Example #1
0
 def fit(self, trainset):
     AlgoBase.fit(self, trainset)
     numUsers = trainset.n_users
     numItems = trainset.n_items
     trainingMatrix = np.zeros([numUsers, numItems, 10], dtype = np.float32)
     for (uid, iid, rating) in trainset.all_ratings():
         adjustedRating = int(float(rating)*2.0) - 1
         trainingMatrix[int(uid), int(iid), adjustedRating] = 1
         
     trainingMatrix = np.reshape(trainingMatrix,[trainingMatrix.shape[0], - 1])
     
     rbm = RBM(trainingMatrix.shape[1], hiddenDimensions = self.hiddenDim, learningRate = self.learningRate, batchSize = self.batchSize)
     rbm.Train(trainingMatrix)
     self.predictedRatings = np.zeros([numUsers, numItems], dtype = np.float32)
     for uiid in range(trainset.n_users):
         if(uiid % 50 == 0):
             print("Procissing user ", uiid)
         recs = rbm.GetRecommendations([trainingMatrix[uiid]])
         recs = np.reshape(recs, [numItems, 10])
         
         for itemID, rec in enumerate(recs):
             normalized = self.softmax(rec)
             rating = np.average(np.arange(10), weights = normalized)
             self.predictedRatings[uiid,itemID] = (rating + 1)* 0.5
     
     return self
Example #2
0
	def train(self):

		#wb is a dictionary that stores the average Weight matrices and Bias matrices. The keys are where the 
		#files are stored 
		self.wb = {}



		"""
		For each user an RBM will be created. 
		"""
		for i in range(self.dataset.training_X.shape[1]):
			user = self.dataset.training_X[:,i]
			rbm = RBM(hidden_layer_n=HIDDEN_LAYER_N,iterations=ITERATIONS,dataset=user)
			rbm.run()

			#After the an RBM is run the weights and biases are re-added to complete  set. 
			self.all_weights.append(rbm.full_weights)
			self.all_bv.append(rbm.full_bv)
			self.all_bh.append(rbm.full_bh)

			print("RBM number: " + str(i))


		#Average all the weights and all the biases from all the RBM's (With each RBM corresponding to a user)
		self.wb[WEIGHTS_FILE] = self.average_matrices(self.all_weights)
		self.wb[VISIBLE_BIAS_FILE] = self.average_matrices(self.all_bv)
		self.wb[HIDDEN_BIAS_FILE] = self.average_matrices(self.all_bh)


		#Training can take a long time so we can save the weights and biases 
		self.save_matrix(WEIGHTS_FILE)
		self.save_matrix(VISIBLE_BIAS_FILE)
		self.save_matrix(HIDDEN_BIAS_FILE)
Example #3
0
 def pre_train(self, train_round, size, rate, dr, scale):
         #for each pair of neighbor layers, training RBM
         for k in range(self.depth - 1):
                 rbm = RBM(self.layers[k], self.layers[k+1], self.weightLayers[k], rate)
                 # mini-batch training times 
                 for tr in range(train_round):
                         #mini-batch size
                         for i in range(size):
                                 index = random.randint(0, scale)
                                 im = dr.readOne(index)
                                 for p in range(len(im)):
                                         if im[p] >= 128:
                                                 self.layers[0].outs[p] = 1.0
                                         else:
                                                 self.layers[0].outs[p] = 0.0
                                                 
                                 for j in range(k):
                                         toHiddenLayer(self.layers[j], self.weightLayers[j], self.layers[j+1])
                                         #self.layers[j+1].outs = sample(self.layers[j+1].outs)
                                         sample(self.layers[j+1].outs)
                                 rbm.training(1)
                         rbm.update_Parameters(size)
                         #if tr%100 == 0:
                                 #print tr
                 print "Layer: ", k+1, " Completed!"
         return
    def fit(self, trainset):
        AlgoBase.fit(self, trainset)

        numUsers = trainset.n_users
        numItems = trainset.n_items
        
        trainingMatrix = np.zeros([numUsers, numItems, 10], dtype=np.float32)
        
        for (uid, iid, rating) in trainset.all_ratings():
            adjustedRating = int(float(rating)*2.0) - 1
            trainingMatrix[int(uid), int(iid), adjustedRating] = 1        
        # Flatten to a 2D array, with nodes for each possible rating type on each possible item, for every user.
        trainingMatrix = np.reshape(trainingMatrix, [trainingMatrix.shape[0], -1])        
        # Create an RBM with (num items * rating values) visible nodes
        rbm = RBM(trainingMatrix.shape[1], hiddenDimensions=self.hiddenDim, learningRate=self.learningRate, batchSize=self.batchSize, epochs=self.epochs)
        rbm.Train(trainingMatrix)
        self.predictedRatings = np.zeros([numUsers, numItems], dtype=np.float32)
        for uiid in range(trainset.n_users):
            if (uiid % 50 == 0):
                print("Processing user ", uiid)
            recs = rbm.GetRecommendations([trainingMatrix[uiid]])
            recs = np.reshape(recs, [numItems, 10])            
            for itemID, rec in enumerate(recs):
                # The obvious thing would be to just take the rating with the highest score:                
                #rating = rec.argmax()
                # ... but this just leads to a huge multi-way tie for 5-star predictions.
                # The paper suggests performing normalization over K values to get probabilities
                # and take the expectation as your prediction, so we'll do that instead:
                normalized = self.softmax(rec)
                rating = np.average(np.arange(10), weights=normalized)
                self.predictedRatings[uiid, itemID] = (rating + 1) * 0.5        
        return self
    def train_DBN(self, x):
        for index, layer in enumerate(self.layers):
            if index == 0:
                vn = self.input_size
            else:
                vn = self.layers[index - 1]
            hn = self.layers[index]

            rbm = RBM(vn,
                      hn,
                      epochs=100,
                      mode='bernoulli',
                      lr=0.0005,
                      k=10,
                      batch_size=128,
                      gpu=True,
                      optimizer='adam',
                      early_stopping_patience=10)
            x_dash = self.generate_input_for_layer(index, x)
            rbm.train(x_dash)
            self.layer_parameters[index]['W'] = rbm.W.cpu()
            self.layer_parameters[index]['hb'] = rbm.hb.cpu()
            self.layer_parameters[index]['vb'] = rbm.vb.cpu()
            print("Finished Training Layer:", index, "to", index + 1)
        if self.savefile is not None:
            torch.save(self.layer_parameters, self.savefile)
Example #6
0
	def recommend(self, u, q):
		self.average_weights = self._load_matrix(WEIGHTS_FILE)
		self.average_bv 	 = self._load_matrix(VISIBLE_BIAS_FILE)
		self.average_bh		 = self._load_matrix(HIDDEN_BIAS_FILE)

		#x is the input (the user we are predicting for), w is the weights of just the items rated by user x and bv is 
		# just the visible biases of the corresponding to the items rated by the user
		x, w, bv 		 = self._ratings_to_softmax_units(self.dataset.training_X[:,u], q)
		#bh is the same size for every user because they correspond to the hidden units
		bh = self.average_bh

		#Returns the new index for the query q. The index changes because we reomved all unrated items.
		#The units for the query are changed to 5 -1s as a placeholder 
		x, new_q  = self._new_index(x)
		results = []

		#For each rating 1-5 we sample the RBM with the corresponding input.
		for r in range(RATING_MAX):
			x = self._set_rating(x, new_q, (r+1))
			rbm = RBM(hidden_layer_n=HIDDEN_LAYER_N,iterations=ITERATIONS,dataset=x, training=False)
			sample = rbm.run_prediction(x, w, bh, bv)
			results.append(sample)

