loss"].append(cls_loss)
				self.training_results["ave objectness loss"].append(obj_loss)
				self.training_results["ave iou loss"].append(iou_loss)
				.........

		save(model_path)
	def train(self, epochs, img_path, model_path=None):
		if not check_format_cls(img_path):
			return -3

		load_model()
		train_val_split(0.2)
		load_data()
		self.label = load_label()

		self.training_log = {"training acc": [], "training loss": [], "validation acc": [], "validation loss": []}
		for epoch in epochs:
			for inputs, labels in data_loader:
				SendToQt("Training loss: XXX, Training acc: XXX")
				time.sleep()
				self.training_log["training acc"].append(acc)
				self.training_log["training loss"].append(acc)
				.........

		save(model_path)
		return 0
	def plot(self):
		plot_img = plot_graph(self.training_results)
		SendToQt(plot_img)
	def plot(self):
		if not os.path.exists(self.default_path):
			return -1
		plot_img = plot_graph(self.training_results)
		SendToQt(plot_img)
		return 0
Example #15
0
	def plot(self):
		plot_img = plot_graph_det(self.training_log)
		SendToQt(plot_img)
Example #16
0
	def visualize(self, img_path, model_path=None):
		img_mat = cv2.imread(img_path)
		model = load_model(self.model_path)
		pred = model(img_mat)
		result_img = plot_vis_pose(pred, self.threshold)
		SendToQt(plot_img)