Example #1
0
    def FProp(self, theta, input_batch):
        """Encodes source as represented by `inputs` and `paddings`.

    Args:
      theta: A `.NestedMap` object containing weights' values of this layer and
        its children layers.
      input_batch: A `.NestedMap` with fields:
        - ids: The inputs tensor. It is expected to be of shape [batch, time].
        - paddings: The paddings tensor. Expected shape [batch, time].

    Returns:
      A NestedMap containing:

      - encoded: The encoded features, a tensor of shape [time, batch, depth]
      - padding: of shape [time, batch]
      - segment_id: [time, batch] if packed inputs are supported by the model
        (and all layers), or None otherwise.
    """
        p = self.params
        src_segment_id = None
        with tf.name_scope(p.name):
            # Now the rnn layers.
            inputs = py_utils.with_dependencies([
                py_utils.assert_shape_match(tf.shape(input_batch.ids),
                                            [-1, -1]),
                py_utils.assert_shape_match(tf.shape(input_batch.ids),
                                            tf.shape(input_batch.paddings))
            ], tf.transpose(input_batch.ids))
            paddings = tf.expand_dims(tf.transpose(input_batch.paddings), 2)
            xs = self.emb.EmbLookup(theta.emb, inputs)
            xs = self.ApplyClipping(theta, xs)
            self._emb_out = xs
            ps = paddings
            # When cc_schedule is specified, make sure lstm_tpl is QuantizedLSTMCell
            # with the same cc_schedule so that the RNN layer output is within
            # clipping range.
            xs = self.rnn[0].FProp(theta.rnn[0], xs, ps)
            xs = self.dropout.FProp(theta.dropout, xs)
            for i in range(1, p.num_lstm_layers):
                layer = self.rnn[i]
                ys, _ = layer.FProp(theta.rnn[i], xs, ps)
                ys = self.dropout.FProp(theta.dropout, ys)
                if hasattr(layer.params, 'cell'):
                    layer_params = layer.params.cell
                else:
                    layer_params = layer.params
                if layer_params.num_input_nodes == layer_params.num_output_nodes:
                    xs += ys  # Residual skip
                    xs = self.ApplyClipping(theta, xs)
                else:
                    # When cc_schedule is specified, make sure lstm_tpl is
                    # QuantizedLSTMCell with the same cc_schedule so that the RNN layer
                    # output is within clipping range.
                    xs = ys
            return py_utils.NestedMap(encoded=xs,
                                      padding=tf.squeeze(ps, [2]),
                                      segment_id=src_segment_id)
Example #2
0
    def FProp(self, theta, input_batch):
        p = self.params
        with tf.name_scope(p.name):
            inputs = py_utils.with_dependencies([
                py_utils.assert_shape_match(tf.shape(input_batch.ids),
                                            [-1, -1]),
                py_utils.assert_shape_match(tf.shape(input_batch.ids),
                                            tf.shape(input_batch.paddings))
            ], tf.transpose(input_batch.ids))
            paddings = tf.expand_dims(tf.transpose(input_batch.paddings), 2)
            if p.packed_input:
                src_segment_id = tf.expand_dims(
                    tf.transpose(input_batch.segment_ids), 2)
            else:
                src_segment_id = None
            xs = self.emb.EmbLookup(theta.emb, inputs)
            xs = self.ApplyClipping(theta, xs)
            summary_utils.histogram('input_emb', xs)
            xs = self.dropout.FProp(theta.dropout, xs)
            ps = paddings
            # Now the rnn layers.
            outputs_list = []
            for i in range(0, p.num_lstm_layers):
                layer = self.rnn[i]
                ys = layer.FProp(theta.rnn[i],
                                 xs,
                                 ps,
                                 segment_id=src_segment_id)
                ys = self.dropout.FProp(theta.dropout, ys)
                if i >= p.residual_start:
                    xs += ys  # Residual skip
                    xs = self.ApplyClipping(theta, xs)
                else:
                    xs = ys
                outputs_list.append(xs)
                summary_utils.histogram('layer_out_%s' % i, xs)

            if p.is_transparent:
                xs = self.transparent_merger.FProp(theta.transparent_merger,
                                                   outputs_list)

            if p.lstm_cell_size * 2 != p.encoder_out_dim:
                # Project to the right depth.
                xs = self.final_proj.FProp(theta.final_proj, xs, ps)
                summary_utils.histogram('final_proj_out', xs)

            if src_segment_id is not None:
                src_segment_id = tf.squeeze(src_segment_id, [2])

            return py_utils.NestedMap(encoded=xs,
                                      padding=tf.squeeze(ps, [2]),
                                      segment_id=src_segment_id)
Example #3
0
    def FProp(self, theta, input_batch, state0=None):
        p = self.params
        src_segment_id = None
        with tf.name_scope(p.name):
            # Reshape to [t, b]
            inputs = py_utils.with_dependencies([
                py_utils.assert_shape_match(tf.shape(input_batch.ids),
                                            [-1, -1]),
                py_utils.assert_shape_match(tf.shape(input_batch.ids),
                                            tf.shape(input_batch.paddings))
            ], tf.transpose(input_batch.ids))
            paddings = tf.expand_dims(tf.transpose(input_batch.paddings), 2)

            # Setup streaming states.
            if not state0:
                state0 = self.zero_state(theta, tf.shape(inputs)[1])
            state1 = py_utils.NestedMap(rnn=[None] * p.num_lstm_layers)

            xs = self.emb.EmbLookup(theta.emb, inputs)
            xs = self.ApplyClipping(theta, xs)
            summary_utils.histogram('input_emb', xs)
            xs = self.dropout.FProp(theta.dropout, xs)
            ps = paddings
            # Now the rnn layers.
            outputs_list = []
            for i in range(0, p.num_lstm_layers):
                layer = self.rnn[i]
                ys, state1.rnn[i] = layer.FProp(theta.rnn[i],
                                                xs,
                                                ps,
                                                state0=state0.rnn[i])
                ys = self.dropout.FProp(theta.dropout, ys)
                if i >= p.residual_start:
                    xs += ys  # Residual skip
                    xs = self.ApplyClipping(theta, xs)
                else:
                    xs = ys
                outputs_list.append(xs)
                summary_utils.histogram('layer_out_%s' % i, xs)

            if p.is_transparent:
                xs = self.transparent_merger.FProp(theta.transparent_merger,
                                                   outputs_list)

            return py_utils.NestedMap(encoded=xs,
                                      padding=tf.squeeze(ps, [2]),
                                      segment_id=src_segment_id,
                                      state=state1)
    def _matmul_gather(self, values, axis=0, batch_major_state=True):
        """Returns values gathered.