		#Get the expected output from each of the probablitlies of each input 
		probs = self._get_probabilities(results, new_q)
		prediction = self._expected_value(self.softmax(probs))

		print("Prediction: user " + str(u) + " will give movie: " + str(q) + " rating: " + str(prediction))
Example #7
0
 def load_RBM(self, file_path, layer_sizes):
     '''
     load the autoencoder via the RBMs
     '''
     RBM = Autoencoder(layer_sizes)
     RBM = RBM.pretrained_from_file(file_path)
     self.model, self.encoder, self.decoder = RBM.unroll()
     self.set_compiler()
     self.encoder.compile(loss={'encoded': self.kl_loss},
                          optimizer=Adam(self.lr))
Example #8
0
def main():
    learningRate = float(sys.argv[1]) if len(sys.argv) >= 2 else 0.0001
    maxIterations = int(sys.argv[2]) if len(sys.argv) >= 3 else 300

    # load data
    data = scipy.io.loadmat('data/usps_resampled.mat')
    train_patterns = data['train_patterns']
    train_labels = data['train_labels']
    test_patterns = data['test_patterns']
    test_labels = data['test_labels']

    # initialize and train RBM
    rbm = RBM(192, train_patterns, learningRate=learningRate, verbose=True)
    iterationsCompleted = rbm.train(convThreshold=0.03,
                                    maxIterations=maxIterations)

    print 'Autoencoding. . . '
    hidden_patterns = rbm.translate(train_patterns)
    ae_patterns = rbm.invert(hidden_patterns)
    print 'Finished.'

    while True:
        while True:
            try:
                sampleImage = raw_input("Pick a sample image from [0-" +
                                        str(train_patterns.shape[1] - 1) +
                                        "] (q to quit): ")
                if sampleImage == 'q':
                    y = raw_input("Save this classifier (y)? ")
                    fn = 'data/RBM_' + str(
                        (learningRate, 192, iterationsCompleted))
                    if y in ['y', '']:
                        f = open(fn, 'w')
                        pickle.dump(TrainedRBM(rbm.W, rbm.b_h, rbm.b_v), f)
                        print "RBM saved as " + fn
                    sys.exit(0)
                sampleImage = int(sampleImage)
                if sampleImage not in range(train_patterns.shape[1]):
                    raise ValueError
            except ValueError:
                continue
            except EOFError:
                sys.exit(0)
            except KeyboardInterrupt:
                sys.exit(0)
            break
        # show example image
        plt.matshow(train_patterns[:, sampleImage].reshape(16, 16))
        plt.matshow(ae_patterns[:, sampleImage].reshape(16, 16))
        plt.show()
Example #9
0
    def __init__(self,
                 input=None,
                 label=None,
                 n_ins=2,
                 hidden_layer_sizes=[3, 3],
                 n_outs=2,
                 rng=None):

        self.x = input
        self.y = label

        self.sigmoid_layers = []
        self.rbm_layers = []
        self.n_layers = len(hidden_layer_sizes)  # = len(self.rbm_layers)

        if rng is None:
            rng = numpy.random.RandomState(1234)

        assert self.n_layers > 0

        # construct multi-layer
        for i in xrange(self.n_layers):
            # layer_size
            if i == 0:
                input_size = n_ins
            else:
                input_size = hidden_layer_sizes[i - 1]

            # layer_input
            if i == 0:
                layer_input = self.x
            else:
                layer_input = self.sigmoid_layers[-1].sample_h_given_v()

            # construct sigmoid_layer
            sigmoid_layer = HiddenLayer(input=layer_input,
                                        n_in=input_size,
                                        n_out=hidden_layer_sizes[i],
                                        rng=rng,
                                        activation=sigmoid)
            self.sigmoid_layers.append(sigmoid_layer)

            # construct rbm_layer
            rbm_layer = RBM(
                input=layer_input,
                n_visible=input_size,
                n_hidden=hidden_layer_sizes[i],
                W=sigmoid_layer.W,  # W, b are shared
                hbias=sigmoid_layer.b)
            self.rbm_layers.append(rbm_layer)

        # layer for output using Logistic Regression
        self.log_layer = LogisticRegression(
            input=self.sigmoid_layers[-1].sample_h_given_v(),
            label=self.y,
            n_in=hidden_layer_sizes[-1],
            n_out=n_outs)

        # finetune cost: the negative log likelihood of the logistic regression layer
        self.finetune_cost = self.log_layer.negative_log_likelihood()
Example #10
0
    def pretrain_model(self, x):
        with tf.variable_scope('pre-train_dbn'):

            # Make an rbm between each layer of the dbn so that
            # we can train each layer greedily
            with tf.variable_scope('make_rbms'):
                rbm_layers = [x]
                rbms = []
                for i in range(len(self.dbn_sizes) - 1):
                    rbms.append(RBM(self.W[i], self.B[i], self.B[i + 1]))
                    visible_layer = tf.sigmoid(
                        tf.matmul(rbm_layers[-1], self.W[i]) + self.B[i + 1])
                    rbm_layers.append(sample(visible_layer))

        # Create a list of optimizers and other subgraphs, one for each rbm
        # that we will train
        with tf.variable_scope('pre-train_ops'):
            costs = []
            optimizers = []
            for i in range(len(rbms)):
                cost, _ = rbms[i].free_energy_cost(rbm_layers[i], 1)
                optimizer = tf.train.AdamOptimizer().minimize(cost)
                costs.append(cost)
                optimizers.append(optimizer)
        return costs, optimizers
Example #11
0
    def __init__(self,
                 visible_units=256,
                 hidden_units=[64, 100],
                 k=2,
                 learning_rate=1e-5,
                 learning_rate_decay=False,
                 xavier_init=False,
                 increase_to_cd_k=False,
                 use_gpu=False):
        super(DBN, self).__init__()

        self.n_layers = len(hidden_units)
        self.rbm_layers = []
        self.rbm_nodes = []

        # Creating different RBM layers
        for i in range(self.n_layers):
            input_size = 0
            if i == 0:
                input_size = visible_units
            else:
                input_size = hidden_units[i - 1]
            rbm = RBM(visible_units=input_size,
                      hidden_units=hidden_units[i],
                      k=k,
                      learning_rate=learning_rate,
                      learning_rate_decay=learning_rate_decay,
                      xavier_init=xavier_init,
                      increase_to_cd_k=increase_to_cd_k,
                      use_gpu=use_gpu)

            self.rbm_layers.append(rbm)

        # rbm_layers = [RBM(rbn_nodes[i-1] , rbm_nodes[i],use_gpu=use_cuda) for i in range(1,len(rbm_nodes))]
        self.W_rec = [
            nn.Parameter(self.rbm_layers[i].W.data.clone())
            for i in range(self.n_layers - 1)
        ]
        self.W_gen = [
            nn.Parameter(self.rbm_layers[i].W.data)
            for i in range(self.n_layers - 1)
        ]
        self.bias_rec = [
            nn.Parameter(self.rbm_layers[i].h_bias.data.clone())
            for i in range(self.n_layers - 1)
        ]
        self.bias_gen = [
            nn.Parameter(self.rbm_layers[i].v_bias.data)
            for i in range(self.n_layers - 1)
        ]
        self.W_mem = nn.Parameter(self.rbm_layers[-1].W.data)
        self.v_bias_mem = nn.Parameter(self.rbm_layers[-1].v_bias.data)
        self.h_bias_mem = nn.Parameter(self.rbm_layers[-1].h_bias.data)

        for i in range(self.n_layers - 1):
            self.register_parameter('W_rec%i' % i, self.W_rec[i])
            self.register_parameter('W_gen%i' % i, self.W_gen[i])
            self.register_parameter('bias_rec%i' % i, self.bias_rec[i])
            self.register_parameter('bias_gen%i' % i, self.bias_gen[i])
Example #12
0
 def __init__(self, layer_sizes):
     """On va traiter le DBN comme si c'etait une liste des RBM
     Paramètres: nb_couches doit être int > 0
     """
     self.nb_couches = len(layer_sizes) - 1
     # Un DBN est un empilement de RBM
     self.model = []
     for i in range(self.nb_couches):
         self.model.append(RBM(layer_sizes[i], layer_sizes[i + 1]))
Example #13
0
    def fit(self, trainset):
        AlgoBase.fit(self, trainset)

        numUsers = trainset.n_users
        numItems = trainset.n_items

        trainingMatrix = np.zeros([numUsers, numItems, 10], dtype=np.float32)

        for (uid, iid, rating) in trainset.all_ratings():
            adjustedRating = int(float(rating) * 2.0) - 1
            trainingMatrix[int(uid), int(iid), adjustedRating] = 1

