Example #1
0
 def pre_train(self, train_round, size, rate, dr, scale):
         #for each pair of neighbor layers, training RBM
         for k in range(self.depth - 1):
                 rbm = RBM(self.layers[k], self.layers[k+1], self.weightLayers[k], rate)
                 # mini-batch training times 
                 for tr in range(train_round):
                         #mini-batch size
                         for i in range(size):
                                 index = random.randint(0, scale)
                                 im = dr.readOne(index)
                                 for p in range(len(im)):
                                         if im[p] >= 128:
                                                 self.layers[0].outs[p] = 1.0
                                         else:
                                                 self.layers[0].outs[p] = 0.0
                                                 
                                 for j in range(k):
                                         toHiddenLayer(self.layers[j], self.weightLayers[j], self.layers[j+1])
                                         #self.layers[j+1].outs = sample(self.layers[j+1].outs)
                                         sample(self.layers[j+1].outs)
                                 rbm.training(1)
                         rbm.update_Parameters(size)
                         #if tr%100 == 0:
                                 #print tr
                 print "Layer: ", k+1, " Completed!"
         return
Example #2
0
 def result(self, im, label):
         self.layers[0].outs = im.copy()
         self.layers[0].nets = im.copy()
         for i in range(self.depth-2):
                 toHiddenLayer(self.layers[i], self.weightLayers[i], self.layers[i+1])
         toOutputLayer(self.layers[self.depth-2], self.weightLayers[self.depth-2], self.layers[self.depth-1])
         
         return self.layers[self.depth-1].outs[label]
Example #3
0
 def result_print(self, im, label):
         self.layers[0].outs = im.copy()
         self.layers[0].nets = im.copy()
         for i in range(self.depth-2):
                 toHiddenLayer(self.layers[i], self.weightLayers[i], self.layers[i+1])
         toOutputLayer(self.layers[self.depth-2], self.weightLayers[self.depth-2], self.layers[self.depth-1])
         
         r = findMax(self.layers[self.depth-1])              
         if label == r :                 
                 return 1
         else:
                 '''
                 for i in range(10):
                         print i, "   ", self.layers[self.depth-1].outs[i]
                 print label
                 
                 print "------------------------------------------------------------------------------"
                 '''
                 return 0