    Args:
      values: Values to gather from.
      axis: Axis to gather on. Defaults to 0 (rows).
      batch_major_state: Whether the values to gather from use batch major or
        not. Defaults to True. For Transformer model, batch_major_state is set
        to False (time is the major dim).

    Returns:
      Gathered values.

    Raises:
      NotImplemented error if axis is not 0 nor 1.
    """

        dtype = values.dtype
        if dtype != tf.float32 and dtype != tf.bfloat16:
            values = tf.cast(values, tf.float32)

        if axis == 0:
            if values.shape.rank is not None and values.shape.rank > 2:
                if not batch_major_state:
                    values = tf.transpose(values, [1, 0, 2])
                results = tf.cast(
                    tf.gather(values, tf.cast(self._ids, tf.int32)), dtype)
                # pylint:disable=g-long-ternary
                return (tf.transpose(results, [1, 0, 2])
                        if not batch_major_state else results)
                # pylint:enable=g-long-ternary
            else:
                one_hot_ids = tf.one_hot(self._ids,
                                         self._ids_size,
                                         dtype=values.dtype)
                return tf.cast(tf.matmul(one_hot_ids, values), dtype)
        elif axis == 1:
            one_hot_ids = tf.one_hot(self._ids,
                                     self._ids_size,
                                     dtype=values.dtype,
                                     axis=0)
            return tf.cast(tf.matmul(values, one_hot_ids), dtype)
        else:
            raise NotImplementedError("Only row/col-wise gather implemented.")
Example #5
0
 def _ReshapeRetVal(name, t_shape):
   """Restore shape for tensors in microbatches."""
   if t_shape is None:
     return None
   output_tensor = output_state[name]
   if p.batch_dim != 0:
     perm = list(range(1, p.batch_dim + 1)) + [0]
     perm += list(range(p.batch_dim + 1, t_shape.rank + 1))
     output_tensor = tf.transpose(output_tensor, perm=perm)
   output_shape = t_shape.ToTensorShape().as_list()
   output_shape[p.batch_dim] *= p.num_micro_batches
   output_tensor = tf.reshape(output_tensor, output_shape)
   return output_tensor
Example #6
0
def PrepareSequenceForPlot(tensor, padding, name):
  """Prepares a sequence feature for plotting.

  The sequence feature is transposed and channels are flattened.

  Args:
    tensor: A n-D Tensor of shape [batch, time, ...].
    padding: A Tensor of shape [batch, time].
    name: A string as the name of the reshaped Tensor, which will be used as the
      subcaption for plotting.

  Returns:
    A tuple of:
      reshaped_tensor: A 3-D Tensor of shape [batch, dim, time].
      sequence_length: A 1-D Tensor of shape [batch].
  """
  # Flatten any dimensions beyond the third into the third.
  batch_size, max_len = py_utils.GetShape(tensor, 2)
  plot_tensor = tf.reshape(tensor, [batch_size, max_len, -1])
  plot_tensor = tf.transpose(plot_tensor, [0, 2, 1], name=name)
  return (plot_tensor, SequenceLength(padding))
Example #7
0
def AddAttentionSummary(name,
                        attention_tensors,
                        src_paddings,
                        tgt_paddings,
                        transcripts=None,
                        max_outputs=3):
  """Adds an image summary showing the attention probability matrix and state.

  Tensors are in sequence tensor format with the batch dimension in axis 1.

  Args:
    name: Summary name.
    attention_tensors: A list of 3D tensors shaped [target_len, batch_size,
      source_len] where attention[i, j, k] is the probability for the i-th
      output attending to the k-th input for element j in the batch.
    src_paddings: A tensor of binary paddings shaped [source_len, batch] for the
      source sequence. Or a list of tensors of the same length as
      attention_tensors with a separate paddings for each entry in
      attention_tensors.
    tgt_paddings: A tensor of binary paddings shaped [target_len, batch] for the
      target sequence. Or a list of tensors of the same length as
      attention_tensors with a separate paddings for each entry in
      attention_tensors.
    transcripts: Optional, transcripts shaped [batch, source_len] for the source
      sequence.
    max_outputs: Integer maximum number of elements of the batch to plot.
  """

  def Transpose(paddings):
    paddings = paddings if isinstance(paddings, list) else [paddings]
    return [tf.transpose(p) for p in paddings]

  AddAttentionSummaryBatchMajor(
      name, [tf.transpose(a, [1, 0, 2]) for a in attention_tensors],
      Transpose(src_paddings), Transpose(tgt_paddings), transcripts,
      max_outputs)
    def GreedySearchDecode(self,
                           theta,
                           encoder_outputs,
                           init_beam_search_state=None,
                           pre_beam_search_step_callback=None,
                           post_beam_search_step_callback=None,
                           max_steps=None):
        """Performs greedy-search based decoding.

    Args:
      theta: A NestedMap object containing weights' values of the decoder layer
        and its children layers.
      encoder_outputs: A NestedMap containing encoder outputs to be passed to
        the callbacks.
      init_beam_search_state: The `InitBeamSearchState` callback. Please refer
        to the class header comments for more details.
      pre_beam_search_step_callback: The `PreBeamSearchStepCallback` callback.
        Please refer to the class header comments for more details.
      post_beam_search_step_callback: The `PostBeamSearchStepCallback` callback.
        Please refer to the class header comments for more details.
      max_steps: maximum beam search steps. If None, use
        self.params.target_seq_len.

    Returns:
      A tuple (hyp_ids, hyp_lens, done_hyps). Note that num_hyps is same as
      src_batch_size.