        #ユーザーごとにアイテムの可能な評価スコアに対して、ノードに2次元配列で平坦化する
        trainingMatrix = np.reshape(trainingMatrix,
                                    [trainingMatrix.shape[0], -1])

        #可視化できるノードにアイテムの整数値と評価値を掛け算して、RBMを新たに構築する
        rbm = RBM(trainingMatrix.shape[1],
                  hiddenDimensions=self.hiddenDim,
                  learningRate=self.learningRate,
                  batchSize=self.batchSize,
                  epochs=self.epochs)
        rbm.Train(trainingMatrix)

        self.predictedRatings = np.zeros([numUsers, numItems],
                                         dtype=np.float32)
        for uiid in range(trainset.n_users):
            if (uiid % 50 == 0):
                print("Processing user ", uiid)
            recs = rbm.GetRecommendations([trainingMatrix[uiid]])
            recs = np.reshape(recs, [numItems, 10])

            for itemID, rec in enumerate(recs):
                #評価値に最も高いスコアを付与して明示する
                #rating = rec.argmax()
                #5つ星に複数の評価値を導入する
                #考えうるk値の正規化を行う
                #予測する際に、期待値を取る
                normalized = self.softmax(rec)
                rating = np.average(np.arange(10), weights=normalized)
                self.predictedRatings[uiid, itemID] = (rating + 1) * 0.5

        return self
Example #14
0
    def __init__(self,
                 numpy_rng,
                 theano_rng=None,
                 n_ins=784,
                 hidden_layers_sizes=[500, 500],
                 n_outs=10):
        self.sigmoid_layers = []
        self.rbm_layers = []
        self.params = []
        self.n_layers = len(hidden_layers_sizes)
        assert self.n_layers > 0

        if not theano_rng:
            theano_rng = theano_rng = RandomStreams(numpy_rng.randint(2**30))

        self.x = T.matrix('x')
        self.y = T.ivector('y')
        for i in range(self.n_layers):
            if i == 0:
                input_size = n_ins
            else:
                input_size = hidden_layers_sizes[i - 1]
            if i == 0:
                layer_input = self.x
            else:
                layer_input = self.sigmoid_layers[-1].output

            sigmoid_layer = HiddenLayer(rng=numpy_rng,
                                        input=layer_input,
                                        n_in=input_size,
                                        n_out=hidden_layers_sizes[i],
                                        activation=T.nnet.sigmoid)
            self.sigmoid_layers.append(sigmoid_layer)

            self.params.extend(sigmoid_layer.params)

            rbm_layer = RBM(numpy_rng=numpy_rng,
                            theano_rng=theano_rng,
                            input=layer_input,
                            n_visible=input_size,
                            n_hidden=hidden_layers_sizes[i],
                            W=sigmoid_layer.W,
                            hbias=sigmoid_layer.b)
            self.rbm_layers.append(rbm_layer)

        self.logLayer = LogisticRegression(
            input=self.sigmoid_layers[-1].output,
            n_in=hidden_layers_sizes[-1],
            n_out=n_outs)

        self.params.extend(self.logLayer.params)

        self.finetune_cost = self.logLayer.negative_log_likehood(self.y)

        self.errors = self.logLayer.errors(self.y)
Example #15
0
    def train_model(self, x):
        with tf.variable_scope('train_rnn_dbn'):
            with tf.variable_scope('propagate_states'):
                states = self.__unroll_rnn(x)
                state0 = self.rnn_s0
                if self.num_rnn_cells > 1:
                    states = states[-1]
                    state0 = state0[-1]
                u_t = tf.reshape(states.c, [-1, self.s_size])
                q_t = tf.reshape(states.h, [-1, self.s_size])
                u_tm1 = tf.concat([state0.c, u_t], 0)[:-1, :]
                q_tm1 = tf.concat([state0.h, q_t], 0)[:-1, :]

            # Make an rbm between each layer of the dbn so that
            # we can train each layer greedily
            with tf.variable_scope('make_rbms'):
                rbm_layers = [x]
                rbms = []
                for i in range(len(self.dbn_sizes) - 1):
                    bv = tf.matmul(u_tm1, self.Wu[i]) + tf.matmul(
                        q_tm1, self.Wq[i]) + self.B[i]
                    bh = tf.matmul(u_tm1, self.Wu[i + 1]) + tf.matmul(
                        q_tm1, self.Wq[i + 1]) + self.B[i + 1]
                    rbms.append(RBM(self.W[i], bv, bh))
                    visible_layer = tf.sigmoid(
                        tf.matmul(rbm_layers[-1], self.W[i]) + self.B[i + 1])
                    rbm_layers.append(sample(visible_layer))

        # Create a list of optimizers and other subgraphs, one for each rbm
        # that we will train
        with tf.variable_scope('train_ops'):
            costs = []
            optimizers = []
            loglikelihoods = []
            summaries = []
            for i in range(len(rbms)):
                cost, loglikelihood = rbms[i].free_energy_cost(
                    rbm_layers[i], 15)
                cost_summary = tf.summary.scalar('free_energy', cost)
                ll_summary = tf.summary.scalar('log_likelihood', loglikelihood)
                optimizer = tf.train.GradientDescentOptimizer(
                    learning_rate=0.001)
                gradients = optimizer.compute_gradients(cost)
                gradients = [(tf.clip_by_value(grad, -10.0, 10.0), var)
                             for grad, var in gradients if grad is not None]
                optimizer = optimizer.apply_gradients(gradients)
                costs.append(cost)
                optimizers.append(optimizer)
                loglikelihoods.append(loglikelihood)
                summaries.append([cost_summary, ll_summary])

        return costs, optimizers, loglikelihoods, summaries
Example #16
0
        def evaluation_RBM(self, dr, scale, k):
                rbm = RBM(self.layers[k], self.layers[k+1], self.weightLayers[k], 0)
                for i in range(scale):
                        im = dr.readOne(i)
                        for p in range(len(im)):
                                if im[p] >= 128:
                                        rbm.v_layer.outs[p] = 1.0
                                else:
                                        rbm.v_layer.outs[p] = 0.0                
                        rbm.update_total_error()

                        #just for testing
                        size = [28, 28]
                        image = Image.new("L", size)
                        for p in range(len(self.layers[k].outs)):
                                if self.layers[k].outs[p] == 1.0:
                                        image.putpixel([p%28, p/28], 255)
                                else:
                                        image.putpixel([p%28, p/28], 0)
                        image.show()
                        
                rbm.print_average_error(k)
Example #17
0
def main(args):
    train, test = read_data(args.in_dir)
    train, val = split_data(train)

    print('\n\nTrain: ', train.shape)
    print('Val: ', val.shape)
    print('Test:  ', test.shape)

    # RBM object
    rbm = RBM(args.num_hidden, val.shape[1], args.lr, args.n, args.batch_size,
              args.epochs)

    # Train RBM
    train_loss, val_loss = rbm.Train(train, val)

    # Create output dir if it doesn't exist
    if not os.path.exists(args.out_dir):
        os.makedirs(args.out_dir)

    # Plot error
    plot_error(train_loss, val_loss, args.out_dir)

    # Performance on Test set
    error_test = rbm.reconstruction_error(test.T)

    print("\n\n\nReconstruction error...\n")
    print("Train : ", train_loss[-1])
    print("Val : ", val_loss[-1])
    print("Test : ", error_test)

    # For viewing reconstruction
    reconstruct_images(rbm, test, (args.image_height, args.image_width),
                       args.out_dir)

    # Saving the model learned weights
    pickle.dump([rbm.W, rbm.b_h, rbm.b_v],
                open(args.out_dir + '\\weights.pkl', 'wb'))
    print(f"\n\nRBM weights saved in {args.out_dir}\\weights.pkl")
Example #18
0
def pretrain_autoencoder(net,
                         x,
                         x_val,
                         rbm_lr=0.001,
                         rbm_use_gauss_visible=False,
                         rbm_use_gauss_hidden=True,
                         rbm_mom=0.5,
                         rbm_weight_decay=0.0000,
                         rbm_lr_decay=0.0,
                         rbm_batch_size=100,
                         rbm_epochs=100,
                         rbm_patience=-1,
                         verbose=1):
    final_arch = net.arch[1:math.ceil(len(net.arch) /
                                      2.0)]  # without input layer
    n_dense_layers = len(final_arch)
    rbm_list = []
    #loop for training the RBMs
    for i in range(n_dense_layers):
        print("\nFine tuning layer number " + str(i))
        if (i == 0):
            x_new = x
            x_val_new = x_val
        else:
            x_new = rbm_list[-1].get_h(x_new)
            x_val_new = rbm_list[-1].get_h(x_val_new)
        rbm = RBM(x_new.shape[1],
                  final_arch[i],
                  use_gaussian_visible_sampling=rbm_use_gauss_visible,
                  use_gaussian_hidden_sampling=rbm_use_gauss_hidden,
                  use_sample_vis_for_learning=False)
        rbm.set_lr(
            rbm_lr,
            rbm_lr_decay,
            momentum=rbm_mom,
            weight_decay=rbm_weight_decay,
        )
        rbm.fit(x_new,
                x_val_new,
                batch_size=rbm_batch_size,
                epochs=rbm_epochs,
                patience=rbm_patience)
        rbm_list.append(rbm)
    rbm_iterator = 0
    rbm_iterator_direction = 1
    #loop to copy the weights from rbm to NN
    for n_layer in range(len(net.layers)):
        if (net.layers[n_layer].ID == "Dense"):
            copy_dense_weights_from_rbm(rbm_list[rbm_iterator],
                                        net.layers[n_layer],
                                        rbm_iterator_direction)
            if (rbm_iterator == len(rbm_list) - 1
                    and rbm_iterator_direction == 1):
                rbm_iterator_direction = -1
            else:
                rbm_iterator += rbm_iterator_direction
    print("Pre training finished!")
    return rbm_list
Example #19
0
def calcul_softmax(rbm: RBM, data: np.array) -> np.array:
    """Prend en argument un RBM, des données d’entrée et qui
    retourne des probabilités sur les unités de sortie à partir de
    la fonction softmax.
    Non utilisé

    Args:
        rbm (RBM): [description]
        data (np.array): [description]

    Returns:
        np.array: Probabilités sur les unités de sortie
    """
    return softmax(RBM.entree_sortie(data))
Example #20
0
    def fit(self, X, transform=False):
        self.layer = []
        X_input = X
        input_size = X_input.shape[1]
        self.input_shape = input_size
        for i in range(self.n_layers):
            output_size = self.params[i]
            print(input_size)
            self.layer.append(RBM(input_size, output_size))
            input_size = output_size
            self.layer[i].fit(X_input, self.n_iter[i])
            X_input = self.layer[i].predict(X_input)

        if transform:
            return self.predict(X)
Example #21
0
def test_RBM(train_X, train_Y, test_X, test_Y):
    # Create and train RBM
    rbm = RBM(28 * 28, 500)
    rbm.fit(train_X)

    rbm.get_filters()

    train_X = np.array([rbm.inference(x) for x in train_X])
    test_X = np.array([rbm.inference(x) for x in test_X])

    logreg = LogisticRegression(max_iter=10)
    logreg.fit(train_X, train_Y)

    predict_Y = logreg.predict(train_X)
    print("Accuracy on training data")
    print(accuracy_score(train_Y, predict_Y))
    predict_Y = logreg.predict(test_X)
    print("Accuracy on test data")
    print(accuracy_score(test_Y, predict_Y))
    def __init__(self,
                 hidden_units,
                 visible_units=256,
                 output_units=1,
                 k=2,
                 learning_rate=1e-5,
                 learning_rate_decay=False,
                 increase_to_cd_k=False,
                 device='cpu'):
        super(DBN, self).__init__()

        self.n_layers = len(hidden_units)
        self.rbm_layers = []
        self.rbm_nodes = []
        self.device = device
        self.is_pretrained = False
        self.is_finetune = False

        # Creating different RBM layers
        for i in range(self.n_layers):
            if i == 0:
                input_size = visible_units
            else:
                input_size = hidden_units[i - 1]
            rbm = RBM(visible_units=input_size,
                      hidden_units=hidden_units[i],
                      k=k,
                      learning_rate=learning_rate,
                      learning_rate_decay=learning_rate_decay,
                      increase_to_cd_k=increase_to_cd_k,
                      device=device)

            self.rbm_layers.append(rbm)

        self.W_rec = [self.rbm_layers[i].weight for i in range(self.n_layers)]
        self.bias_rec = [
            self.rbm_layers[i].h_bias for i in range(self.n_layers)
        ]

        for i in range(self.n_layers):
            self.register_parameter('W_rec%i' % i, self.W_rec[i])
            self.register_parameter('bias_rec%i' % i, self.bias_rec[i])

        self.bpnn = torch.nn.Linear(hidden_units[-1],
                                    output_units).to(self.device)
Example #23
0
    def fit(self, X, transform=False, load=False, name=None, save=True):
        if load:
            self.model = self.load()
        else:
            self.layer = []
            X_input = X
            input_size = X_input.shape[1]
            self.input_shape = input_size
            for i in range(self.n_layers):
                output_size = self.params[i]
                print(input_size)
                self.layer.append(RBM(input_size, output_size))
                input_size = output_size
                self.layer[i].fit(X_input, self.n_iter[i])
                X_input = self.layer[i].predict(X_input)

            self.model = self.get_greed_model()
            if save:
                self.save(self.model)

            if transform:
                return self.predict(X)
Example #24
0
def main():
    learningRate = float(sys.argv[1]) if len(sys.argv) >= 2 else 0.0001
    maxIterations = int(sys.argv[2]) if len(sys.argv) >= 3 else 300

    # load data
    data = scipy.io.loadmat('data/usps_resampled.mat')
    train_patterns = data['train_patterns']
    train_labels = data['train_labels']
    test_patterns = data['test_patterns']
    test_labels = data['test_labels']

    # initialize and train RBM
    rbm = RBM(192, train_patterns, learningRate=learningRate, verbose=True)
    rbm.train(convThreshold=0.1, maxIterations=maxIterations)

    print 'Autoencoding. . . '
    hidden_patterns = rbm.translate(train_patterns)
    ae_patterns = rbm.invert(hidden_patterns)
    print 'Finished.'