        - hyp_ids: [num_hyps, max_step]. Hyps end with <eos> token if the <eos>
          token is encountered during search.
        - hyp_lens: [num_hyps].
        - done_hyps: [num_hyps], whether or not an eos is encountered.
    """
        p = self.params
        if max_steps is None:
            max_steps = p.target_seq_len

        initial_results, other_states = init_beam_search_state(
            theta,
            encoder_outputs,
            1  # num_hyps_per_beam
        )

        num_hyps = tf.shape(initial_results.log_probs)[0]

        if 'step_ids' in initial_results:
            # [num_hyps, 1]
            step_ids = tf.ensure_shape(initial_results.step_ids, [None, 1])
        else:
            step_ids = tf.fill([num_hyps, 1],
                               tf.constant(p.target_sos_id, dtype=tf.int32))

        cur_step = tf.constant(0, dtype=tf.int32)
        done_hyps = inplace_ops.empty(shape=[num_hyps],
                                      dtype=tf.bool,
                                      init=True,
                                      name='done_hyps')
        hyp_lens = inplace_ops.empty(shape=[num_hyps],
                                     dtype=tf.int32,
                                     init=True,
                                     name='hyp_lens')
        hyp_ids = inplace_ops.empty(shape=[max_steps, num_hyps],
                                    dtype=tf.int32,
                                    init=True,
                                    name='hyp_ids')

        def LoopContinue(cur_step, unused_step_ids, unused_hyp_ids,
                         unused_hyp_lens, done_hyps, unused_other_states_list):
            return tf.math.logical_and(
                cur_step < max_steps,
                tf.math.logical_not(tf.reduce_all(done_hyps)))

        def LoopBody(cur_step, step_ids, hyp_ids, hyp_lens, done_hyps,
                     other_states_list):
            (cur_step, new_step_ids, hyp_ids, hyp_lens, done_hyps,
             new_other_states) = self._GreedySearchStep(
                 theta, encoder_outputs, cur_step, step_ids, hyp_ids, hyp_lens,
                 done_hyps, other_states.Pack(other_states_list),
                 pre_beam_search_step_callback, post_beam_search_step_callback)
            return (cur_step, new_step_ids, hyp_ids, hyp_lens, done_hyps,
                    new_other_states.Flatten())

        flat_other_states = other_states.Flatten()
        _, _, final_hyp_ids, final_hyp_lens, final_done_hyps, _ = tf.while_loop(
            LoopContinue,
            LoopBody,
            loop_vars=(cur_step, step_ids, hyp_ids, hyp_lens, done_hyps,
                       flat_other_states),
            parallel_iterations=10,
            back_prop=False,
            swap_memory=False,
            shape_invariants=(tf.TensorShape(cur_step.get_shape()),
                              tf.TensorShape(step_ids.get_shape()),
                              tf.TensorShape(hyp_ids.get_shape()),
                              tf.TensorShape(hyp_lens.get_shape()),
                              tf.TensorShape(done_hyps.get_shape()),
                              _GetShapes(flat_other_states, none_shapes=True)))

        # transpose hyp_ids so it matches BeamSearchDecode's output
        final_hyp_ids = tf.transpose(final_hyp_ids)
        return final_hyp_ids, final_hyp_lens, final_done_hyps
def MergeBeamSearchOutputs(max_hyps_per_beam, beam_search_outputs):
    """Merges beam search hyps from multiple decoders.

  Args:
    max_hyps_per_beam: the number of top hyps in the merged results. Must be
      less than or equal to total number of input hyps.
    beam_search_outputs: a list of BeamSearchDecodeOutput objects. Must share
      the same source_batch and max sequence length.

  Returns:
    A BeamSearchDecodeOutput object containing max_hyps_per_beam hypotheses per
    beam.
  """
    source_batch = tf.shape(beam_search_outputs[0].topk_hyps)[0]
    value_dict = {}
    for output in beam_search_outputs:
        hyps_per_beam = py_utils.with_dependencies([
            py_utils.assert_equal(source_batch,
                                  tf.shape(output.topk_hyps)[0]),
        ],
                                                   tf.shape(
                                                       output.topk_hyps)[1])
        for k, v in six.iteritems(output._asdict()):
            if v is None:
                continue
            if k == 'done_hyps':
                v = tf.transpose(v)
            if k not in value_dict:
                value_dict[k] = []
            value_dict[k].append(
                tf.reshape(v, [source_batch, hyps_per_beam, -1]))

    # Concatenate the tensors along the 'num_hyps_per_beam' dimension.
    concatenated = {}
    for k, values in six.iteritems(value_dict):
        if len(values) != len(beam_search_outputs):
            raise ValueError('Incomplete values for %s: %s' %
                             (k, beam_search_outputs))
        concatenated[k] = tf.concat(values, axis=1)

    scores = concatenated['topk_scores']
    scores = tf.where(tf.equal(concatenated['topk_lens'], 0),
                      tf.fill(tf.shape(scores), -1e6), scores)
    scores = tf.squeeze(scores, -1)

    # Select top max_hyps_per_beam indices per beam.
    _, top_indices = tf.nn.top_k(scores, max_hyps_per_beam)
    batch_ids = tf.tile(tf.expand_dims(tf.range(source_batch), -1),
                        [1, max_hyps_per_beam])
    # [source_batch, max_hyps_per_beam, 2]
    gather_indices = tf.stack([batch_ids, top_indices], axis=-1)

    # Gather the merged top hyps according to 'gather_indices'.
    top = beam_search_outputs[0]._asdict()
    total_hyps = source_batch * max_hyps_per_beam
    for k, v in six.iteritems(concatenated):
        v = tf.gather_nd(v, gather_indices)
        if k == 'done_hyps':
            v = tf.transpose(tf.reshape(v, [total_hyps, -1]))
        elif k == 'topk_hyps':
            v = tf.reshape(v, [source_batch, max_hyps_per_beam])
        elif k == 'topk_ids':
            v = tf.reshape(v, [total_hyps, -1])
        elif k in ('topk_lens', 'topk_scores', 'topk_decoded'):
            v = tf.reshape(v, [total_hyps])
        else:
            raise ValueError('Unexpected field: %s' % k)
        top[k] = v
    return BeamSearchDecodeOutput(**top)
    def BeamSearchDecode(self,
                         theta,
                         encoder_outputs,
                         num_hyps_per_beam_override=0,
                         init_beam_search_state=None,
                         pre_beam_search_step_callback=None,
                         post_beam_search_step_callback=None,
                         max_steps=None):
        """Performs beam-search based decoding.

    Args:
      theta: A NestedMap object containing weights' values of the decoder layer
        and its children layers.
      encoder_outputs: A NestedMap containing encoder outputs to be passed to
        the callbacks. Mostly opaque to BeamSearchHelper, except that it should
        contain either a 'seq_lengths' field of shape [source_batch_size] or
        a 'paddings' field of shape [source_max_lengths, source_batch_size].
      num_hyps_per_beam_override: If set to a value <= 0, this parameter is
        ignored. If set to a value > 0, then this value will be used to override
        `p.num_hyps_per_beam`.
      init_beam_search_state: The `InitBeamSearchState` callback. Please refer
        to the class header comments for more details.
      pre_beam_search_step_callback: The `PreBeamSearchStepCallback` callback.
        Please refer to the class header comments for more details.
      post_beam_search_step_callback: The `PostBeamSearchStepCallback` callback.
        Please refer to the class header comments for more details.
      max_steps: maximum beam search steps. If None, use
        self.params.target_seq_len.