    W = rbm.W.get_value()
    while True:
        while True:
            try:
                detectorNum = raw_input("Pick a detector image from [0-" +
                                        str(W.shape[0] - 1) +
                                        "] (q to quit): ")
                if detectorNum == 'q':
                    sys.exit(0)
                detectorNum = int(detectorNum)
                if detectorNum not in range(W.shape[0]):
                    raise ValueError
            except ValueError:
                continue
            except EOFError:
                sys.exit(0)
            except KeyboardInterrupt:
                sys.exit(0)
            break

        # show example image
        plt.matshow(W[detectorNum, :].reshape(16, 16))
        plt.show()
Example #25
0
    def train(self, trainingData):
        rbmList = []  # list RBM's weights
        tempData = trainingData
        # start RBM's training and get the respective weights
        for n in range(self.nEncoderLayers):
            if (n == 0 or n == (self.nEncoderLayers - 1)):
                rbm = RBM(tempData, self.sEncoderLayers[n], rbmType='GBRBM')
            else:
                rbm = RBM(tempData, self.sEncoderLayers[n], rbmType='BBRBM')

            print('Start %d RBM training' % (n + 1))
            rbm.train(batchSize=100)

            [weights, visBias, hidBias] = rbm.getWeights()
            rbmList.append(RBM_Weights(weights, visBias, hidBias))

            data = tf.convert_to_tensor(tempData,
                                        dtype=tf.float32,
                                        name='data')
            probHid = tf.sigmoid(tf.matmul(data, weights) + hidBias)
            hid = tf.cast(tf.greater(
                probHid,
                tf.random_uniform(tf.shape(probHid),
                                  minval=0,
                                  maxval=1,
                                  dtype=tf.float32)),
                          dtype=tf.float32)

            with tf.Session() as sess:
                if ((self.nEncoderLayers - 1) == n):
                    tempData = sess.run(probHid)
                else:
                    tempData = sess.run(hid)

        # start the fine tuning process
        return self.fineTuning(rbmList, trainingData)
Example #26
0
def main():
    random.seed(0)
    size = 40
    rbm = RBM(size * size, 1000)

    slp = 2
    #for blob, params in randomBlobs(10, size, size):
    #    rbm.v = blob.flatten()
    #    plot(rbm, blob)
    #    sleep(slp)
    #
    #    result = reshape(rbm.v, (size, size))
    #    plot(rbm, result)
    #    sleep(slp)
    #
    #    rbm.v2h()
    #    plot(rbm, blob)
    #    sleep(slp)
    #
    #    rbm.h2v()
    #    result = reshape(rbm.v, (size, size))
    #    plot(rbm, result)
    #    sleep(slp)

    every = 2000

    #m = log(.01/.1) / log(10000)
    NN = 20001
    bb = 1. / NN * log(.001 / 1.0)
    elapsed = array([])
    for ii in range(NN):
        if ii % 100 == 0:
            blob, params = randomBlobs(10, size, size).next()

        #print params

        #epsilon = .1 * (ii+1) ** m
        #epsilon = .3 * exp(bb * ii)
        epsilon = min(.1, 1.0 * exp(bb * ii))

        #time0 = time()
        rbm.learn1(blob.flatten(),
                   epsilon=epsilon,
                   activationH2V='gaussianReal',
                   param=1)
        #elapsed = hstack((elapsed, time() - time0))

        if ii % every == 0:
            print '%d: epsilon is %f' % (ii, epsilon),
            rbm.v = blob.flatten()
            result = reshape(rbm.v, (size, size))
            plot(rbm, result, 'Iteration %d' % ii, 'Data')
            p.show()
            sleep(.1) if ii == 0 else sleep(.1)

            rbm.v2h()
            rbm.h2v(activation='gaussianReal', param=0)

            result = reshape(rbm.v, (size, size))
            plot(rbm, result, 'Iteration %d' % ii, 'Reconstruction')
            p.show()
            sleep(.5) if ii == 0 else sleep(.5)

            print 'mean of last 50 errors is', mean(rbm.reconErrorNorms[-50:])
Example #27
0
    def fit(self, X, Y):
        # Create a report to be saved at the end of execution 
        # (when running on the remote server)
        if self.do_report:
            report = {"learning_rate":self.learning_rate,
                      "training_epochs":self.training_epochs,
                      "batch_size":self.batch_size,
                      "n_chains":self.n_chains,
                      "n_samples":self.n_samples,
                      "n_hidden":self.n_hidden,
                      "k":self.k,
                      "costs":np.zeros(self.training_epochs),
#                      "accuracy":np.zeros(self.training_epochs),
                      "pretraining_time":0}
                      
        train_data = np.hstack([Y,X])
        
        n_visible = train_data.shape[1]
        
        # Building of theano format datasets
        train_set = shared_dataset(train_data)
        
        # compute number of minibatches for training, validation and testing
        n_train_batches = train_set.get_value(borrow=True).shape[0] / \
            self.batch_size
        
        # allocate symbolic variables for the data
        index = T.lscalar()  # index to a [mini]batch
        x = T.matrix('x')  # the data
        
        rng = np.random.RandomState(123)
        theano_rng = RandomStreams(rng.randint(2 ** 30))
        
        # initialize storage for the persistent chain (state = hidden
        # layer of chain)
        persistent_chain = theano.shared(np.zeros((self.batch_size, 
                                                   self.n_hidden),
                                                  dtype=theano.config.floatX),
                                         borrow=True)
        
        # construct the RBM class
        self.rbm = RBM(input=x,
                       n_visible=n_visible,
                       n_labels=self.n_labels,
                       n_hidden=self.n_hidden, 
                       np_rng=rng, 
                       theano_rng=theano_rng)
        
        # get the cost and the gradient corresponding to one step of CD-k
        cost, updates = self.rbm.get_cost_updates(lr=self.learning_rate,
                                                  persistent=persistent_chain, 
                                                  k=self.k)
                                             
#        accuracy = self.rbm.get_cv_error()
        
        #%%====================================================================
        # Training the RBM
        #======================================================================
        
        # it is ok for a theano function to have no output
        # the purpose of train_rbm is solely to update the RBM parameters
        train_rbm = theano.function(
            [index],
            cost,
            updates=updates,
            givens={
                x: train_set[index * self.batch_size: \
                            (index + 1) * self.batch_size]
            },
            name='train_rbm'
        )
        
        start_time = timeit.default_timer()
    
        max_score = -np.inf
        argmax_score = RBM(input=x,
                           n_visible=n_visible,
                           n_labels=self.n_labels,
                           n_hidden=self.n_hidden, 
                           np_rng=rng, 
                           theano_rng=theano_rng)
#        count = 0
        
        ## go through training epochs
        for epoch in xrange(self.training_epochs):
        
            # go through the training set
            mean_cost = []
            for batch_index in xrange(n_train_batches):
                mean_cost += [train_rbm(batch_index)]
                
            print 'Training epoch %d, cost is ' % epoch, np.mean(mean_cost)
            
            score = np.mean(mean_cost)

            if score>max_score:
                max_score = score
                argmax_score.clone(self.rbm)
            
#            acc = accuracy.eval()
#            
#            if self.scoring=='cost':
#                score = np.mean(mean_cost)
#            elif self.scoring=='accuracy':
#                score = acc
#            else:
#                raise Warning('''scoring must be cost or accuracy, 
#                              set to accuracy''')
#                score = acc
#                
#            if score>max_score:
#                max_score = score
#                argmax_score.clone(self.rbm)
#                count = 0
#            else:
#                count += 1
#            
#            if count>2:
#                break
                
            if self.do_report:
                report["costs"][epoch] = np.mean(mean_cost)
#                report["accuracy"][epoch] = acc
         
        end_time = timeit.default_timer()
        pretraining_time = (end_time - start_time)
        report['pretraining_time'] = pretraining_time   
        
        self.rbm = argmax_score        
        
        if self.do_report:
            try:
                np.save(self.report_folder+'/'+self.report_name, report)
            except OSError:
                os.mkdir(self.report_folder)
                np.save(self.report_folder+'/'+self.report_name, report)
Example #28
0
    mnist.test.labels
Nv = 784
v_shape = (28, 28)
Nh = 100
h1_shape = (10, 10)

batch_size = 100
epochs = 5
n_samples = mnist.train.num_examples

total_batch = int(n_samples / batch_size) * epochs

X = tf.placeholder("float", [None, 784])

with tf.variable_scope("l1"):
    rbm1 = RBM(X, 100)
with tf.variable_scope("l2"):
    rbm2 = RBM(rbm1.out_prob, 784, inbias=rbm1.b_out)

rbm2.create_rec()
rbm1.create_rec(rbm2.rec)

with tf.Session() as sess:
    sess.run(tf.global_variables_initializer())
    sess.run(tf.assign(rbm2.W, tf.transpose(rbm1.W)))

    for i in range(total_batch):
        batch, label = mnist.train.next_batch(batch_size)
        err, _ = sess.run([rbm1.mse, rbm1.train_op], feed_dict={X: batch})

        if i % 100 == 0:
Example #29
0
    def __init__(self,
                 n_visible=6,
                 hidden_layer_sizes=[3, 3],
                 sample_copies=1,
                 sampler=None,
                 optimizer=None,
                 continuous_output=False,
                 verbose=0,
                 device=None):
        '''Constructor for the class.
        