    Returns:
      A `BeamSearchDecodeOutput`.
    """
        p = self.params
        num_hyps_per_beam = p.num_hyps_per_beam
        if num_hyps_per_beam_override > 0:
            num_hyps_per_beam = num_hyps_per_beam_override
        if max_steps is None:
            max_steps = p.target_seq_len

        initial_results, other_states = init_beam_search_state(
            theta, encoder_outputs, num_hyps_per_beam)

        num_hyps = tf.shape(initial_results.log_probs)[0]
        num_beams = num_hyps // num_hyps_per_beam

        if 'step_ids' in initial_results:
            # [num_hyps, 1]
            step_ids = tf.ensure_shape(initial_results.step_ids, [None, 1])
        else:
            step_ids = tf.fill([num_hyps, 1],
                               tf.constant(p.target_sos_id, dtype=tf.int32))

        min_score = -1e36
        best_scores = (tf.zeros(shape=[num_beams], dtype=p.dtype) + min_score)
        cumulative_scores = tf.zeros(shape=[num_hyps], dtype=p.dtype)
        in_scores = tf.zeros([max_steps, num_hyps], dtype=p.dtype)
        in_hyps = tf.zeros([max_steps, num_hyps], dtype=tf.int32)
        in_prev_hyps = tf.zeros([max_steps, num_hyps], dtype=tf.int32)
        in_done_hyps = tf.zeros([max_steps, num_hyps], dtype=tf.string)
        bs_atten_probs = tf.zeros(
            [max_steps, num_hyps,
             tf.shape(initial_results.atten_probs)[1]],
            dtype=p.dtype)
        cur_step = tf.constant(0, dtype=tf.int32)
        all_done = tf.constant(False, dtype=tf.bool)
        core_bs_states = (best_scores, cumulative_scores, in_scores, in_hyps,
                          in_prev_hyps, in_done_hyps, bs_atten_probs)

        def LoopContinue(cur_step, all_done, unused_step_ids,
                         unused_core_bs_states, unused_other_states_list):
            return tf.math.logical_and(cur_step < max_steps,
                                       tf.math.logical_not(all_done))

        def LoopBody(cur_step, unused_all_done, step_ids, core_bs_states,
                     other_states_list):
            (cur_step, all_done, new_step_ids, new_bs_states,
             new_other_states) = self._BeamSearchStep(
                 theta, encoder_outputs, cur_step, step_ids, core_bs_states,
                 other_states.Pack(other_states_list), num_hyps_per_beam,
                 pre_beam_search_step_callback, post_beam_search_step_callback)
            return (cur_step, all_done, new_step_ids, new_bs_states,
                    new_other_states.Flatten())

        flat_other_states = other_states.Flatten()
        _, _, _, final_bs_states, flat_final_other_states = tf.while_loop(
            LoopContinue,
            LoopBody,
            loop_vars=(cur_step, all_done, step_ids, core_bs_states,
                       flat_other_states),
            parallel_iterations=10,
            back_prop=False,
            swap_memory=False,
            shape_invariants=(tf.TensorShape(cur_step.get_shape()),
                              tf.TensorShape(all_done.get_shape()),
                              tf.TensorShape(step_ids.get_shape()),
                              _GetShapes(core_bs_states),
                              _GetShapes(flat_other_states, none_shapes=True)))
        # [target_seq_len, num_beams * num_hyps_per_beam].
        final_done_hyps = final_bs_states[5]
        final_other_states = other_states.Pack(flat_final_other_states)

        # Assume that `paddings` has shape [source_max_lengths, source_batch_size]
        # by default, and compute `encoded_seq_lengths` accordingly. This can be
        # overridden by directly passing `seq_lengths` in the `encoder_outputs`
        # NestedMap.
        encoded_seq_lengths = getattr(encoder_outputs, 'seq_lengths', None)
        if encoded_seq_lengths is None:
            source_paddings = encoder_outputs.padding
            if isinstance(source_paddings, py_utils.NestedMap):
                encoded_seq_lengths = tf.cast(
                    tf.round(
                        tf.reduce_sum(
                            1.0 - tf.transpose(source_paddings.Flatten()[0]),
                            1)), tf.int32)
            else:
                encoded_seq_lengths = tf.cast(
                    tf.round(
                        tf.reduce_sum(1.0 - tf.transpose(source_paddings), 1)),
                    tf.int32)

        # [num_beams, num_hyps_per_beam].
        topk_hyps = ops.top_k_terminated_hyps(
            final_done_hyps,
            encoded_seq_lengths,
            k=num_hyps_per_beam,
            num_hyps_per_beam=num_hyps_per_beam,
            length_normalization=p.length_normalization,
            coverage_penalty=p.coverage_penalty,
            target_seq_length_ratio=p.target_seq_length_ratio,
            eoc_id=p.target_eoc_id,
            merge_paths=p.merge_paths)
        # [num_beams * num_hyps_per_beam, ...].
        max_seq_length = 0 if isinstance(max_steps, tf.Tensor) else max_steps
        topk_ids, topk_lens, topk_scores = ops.unpack_hyp(
            tf.reshape(topk_hyps, [-1]), max_seq_length=max_seq_length)
        # [num_beams, num_hyps_per_beam].
        topk_scores = tf.reshape(topk_scores, tf.shape(topk_hyps))

        return BeamSearchDecodeOutput(final_done_hyps, topk_hyps, topk_ids,
                                      topk_lens, topk_scores, None,
                                      final_other_states)
Example #11
0
    def _BeamSearchDecodeIds(self,
                             theta,
                             encoder_outputs,
                             num_hyps_per_beam,
                             init_beam_search_state=None,
                             pre_beam_search_step_callback=None,
                             post_beam_search_step_callback=None,
                             max_steps=None):
        """Performs beam-search based decoding.

    Args:
      theta: A NestedMap object containing weights' values of the decoder layer
        and its children layers.
      encoder_outputs: A NestedMap computed by encoder.
      num_hyps_per_beam: Number of hyps per beam.

      init_beam_search_state: The InitBeamSearchState callback. Please refer to
          the class header comments for more details.
      pre_beam_search_step_callback: The PreBeamSearchStepCallback callback.
          Please refer to the class header comments for more details.
      post_beam_search_step_callback: The PostBeamSearchStepCallback callback.
          Please refer to the class header comments for more details.
      max_steps: maximum beam search steps. If None, use
          self.params.target_seq_len.

    Returns:
      hyps: A tensor of shape [time, b * k] with ids of the token selected.
      prev_hyps: A tensor of shape [time, b * k] with index to the previous hyps
        which was selected.
      done_hyps: A boolean tensor of shape [time, b * k] where value
        indicates if hyps was terminated.
      scores: A tensor of shape [time, b * k] with scores of the token
        selected.
      atten_probs: A tensor of shape [time, b * k, seq_len] which contain the
        attention probabilities over the source words against word in the
        previous hyps.
      eos_scores: A tensor of shape [time, b * k] with scores of the eos token
        selected.
      eos_atten_probs: A tensor of shape [time, b * k, seq_len] which contain
        the attention probabilities over the source words against word in the
        previous hyps.
      source_seq_lengths:  A tensor of shape [time] containing the source
        seq_lengths.
      flat_final_other_states: A array of tensors that are part of other states.
    """
        p = self.params
        source_paddings = encoder_outputs.padding

        initial_results, other_states = init_beam_search_state(
            theta, encoder_outputs, num_hyps_per_beam)

        num_hyps = tf.shape(initial_results.log_probs)[0]
        num_beams = num_hyps // num_hyps_per_beam

        # We cache the NestedMap as member variable so that we can use it to
        # pack the final outputs. Tpu rewrite methods forces us to strictly pass
        # in Tensors, and output Tensors
        self._other_states = other_states

        step_ids = tf.fill([num_hyps, 1],
                           tf.constant(p.target_sos_id, dtype=tf.int32))
        min_score = -1e36
        fprop_dtype = py_utils.FPropDtype(p)
        best_scores = (tf.zeros(shape=[num_beams], dtype=fprop_dtype) +
                       min_score)
        cumulative_scores = tf.zeros(shape=[num_hyps], dtype=fprop_dtype)
        histories = tf.zeros(shape=[num_hyps], dtype=tf.int32)
        in_scores = tf.TensorArray(dtype=fprop_dtype, size=max_steps)
        in_hyps = tf.TensorArray(dtype=tf.int32, size=max_steps)
        in_prev_hyps = tf.TensorArray(dtype=tf.int32, size=max_steps)
        in_done_hyps = tf.TensorArray(dtype=tf.int32, size=max_steps)
        in_atten_probs = tf.TensorArray(dtype=fprop_dtype, size=max_steps)
        in_eos_scores = tf.TensorArray(dtype=fprop_dtype, size=max_steps)
        in_eos_atten_probs = tf.TensorArray(dtype=fprop_dtype, size=max_steps)
        cur_step = tf.constant(0, dtype=tf.int32)
        all_done = tf.constant(False, dtype=tf.bool)
        # States for beam search that are inputs into Beam search step.
        accum_bs_states = [best_scores, cumulative_scores, histories]
        # States that are not accumulators.
        non_accum_bs_states = [
            in_scores,
            in_hyps,
            in_prev_hyps,
            in_done_hyps,
            in_atten_probs,
            in_eos_scores,
            in_eos_atten_probs,
        ]
        core_bs_states = tuple(accum_bs_states + non_accum_bs_states)

        flat_other_states = other_states.Flatten()

        # If there is an optimized implementation for short sequence, LoopBodyShort
        # will run first for short_seq_limit steps (after which the
        # LoopBodyShort does not have performance benefit). Then LoopBodyLong (the
        # default implementation) is used to continue the rest of the steps. For
        # decoders which do not have the short sequence specific implementation,
        # only the LoopBodyLong (the default implementation) will run.

        if p.short_seq_limit > 0:

            def LoopContinueShort(cur_step, all_done, unused_step_ids,
                                  unused_core_bs_states,
                                  unused_other_states_list):
                """Use short_seq optimization when cur_step is smaller than limit."""
                return tf.math.logical_and(cur_step < p.short_seq_limit,
                                           tf.math.logical_not(all_done))

            def LoopBodyShort(cur_step, unused_all_done, step_ids,
                              core_bs_states, other_states_list):
                """Loop body of short_seq optimization.

        Instead of doing computation for the entire padded sequence, while loop
        with early exit is used within each _BeamSearchStep to do computation
        for only the actual sequence (seq_length <= cur_step).
        use_short_seq_opt is used as the flag to pass this information down to
        the decoder implementation.

        Args:
          cur_step: A scalar int tensor, the current time step, 0-based.
          unused_all_done: A tf.bool, indicating whether the decoding finishes.
          step_ids: An int32 tensor of shape [num_hyps, 1]. The input ids to the
            current search step.
          core_bs_states: A tuple of core beam search states.
          other_states_list: A flattened NestedMap of other beam search states.

        Returns:
          The updated input tuple, with the same shape.
        """
                (cur_step, all_done, new_step_ids, new_bs_states,
                 new_other_states) = self._BeamSearchStep(
                     theta,
                     encoder_outputs,
                     cur_step,
                     step_ids,
                     core_bs_states,
                     other_states.Pack(other_states_list),
                     num_hyps_per_beam,
                     pre_beam_search_step_callback,
                     post_beam_search_step_callback,
                     use_short_seq_opt=True)
                return (cur_step, all_done, new_step_ids, new_bs_states,
                        new_other_states.Flatten())

            (cur_step, all_done, step_ids, core_bs_states,
             flat_other_states) = tf.while_loop(
                 LoopContinueShort,
                 LoopBodyShort,
                 loop_vars=(cur_step, all_done, step_ids, core_bs_states,
                            flat_other_states),
                 parallel_iterations=10,
                 back_prop=False,
                 swap_memory=False,
                 shape_invariants=(
                     tf.TensorShape(cur_step.get_shape()),
                     tf.TensorShape(all_done.get_shape()),
                     tf.TensorShape(step_ids.get_shape()),
                     tuple(
                         list(_GetShapes(accum_bs_states)) +
                         list(_GetShapes(non_accum_bs_states,
                                         none_shapes=True))),
                     _GetShapes(flat_other_states, none_shapes=True)),
                 maximum_iterations=max_steps)

        def LoopContinueLong(cur_step, all_done, unused_step_ids,
                             unused_core_bs_states, unused_other_states_list):
            """Continue default implementation until decoding finishes."""
            return tf.math.logical_and(cur_step < max_steps,
                                       tf.math.logical_not(all_done))

        def LoopBodyLong(cur_step, unused_all_done, step_ids, core_bs_states,
                         other_states_list):
            """Loop body of default long_seq implementation."""
            (cur_step, all_done, new_step_ids, new_bs_states,
             new_other_states) = self._BeamSearchStep(
                 theta,
                 encoder_outputs,
                 cur_step,
                 step_ids,
                 core_bs_states,
                 other_states.Pack(other_states_list),
                 num_hyps_per_beam,
                 pre_beam_search_step_callback,
                 post_beam_search_step_callback,
                 use_short_seq_opt=False)
            return (cur_step, all_done, new_step_ids, new_bs_states,
                    new_other_states.Flatten())