        Arguments:
        
            :param n_visible: The number nodes in the visible layer
            :type n_visible: int
            :param hidden_layer_sizes: The number nodes in each of
                                       the hidden layers
            :type hidden_layer_sizes: list of int
            :param sample_copies: How many samples from a hidden layer are
                                  drawn to train the next layer
            :type sample_copies: int
            :param sampler: Method used to draw samples from the model
            :type sampler: :class:`samplers`
            :param optimizer: Optimizer used for parameter updates
            :type optimizer: :class:`optimizers`
            :param continuous_output: Optional parameter to indicate whether
                                      the visible layer is continuous-valued.
            :type continuous_output: bool
            :param verbose: Optional parameter to set verbosity mode
            :type verbose: int
            :param device: Device where to perform computations. None is CPU.
            :type device: torch.device
        '''
        self.sample_copies = sample_copies
        self.verbose = verbose
        self.continuous_output = continuous_output

        self.gen_layers = []
        self.inference_layers = []
        self.n_layers = len(hidden_layer_sizes)

        assert self.n_layers > 0, 'You must specify at least one hidden layer'

        if device is None:
            device = torch.device('cpu')
        self.device = device

        if optimizer is None:
            raise Exception('You must provide an appropriate optimizer')
        self.optimizer = optimizer

        if sampler is None:
            raise Exception('You must provide an appropriate sampler')
        self.sampler = sampler

        # Construct DBN out of RBMs
        for i in range(self.n_layers):
            if i == 0:
                input_size = n_visible
            else:
                input_size = hidden_layer_sizes[i - 1]

            gen_layer = RBM(n_visible=input_size,
                            n_hidden=hidden_layer_sizes[i],
                            sampler=sampler,
                            optimizer=optimizer,
                            verbose=verbose,
                            device=device)
            inf_layer = RBM(n_visible=input_size,
                            n_hidden=hidden_layer_sizes[i],
                            sampler=sampler,
                            optimizer=optimizer,
                            verbose=verbose,
                            device=device)
            self.gen_layers.append(gen_layer)
            self.inference_layers.append(inf_layer)
Example #30
0
def main(args):
    dbh = SQLHelper("database.sqlite")
    rbm = RBM(visibleSize=784, hiddenSize=500)

    cur = dbh.query("select * from weight where current=1;")
    if len(cur) > 0:
        if cur[0]['weight'] is not None:
            params = cur[0]['hiddenBias'], cur[0]['visibleBias'], cur[0][
                'weight']
            rbm.setParams(params)

    if len(sys.argv) > 1:
        for arg in sys.argv:
            if arg == '-t':
                testSet = getTestSet(digits=[2])
                if VISUALIZE:
                    # n = X[0] > np.random.rand(*X[0].shape)
                    # n = n.reshape(28,28)
                    n = testSet[0].reshape(28, 28)
                    strline = ""
                    for l in n:
                        for b in l:
                            if b:
                                strline += "*"
                            else:
                                strline += " "
                        strline += "\n"
                    print strline
                    sys.exit()
                rbm.trainNetwork(testSet, dbh, 100)
                # for i in xrange(10):
                # 	testSet =  getTestSet(digits=[i])
                # 	if VISUALIZE:
                # 		n = X[0] > np.random.rand(*X[0].shape)
                # 		n = n.reshape(28,28)
                # 		strline = ""
                # 		for l in n:
                # 			for b in l:
                # 				if b:
                # 					strline += "*"
                # 				else:
                # 					strline += " "
                # 			strline += "\n"
                # 		print strline
                # 		sys.exit()
                # 	rbm.trainNetwork(testSet, dbh, 100)
                return
            if arg == '-w':
                #sqlite reg 830
                i = 0
                for weight in rbm.Weights:
                    retval = rbm.sigmoid(weight.copy())
                    saveImage((retval * 255),
                              "images/weight-" + str(i) + ".png")
                    i += 1
                #testSet =  getTestSet(randint(0,9))
                for i in range(0, 10):
                    testSet = getTestSet(digits=[i],
                                         Bernoulli=False,
                                         dataSet='testing')
                    retval = testSet[random.randint(0, len(testSet))].copy()
                    saveImage(retval, "images/original-" + str(i) + ".png")
                    retval = np.array((np.random.rand(*retval.shape) < retval),
                                      dtype=float)
                    retval = rbm.check(retval)
                    retval = retval.reshape(rbm.visibleLayerSize)
                    saveImage((255 * retval),
                              "images/result-" + str(i) + ".png")
                return
    return 0
Example #31
0
        image = axis.imshow(opt_W1[index, :].reshape(vis_patch_side, vis_patch_side),
                            cmap = plt.cm.gray, interpolation = 'nearest')
        axis.set_frame_on(False)
        axis.set_axis_off()
        index += 1

    """ Show the obtained plot """

    plt.show()

train = data[:, 1:]/255
train[np.where(train>0)]=1
#works well for binary images, but features don't get properly extraced for non binary images.
ones = train[np.where(np.where(data[:,0] == 5)[0]<100000)[0]]
rbm = RBM(784, 196)
m = 0.5
for i in range(10):
    if i > 5:
        m = 0.9
    n = 10
    for j in range(1000):
        rbm.train(train[j*10:j*10+9],  momentum=m, w_cost=0.0001)

w = rbm.w#.flatten()

visualizeW1(w.T, 28, 14)
#
# plt.imshow(np.reshape(ones[20], (-1,28)))
# plt.show()
#
def main():
    random.seed(0)
    size = 2
    rbm = RBM(size*2, 1)

    every = 40000
    #every = 100

    #m = log(.01/.1) / log(10000)
    NN = 40001
    bb = 1. / NN * log(.001 / 1.0)
    elapsed = array([])
    dataGenerator = randomSimpleLR(-1, size)
    for ii in range(NN):
        #if ii % 100 == 0:
        data, params = dataGenerator.next()
        
        #print params

        #epsilon = .1 * (ii+1) ** m
        #epsilon = .3 * exp(bb * ii)
        #epsilon = min(.1, 1.0 * exp(bb * ii))
        epsilon = .1

        #time0 = time()
        #rbm.learn1(datablob.flatten(), epsilon = epsilon, activationH2V = 'gaussianReal', param = 1)
        #elapsed = hstack((elapsed, time() - time0))

        if ii % every == 0:
            print 'Iteration %d' % ii
            #print '%d: epsilon is %f' % (ii, epsilon),
            rbm.v = data
            plot(rbm, 'Iteration %d' % ii, '0. Data')
            print 'Visible set to:'
            print rbm.v.T
            p.show()
            pause()
            #sleep(1) if ii == 0 else sleep(.1)

            rbm.v2h()
            plot(rbm, 'Iteration %d' % ii, '1. To hidden')
            print 'W * visible (then sampled) ='
            print dot(rbm._W, rbm._v).T[:,1:]
            print rbm.h.T
            p.show()
            pause()

            rbm.h2v(activation = 'logisticBinary')
            plot(rbm, 'Iteration %d' % ii, '2. To visible')
            print 'W.T * hidden (then sampled) ='
            print dot(rbm._W.T, rbm._h).T[:,1:]
            print rbm.v.T
            p.show()
            pause()

            print
            
            #sleep(.5) if ii == 0 else sleep(.5)

            #print 'mean of last 50 errors is', mean(rbm.reconErrorNorms[-50:])