        _, _, _, final_bs_states, flat_final_other_states = tf.while_loop(
            LoopContinueLong,
            LoopBodyLong,
            loop_vars=(cur_step, all_done, step_ids, core_bs_states,
                       flat_other_states),
            parallel_iterations=10,
            back_prop=False,
            swap_memory=False,
            shape_invariants=(
                tf.TensorShape(cur_step.get_shape()),
                tf.TensorShape(all_done.get_shape()),
                tf.TensorShape(step_ids.get_shape()),
                tuple(
                    list(_GetShapes(accum_bs_states)) +
                    list(_GetShapes(non_accum_bs_states, none_shapes=True))),
                _GetShapes(flat_other_states, none_shapes=False)),
            maximum_iterations=max_steps)

        if isinstance(source_paddings, py_utils.NestedMap):
            source_seq_lengths = tf.cast(tf.round(
                tf.reduce_sum(1.0 - tf.transpose(source_paddings.Flatten()[0]),
                              1)),
                                         dtype=tf.int32)
        else:
            source_seq_lengths = tf.cast(tf.round(
                tf.reduce_sum(1.0 - tf.transpose(source_paddings), 1)),
                                         dtype=tf.int32)

        # Concatenate all outputs on axis=0.
        scores = final_bs_states[3].stack()
        hyps = final_bs_states[4].stack()
        prev_hyps = final_bs_states[5].stack()
        done_hyps = tf.cast(final_bs_states[6].stack(), tf.bool)
        atten_probs = final_bs_states[7].stack()
        eos_scores = final_bs_states[8].stack()
        eos_atten_probs = final_bs_states[9].stack()
        rets = (hyps, prev_hyps, done_hyps, scores, atten_probs, eos_scores,
                eos_atten_probs, source_seq_lengths)

        # TODO(rohananil): Only send a single R1 tensor to host instead of 3 after
        # b/111131551 is resolved.
        # Canonical shapes for tensors of various. ranks
        r_shapes = [
            py_utils.GetShape(source_seq_lengths),
            py_utils.GetShape(hyps),
            py_utils.GetShape(atten_probs)
        ]
        # Reshape all tensors to [-1] to avoid cost of copy due to padding.
        rets_r1 = [tf.reshape(r, [-1]) for r in rets]

        return tuple(r_shapes) + tuple(rets_r1) + tuple(
            flat_final_other_states)
Example #12
0
    def _BeamSearchStep(self,
                        theta,
                        encoder_outputs,
                        cur_step,
                        step_ids,
                        core_bs_states,
                        other_states,
                        num_hyps_per_beam,
                        pre_beam_search_step_callback,
                        post_beam_search_step_callback,
                        use_short_seq_opt=False):
        """Extend beam search hyps for one step.

    num_beams = Number of source sequences to be decoded.
    num_hyps_per_beam = Number of hyps to keep per source sequence.
    num_hyps = num_beams * num_hyps_per_beam
    src_seq_len = Number of time steps in the source sequence.
    tgt_seq_len = Maximum allowed time steps in the target sequence.

    Args:
      theta: A NestedMap object containing weights' values of the decoder
        layer and its children layers.
      encoder_outputs: A NestedMap computed by encoder.
      cur_step: A scalar int tensor, the current time step, 0-based.
      step_ids: An int tensor of shape [num_hyps, 1]. The input ids to the
          current search step.
      core_bs_states: A tuple of core beam search states. This list is
          maintained by this helper class.
      other_states: A NestedMap of other beam search states. This NestedMap is
          managed and updated by the client. It is expected that each of its
          member tensors are of rank >= 1. t[i, ...] is the state of the i-th
          hyp at the beginning of this search step.
      num_hyps_per_beam: Num of hyps to keep per beam.
      pre_beam_search_step_callback: The PreBeamSearchStepCallback callback.
        Please refer to the class header comments for more details.
      post_beam_search_step_callback: The PostBeamSearchStepCallback callback.
        Please refer to the class header comments for more details.
      use_short_seq_opt: A bool, whether using short sequence optimization.
    Returns:
      A tuple of following elements for the next beam search step:
      (next step, all_done, step_ids, core_bs_states, other_states)
    """
        p = self.params

        if use_short_seq_opt:
            bs_results, other_states = pre_beam_search_step_callback(
                theta, encoder_outputs, step_ids, other_states,
                num_hyps_per_beam, use_short_seq_opt)
        else:
            bs_results, other_states = pre_beam_search_step_callback(
                theta, encoder_outputs, step_ids, other_states,
                num_hyps_per_beam)

        (best_scores, cumulative_scores, histories, in_scores, in_hyps,
         in_prev_hyps, in_done_hyps, in_atten_probs, in_eos_scores,
         in_eos_atten_probs) = core_bs_states

        (out_best_scores, out_cumulative_scores, out_scores, out_eos_scores,
         out_hyps, out_prev_hyps, out_done_hyps, out_atten_probs,
         out_eos_atten_probs, all_done,
         out_histories) = beam_search_tpu_ops.beam_search_step(
             bs_results.log_probs,
             bs_results.atten_probs,
             best_scores,
             cumulative_scores,
             histories,
             cur_step,
             eos_id=p.target_eos_id,
             beam_size=p.beam_size,
             num_beams=tf.shape(best_scores)[0],
             num_hyps_per_beam=num_hyps_per_beam,
             valid_eos_max_logit_delta=p.valid_eos_max_logit_delta,
             merge_paths=p.merge_paths,
             eoc_id=p.target_eoc_id if p.merge_paths else -1,
             is_last_chunk=bs_results.get('is_last_chunk'))

        # Write out values into TensorArray's corresponding to each output.
        arr_scores = in_scores.write(cur_step, out_scores)
        arr_eos_scores = in_eos_scores.write(cur_step, out_eos_scores)
        arr_hyps = in_hyps.write(cur_step, out_hyps)
        arr_prev_hyps = in_prev_hyps.write(cur_step, out_prev_hyps)
        # TODO(rohananil): Change the implementation of TensorArray write for
        # tf.bool from false += current_value to logical_and(true, current_value) as
        # addition operator for bool is not defined.
        arr_done_hyps = in_done_hyps.write(cur_step,
                                           tf.cast(out_done_hyps, tf.int32))
        arr_atten_probs = in_atten_probs.write(cur_step, out_atten_probs)
        arr_eos_atten_probs = in_eos_atten_probs.write(cur_step,
                                                       out_eos_atten_probs)

        # New beam search states.
        new_bs_states = (out_best_scores, out_cumulative_scores, out_histories,
                         arr_scores, arr_hyps, arr_prev_hyps, arr_done_hyps,
                         arr_atten_probs, arr_eos_scores, arr_eos_atten_probs)

        old_hyp_ids = tf.reshape(out_prev_hyps, [-1])

        if p.batch_major_compute:
            # Transformed the indices into the key/value cache for fast decoding
            # (prefix_states in other_states) due to the num_hyps dimension of
            # cache is computed as num_beams by num_hyps_per_beam, which is different
            # from the old_hyp_ids assumption (num_hyps_per_beam by num_beams).
            # Both transpose and recomputation are required to correct the indices.
            num_beams = tf.shape(best_scores)[0]
            old_hyp_ids_in_cache_order = tf.reshape(
                tf.transpose(tf.reshape(old_hyp_ids, [num_hyps_per_beam, -1])),
                [-1])
            old_hyp_ids_in_cache_order = (
                (old_hyp_ids_in_cache_order % num_beams) * num_hyps_per_beam +
                old_hyp_ids_in_cache_order // num_beams)

        def ReOrderHyps(x_in):
            """Reorders x_in based on prev hyp ids."""
            if isinstance(x_in, tf.Tensor) and x_in.shape.ndims > 0:
                # For rank > 1 tensors we make use of an efficient matmul based gather
                # on tpu that takes in account the range of the values. For R1, we
                # rely on the tf.gather and xla to optimize it efficiently for R1
                # layout.
                if x_in.shape.ndims > 1:
                    if p.batch_major_state:
                        num_hyps = tf.shape(old_hyp_ids)[0]
                        x_out = beam_search_tpu_ops.fast_gather(
                            x_in,
                            old_hyp_ids,
                            num_hyps,
                            max_value=None,
                            batch_major_state=p.batch_major_state)
                    else:
                        # Use corrected indices only here for batch major compute as
                        # key/value caches are the states being affected.
                        correct_old_hyp_ids = (old_hyp_ids_in_cache_order
                                               if p.batch_major_compute else
                                               old_hyp_ids)

                        def _GatherStep(x_in, t):
                            """Gather for one time step.

              Args:
                x_in: in the shape of [T, B, ...] we first get slice(t) from the
                  tensors, then gather old_hyp_ids from the slice and write the
                  interpolated slice inplace to update the original x_in.
                t: current time step

              Returns:
                Updated x_in and time step
              """
                            x = tf.gather(tf.gather(x_in, t),
                                          correct_old_hyp_ids)
                            return inplace_ops.alias_inplace_update(
                                x_in, t, x), t + 1

                        x_out, _ = tf.while_loop(
                            lambda _, t: t <= cur_step, _GatherStep,
                            (x_in, tf.zeros([], tf.int32)))
                else:
                    x_out = tf.gather(x_in, old_hyp_ids)
                x_out.set_shape(x_in.get_shape())
                return x_out
            else:
                return x_in

        new_other_states = other_states.Transform(ReOrderHyps)
        new_step_ids = tf.reshape(out_hyps, [-1, 1])
        final_other_states = post_beam_search_step_callback(
            theta, encoder_outputs, new_step_ids, new_other_states)

        return (cur_step + 1, all_done, new_step_ids, new_bs_states,
                final_other_states)
    def Sample(self, decoder_theta, encoder_outputs, random_seed,
               init_state_callback, pre_step_callback, post_step_callback):
        """Samples target sequences, one target sequence per source sequence.

    (Please see beam_search_helper.py for description of decoder callbacks.)

    Args:
      decoder_theta: A NestedMap object containing weights' values of the
        decoder layer and its children layers, to be passed to decoder
        callbacks.
      encoder_outputs: the outputs of the encoder, to be passed to callbacks.
      random_seed: a scalar int32 tensor representing the random seed.
      init_state_callback: decoder._InitBeamSearchStateCallback.
      pre_step_callback: decoder._PreBeamSearchStepCallback.
      post_step_callback: decoder._PostBeamSearchStepCallback.

    Returns:
      A NestedMap containing the following tensors

      - 'logits': [batch, max_target_length, vocab_size], representing the
        distribution from which target sequences are sampled.
      - 'ids': [batch, max_target_length] of int32, representing the target
        sequence ids, not including target_sos_id, but maybe ending with
        target_eos_id if end-of-sequence is reached before target_seq_len.
      - 'paddings': [batch, max_target_length] of 0/1, where 1 represents
        a padded timestep.
    """
        p = self.params
        assert p.temperature > 0
        if getattr(encoder_outputs, 'segment_id', 1) is None:
            # Remove None values, which are not supported by recurrent.
            del encoder_outputs['segment_id']
        # init_state_callback may modify 'encoder_outputs', e.g., by inserting
        # 'packed_src'.
        bs_result, bs_state = init_state_callback(decoder_theta,
                                                  encoder_outputs,
                                                  num_hyps_per_beam=1)
        # 'recurrent_theta' represents all cross-timestep information used by the
        # recurrent loop below, including layer theta and encoder outputs.
        recurrent_theta = py_utils.NestedMap(theta=decoder_theta,
                                             random_seed=random_seed,
                                             encoder_outputs=encoder_outputs)
        batch = tf.shape(bs_result.log_probs)[0]
        recurrent_state0 = py_utils.NestedMap(
            timestep=tf.zeros(shape=[], dtype=tf.int32),
            logits=bs_result.log_probs,
            # Start with target_sos_id.
            ids=tf.fill([batch], tf.cast(p.target_sos_id, tf.int32)),
            bs_state=bs_state)
        inputs = py_utils.NestedMap(dummy=tf.zeros([p.target_seq_len, batch]))