            #print 'average elapsed is:', mean(elapsed)
            #elapsed = array([])

        rbm.learn1(data, epsilon = epsilon, activationH2V = 'logisticBinary')
Example #33
0
    
    test_idx = permutation[:test_n]
    np_test_set = data[test_idx,:]
    
    train_idx = permutation[test_n:]
    np_train_set = data[train_idx,:]
    del data
        
    # compute number of minibatches for training, validation and testing
    n_train_batches = len(np_train_set) / batch_size

    rng = np.random.RandomState(123)   
    # construct the RBM class
    rbm = RBM(n_visible=n_visible,
              n_labels=n_labels,
              n_hidden=n_hidden, 
              dropout_rate=dropout_rate,
              batch_size=batch_size,
              np_rng=rng)
    
    #%%========================================================================
    # Training the RBM
    #==========================================================================    
    max_score = -np.inf
    argmax_score = RBM(n_visible=n_visible,
                       n_labels=n_labels,
                       n_hidden=n_hidden, 
                       dropout_rate=dropout_rate,
                       batch_size=batch_size,
                       np_rng=rng)

    start_time = timeit.default_timer()
import torch
import numpy as np
import pandas as pd
import os
from RBM import RBM
from load_dataset import MNIST

if __name__ == '__main__':
	mnist = MNIST()
	train_x, train_y, test_x, test_y = mnist.load_dataset()
	print('MAE for all 0 selection:', torch.mean(train_x))
	vn = train_x.shape[1]
	hn = 2500

	rbm = RBM(vn, hn, epochs=100, mode='bernoulli', lr=0.0005, k=10, batch_size=128, gpu=True, optimizer='adam', savefile='mnist_trained_rbm.pt', early_stopping_patience=10)
	rbm.train(train_x)
Example #35
0
    TrainingSetFile = Config.get("RBM", "trainingSetFile")
    ValidationSetFile = Config.get("RBM", "validationSetFile")
    ValidationFromTrainingSetFile = Config.get("RBM", "validationFromTrainingSetFile")
    TestSetFile = Config.get("RBM", "testSetFile")

    dataLoader = DataLoader(trainingSetFile = TrainingSetFile, validationSetFile = ValidationSetFile, validationFromTrainingSetFile = ValidationFromTrainingSetFile, testSetFile = TestSetFile, K = K, M = M, batchSizeForOneThread = batchSizeForOneThread, threadsNumber = threadsNumber, verbose = Verbose)

    whereUpdateMax = np.where(dataLoader.updateFrequency > updateFrequencyMAX)
    dataLoader.updateFrequency[whereUpdateMax] = updateFrequencyMAX

    dataLoader.vBiasesInitialization[np.where(dataLoader.vBiasesInitialization < np.float64(0.1e-100))] = np.float64(0.1e-100)

    momentum = 0.5

    rbm = RBM(M, K, F, learningRate, momentum, wDecay, dataLoader.vBiasesInitialization, dataLoader.updateFrequency)
    numberOfMiniSets = np.int(np.ma.floor(dataLoader.trainingSetSize / (threadsNumber * batchSizeForOneThread)))


    with open("Outs/"+sys.argv[1]+"_validation_RMSE.txt", "a") as rmsesFile:
        dataLoader.StartNewValidationSet()
        GetVisiableLayer = dataLoader.GiveVisibleLayerForValidation
        setSize = dataLoader.validationSetSize
        rmsesFile.write("Epoch {0}, RMSE {1}\n".format(0, computeRMSE(verbose=Verbose)))
        rmsesFile.flush()
    with open("Outs/"+sys.argv[1]+"_training_RMSE.txt", "a") as rmsesFile:
        dataLoader.StartNewValidationFromTrainingSet()
        GetVisiableLayer = dataLoader.GiveVisibleLayerForValidationFromTraining
        setSize = dataLoader.validationFromTrainingSetSize
        rmsesFile.write("Epoch {0}, RMSE {1}\n".format(0, computeRMSE(verbose=Verbose)))
        rmsesFile.flush()
train_idx = permutation[test_n:]
train_set = data[train_idx,:]
del data

test_labels = np.argmax(test_set[:,:n_labels], axis=1)
train_labels = np.argmax(train_set[:,:n_labels], axis=1)

# compute number of minibatches for training, validation and testing
batches = [train_set[i:i + batch_size,n_labels:] \
    for i in range(0, train_set.shape[0], batch_size)]

rng = np.random.RandomState(123)
# construct the RBM class
rbm = RBM(n_visible=n_visible,
          n_hidden=n_hidden, 
          dropout_rate=dropout_rate,
          batch_size=batch_size,
          np_rng=rng)
          
          
#%%============================================================================
# Training the RBM
#==============================================================================


start_time = timeit.default_timer()
accuracies = []
argmax_acc = 0
for epoch in xrange(training_epochs):
    epoch_time = timeit.default_timer()
    mean_cost = []
import numpy as np
from preprocessing import create_submission
from RBM import RBM
from preprocessing import read_data
from sklearn.preprocessing import LabelEncoder

def sigmoid(x):
    return 1/(1+np.exp(-x))
    
load_saved = True

train_data = np.load('train_data.npy')

if load_saved:
    report = np.load("report.npy").item()    
    rbm = RBM(len(train_data), report["n_hidden"], report["batch_size"])
    rbm.W = report["W"]
    rbm.hbias = report["hbias"]
    rbm.vbias = report["vbias"]

Y = np.argmax(train_data[:,:20], axis=1)
train_data = train_data[:,20:]
X = sigmoid(np.dot(train_data, rbm.W) + rbm.hbias)
#X = train_data


classifier = lr(0.01, solver = 'lbfgs', multi_class='multinomial')
classifier.fit(X, Y)

test_data = np.load('test_data.npy')
test_X = sigmoid(np.dot(test_data, rbm.W) + rbm.hbias)
Example #38
0
File: DBN.py Project: tomMoral/RBM
    def __init__(self, shapes, queue, noise=None):

        # Communication queue for the log
        self.queue = queue

        # Semantic variables for the input, corruption level
        # and learning rate
        X = T.matrix('X')
        self.inputs = X
        cl = T.scalar(dtype=theano.config.floatX,
                    name='corruption level')
        self.cl = cl
        lr = T.scalar(dtype=theano.config.floatX,
                    name='learning rate')
        self.lr = lr
 
        # Random number generators used for the noise
        np_rng = np.random.RandomState()
        theano_rng = RandomStreams(np_rng.randint(2**30))
        
        # Layers initialisation, cast the shape
        # and fill the layers list.
        self.layers = []
        self.mask = []
        
        self.shapes = shapes
        (nv,_,_) = shapes[0]

        self.params = []
        self.params_ft = []
        
        output = X
        sample_up = X

        # Compute the droupout training function
        p_do = 0.5
        self.p_do = p_do
        dropout_out =X
        rec_do = X

        # Build the layers,  linking each one to the next
        # Fill the param list
        for i, s in enumerate(shapes[1:]):
            lay = RBM(nv, s[0], output, v_unit=s[2],
                                   unit_type=s[1])
            self.layers.append(lay)

            self.params += lay.params
            self.params_ft += lay.params_ft
            nv = s[0]

            output = lay.up(output)
            sample_up = lay.sample_h_given_v(sample_up)
            if i != 0:
                mask = theano_rng.binomial(size=dropout_out.shape, n=1, p=p_do)
                dropout_out *= mask
                rec_do *= p_do
            dropout_out = lay.up(dropout_out)
            rec_do = lay.up(rec_do)
            

        # Define the up functions
        self.code = output
        self.sample_up = sample_up
    
        # Prepare the variables to decode
        self.N = len(self.layers)
        recstr = output
        decode = X
        sample_down = X
        sample = sample_up

        # Add noise to the output for the fine tuning part
        self.noise = noise
        if self.noise == 'MASK':
            fine_tune = T.clip(output * \
                    theano_rng.binomial(
                        size=output.shape,
                        n=1, p=1-cl),0.,1.)
        elif self.noise == 'GAUSS':
            fine_tune = T.clip(output +\
                    theano_rng.normal(
                        size=output.shape,
                        std=cl), 0.,1.) 
        else:
            fine_tune = output

        # Down sample every variable
        for i in range(1, self.N+1):
            lay = self.layers[self.N-i]
            recstr = lay.down(recstr)
            decode = lay.down(decode)
            fine_tune = lay.down(fine_tune)
            sample_dowm = lay.sample_v_given_h(sample_down)
            sample = lay.sample_v_given_h(sample)
            if i!= self.N:
                rec_do *= p_do
                mask = theano_rng.binomial(size=dropout_out.shape,
                                    n=1, p=p_do)
                dropout_out *= mask
            dropout_out = lay.down(dropout_out)
            rec_do = lay.down(rec_do)

        #define the sampeling and decoding functions
        self.recstr = recstr
        self.decode = decode
        self.ft = fine_tune
        self.do = dropout_out
        self.sample_down = sample_down
        self.sample = sample

        self.compile()
Example #39
0
    def initialize_variables(self):
        # The DBN is an MLP, for which all weights of intermediate
        # layers are shared with a different RBM.  We will first
        # construct the DBN as a deep multilayer perceptron, and when
        # constructing each sigmoidal layer we also construct an RBM
        # that shares weights with that layer. During pretraining we
        # will train these RBMs (which will lead to chainging the
        # weights of the MLP as well) During finetuning we will finish
        # training the DBN by doing stochastic gradient descent on the
        # MLP.

        for i in range(self.n_layers):
            # construct the sigmoidal layer

            # the size of the input is either the number of hidden
            # units of the layer below or the input size if we are on
            # the first layer
            if i == 0:
                input_size = self.n_in
            else:
                input_size = self.hidden_layers_sizes[i - 1]

            # the input to this layer is either the activation of the
            # hidden layer below or the input of the DBN if you are on
            # the first layer
            if i == 0:
                layer_input = self.input
            else:
                layer_input = self.sigmoid_layers[-1].output

            sigmoid_layer = HiddenLayer(rng=self.numpy_rng,
                                        input=layer_input,
                                        n_in=input_size,
                                        n_out=self.hidden_layers_sizes[i],
                                        activation=T.nnet.sigmoid)

            # add the layer to our list of layers
            self.sigmoid_layers.append(sigmoid_layer)

            # its arguably a philosophical question...  but we are
            # going to only declare that the parameters of the
            # sigmoid_layers are parameters of the DBN. The visible
            # biases in the RBM are parameters of those RBMs, but not
            # of the DBN.
            self.params.extend(sigmoid_layer.params)

            # Construct an RBM that shared weights with this layer
            rbm_layer = RBM(numpy_rng=self.numpy_rng,
                            theano_rng=self.theano_rng,
                            input=layer_input,
                            n_visible=input_size,
                            n_hidden=self.hidden_layers_sizes[i],
                            W=sigmoid_layer.W,
                            hbias=sigmoid_layer.b)
            self.rbm_layers.append(rbm_layer)

        # We now need to add a logistic layer on top of the MLP
        self.logistic_regression_layer = LogisticRegression(
            input=self.sigmoid_layers[-1].output,
            n_in=self.hidden_layers_sizes[-1],
            n_out=self.n_out
        )

        self.params.extend(self.logistic_regression_layer.params)
    index = T.lscalar()  # index to a [mini]batch
    x = T.matrix("x")  # the data

    rng = np.random.RandomState(123)
    theano_rng = RandomStreams(rng.randint(2 ** 30))

    # initialize storage for the persistent chain (state = hidden
    # layer of chain)
    persistent_chain = theano.shared(np.zeros((batch_size, n_hidden), dtype=theano.config.floatX), borrow=True)

    # construct the RBM class
    rbm = RBM(
        input=x,
        validation=test_set,
        n_visible=n_visible,
        n_labels=n_labels,
        n_hidden=n_hidden,
        np_rng=rng,
        theano_rng=theano_rng,
    )

    # get the cost and the gradient corresponding to one step of CD-15
    cost, updates = rbm.get_cost_updates(lr=learning_rate, persistent=persistent_chain, k=k)
    accuracy = rbm.get_cv_error()

    # make a prediction for an unlablled sample.
    t_unlabelled = T.tensor3("unlabelled")
    label, confidence = rbm.predict(t_unlabelled)

    #%%========================================================================
    # Training the RBM
MA_label = dataset['ylab']

MA_data, MA_label = shuffle(MA_data, MA_label)

#Normalize for unit variance and zero mean
MA_data = (MA_data - np.mean(MA_data)) / np.std(MA_data)

n_feature = np.shape(MA_data)[1]
n_hidden1 = int(feature2hiddenRatio * n_feature)
n_hidden2 = int(feature2hiddenRatio * n_hidden1)
n_hidden3 = int(feature2hiddenRatio * n_hidden2)
# n_hidden4 = int(feature2hiddenRatio * n_hidden3)

with tf.device("/gpu:0"):
    rbm1 = RBM(n_hidden=n_hidden1,
               n_visible=n_feature,
               alpha=0.0001,
               datatype="gaussian")
    rbm2 = RBM(n_hidden=n_hidden2,
               n_visible=n_hidden1,
               alpha=0.0001,
               datatype="binary")
    rbm3 = RBM(n_hidden=n_hidden3,
               n_visible=n_hidden2,
               alpha=0.0001,
               datatype="binary")
    # rbm4 = RBM(n_hidden=n_hidden4, n_visible=n_hidden3, alpha=0.0001, datatype="binary")

    for num in range(Epoch):
        new_w, new_hb, new_vb, ReconErr = rbm1.train(MA_data)
        print("Epoch: {}, Reconstruction Error: {}".format(num, ReconErr))
def main():
    random.seed(0)
    size = 40
    rbm = RBM(size*size, 1000)

    slp = 2
    #for blob, params in randomBlobs(10, size, size):
    #    rbm.v = blob.flatten()
    #    plot(rbm, blob)
    #    sleep(slp)
    #
    #    result = reshape(rbm.v, (size, size))
    #    plot(rbm, result)
    #    sleep(slp)
    #
    #    rbm.v2h()
    #    plot(rbm, blob)
    #    sleep(slp)
    #
    #    rbm.h2v()
    #    result = reshape(rbm.v, (size, size))
    #    plot(rbm, result)
    #    sleep(slp)

    every = 2000

    #m = log(.01/.1) / log(10000)
    NN = 20001
    bb = 1. / NN * log(.001 / 1.0)
    elapsed = array([])
    for ii in range(NN):
        if ii % 100 == 0:
            blob, params = randomBlobs(10, size, size).next()
        
        #print params

        #epsilon = .1 * (ii+1) ** m
        #epsilon = .3 * exp(bb * ii)
        epsilon = min(.1, 1.0 * exp(bb * ii))

        #time0 = time()
        rbm.learn1(blob.flatten(), epsilon = epsilon, activationH2V = 'gaussianReal', param = 1)
        #elapsed = hstack((elapsed, time() - time0))

        if ii % every == 0:
            print '%d: epsilon is %f' % (ii, epsilon),
            rbm.v = blob.flatten()
            result = reshape(rbm.v, (size, size))
            plot(rbm, result, 'Iteration %d' % ii, 'Data')
            p.show()
            sleep(.1) if ii == 0 else sleep(.1)

            rbm.v2h()
            rbm.h2v(activation = 'gaussianReal', param = 0)
            
            result = reshape(rbm.v, (size, size))
            plot(rbm, result, 'Iteration %d' % ii, 'Reconstruction')
            p.show()
            sleep(.5) if ii == 0 else sleep(.5)

            print 'mean of last 50 errors is', mean(rbm.reconErrorNorms[-50:])