        def Step(recurrent_theta, state0, inputs):
            """Computes one decoder step."""
            del inputs
            with tf.name_scope('single_sampler_step'):
                # Compute logits and states.
                bs_result, bs_state1 = pre_step_callback(
                    recurrent_theta.theta,
                    recurrent_theta.encoder_outputs,
                    tf.expand_dims(state0.ids, 1),  # [batch, 1].
                    state0.bs_state,
                    num_hyps_per_beam=1)
                batch = tf.shape(bs_result.log_probs)[0]
                state1 = py_utils.NestedMap(timestep=state0.timestep + 1)
                state1.logits = bs_result.log_probs
                # Sample ids from logits. [batch].
                state1.ids = tf.reshape(
                    tf.random.stateless_categorical(
                        state1.logits / p.temperature,
                        num_samples=1,
                        seed=tf.stack(
                            [recurrent_theta.random_seed, state0.timestep]),
                        dtype=state0.ids.dtype,
                        name='sample_next_id'), [batch])
                if 'is_last_chunk' in bs_result and p.target_eoc_id >= 0:
                    state1.ids = tf.where(
                        tf.math.logical_and(
                            bs_result.is_last_chunk,
                            tf.equal(state1.ids, p.target_eoc_id)),
                        tf.fill(tf.shape(state1.ids), p.target_eos_id),
                        state1.ids)
                state1.bs_state = post_step_callback(
                    recurrent_theta.theta, recurrent_theta.encoder_outputs,
                    state1.ids, bs_state1)
            return state1, py_utils.NestedMap()

        accumulated_states, _ = recurrent.Recurrent(
            recurrent_theta,
            recurrent_state0,
            inputs,
            Step,
            allow_implicit_capture=True)
        result = py_utils.NestedMap(logits=tf.transpose(
            accumulated_states.logits, [1, 0, 2]),
                                    ids=tf.transpose(accumulated_states.ids))
        result.paddings = tf.cast(
            _ComputePaddings(result.ids, p.target_eos_id), result.logits.dtype)
        # Force ids to be eos_id if the timestep is padded.
        result.ids = tf.where(tf.equal(result.paddings, 0), result.ids,
                              tf.fill(tf.shape(result.ids), p.target_eos_id))
        static_batch_size = bs_result.log_probs.shape[0]
        result.ids.set_shape([static_batch_size, p.target_seq_len])
        result.paddings.set_shape([static_batch_size, p.target_seq_len])
        return result
Example #14
0
 def Transpose(paddings):
   paddings = paddings if isinstance(paddings, list) else [paddings]
   return [tf.transpose(p) for p in paddings]
Example #15
0
    def FProp(self, theta, input_batch):
        """Embeds source ids and transforms with TransformerStack.

    Args:
      theta: A `.NestedMap` object containing weights' values of this
        layer and its children layers.
      input_batch: A `.NestedMap` with fields:

        - ids: The inputs tensor. It is expected to be of shape [batch, time].
        - paddings: The paddings tensor. Expected shape [batch, time].
        - task_ids: If p.task_emb is provided, must contain per-token task
            ids of shape [batch, time].

    Returns:
      A NestedMap containing

      - encoded: The encoded features, either a tensor of shape
        [time, batch, depth], or a list of tensors if is_transparent is set in
        transformer_stack.
      - padding: of shape [time, batch]
      - segment_id: [time, batch] if packed inputs are supported by the model
        (and all layers), or None otherwise.
      - embedded_inputs: [time, batch, depth] embedded inputs tokens without
        positional encodings.
    """

        p = self.params
        with tf.name_scope(p.name):
            src_segment_id = None
            src_segment_pos = None
            input_ids = py_utils.with_dependencies([
                py_utils.assert_shape_match(tf.shape(input_batch.ids),
                                            tf.shape(input_batch.paddings)),
                py_utils.assert_equal(tf.rank(input_batch.ids), 2)
            ], input_batch.ids)

            if (not py_utils.use_tpu()
                    and tf.flags.FLAGS.transformer_encoder_truncates_inputs):
                max_seq_length = tf.cast(
                    tf.reduce_max(tf.reduce_sum(1.0 - input_batch.paddings,
                                                1)), tf.int32)
                paddings = py_utils.with_dependencies([
                    py_utils.assert_equal(
                        tf.constant(True, tf.bool),
                        tf.reduce_all(
                            input_batch.paddings[:, max_seq_length:] > 0.5))
                ], input_batch.paddings)
                input_ids = input_ids[:, :max_seq_length]
                paddings = paddings[:, :max_seq_length]
                if p.packed_input:
                    src_segment_id = input_batch.segment_ids[:, :
                                                             max_seq_length]
                    src_segment_pos = input_batch.segment_pos[:, :
                                                              max_seq_length]
            else:
                paddings = input_batch.paddings
                if p.packed_input:
                    src_segment_id = input_batch.segment_ids
                    src_segment_pos = input_batch.segment_pos

            max_time = tf.shape(input_ids)[1]

            # Input token embeddings + positional embeddings
            if not p.shared_emb:
                input_embs = self.token_emb.EmbLookup(
                    theta.token_emb, tf.reshape(input_ids, [-1]))
            else:
                input_embs = self.softmax.EmbLookup(
                    theta.softmax, tf.reshape(input_ids, [-1]))

            input_embs = tf.reshape(input_embs,
                                    [-1, max_time, p.token_emb.embedding_dim])
            # [time, batch, dim]
            orig_input_embs = tf.transpose(input_embs, [1, 0, 2])

            if p.packed_input:
                position_embs = self.position_emb.FPropWithPosition(
                    theta.position_emb, src_segment_pos)
            else:
                position_embs = self.position_emb.FProp(
                    theta.position_emb, max_time)
                position_embs = tf.reshape(
                    position_embs, [1, max_time, p.token_emb.embedding_dim])
            input_embs += position_embs
            if p.task_emb:
                input_embs += self.task_emb.EmbLookup(theta.task_emb,
                                                      input_batch.task_ids)

            if p.model_dim != p.token_emb.embedding_dim:
                input_embs = self.emb_proj.FProp(theta.emb_proj, input_embs)

            paddings = tf.cast(tf.transpose(paddings), py_utils.FPropDtype(p))
            if p.packed_input:
                src_segment_id = tf.transpose(src_segment_id)
            input_embs = self.input_dropout.FProp(theta.input_dropout,
                                                  input_embs)

            # [time, batch, dim]
            transformer_input = tf.transpose(input_embs, [1, 0, 2])

        if not self.do_eval and p.apply_source_mask:
            # Augment padding for masked source word positions.
            dtype = paddings.dtype
            source_mask = tf.where(tf.equal(input_ids, p.source_mask_id),
                                   tf.ones_like(input_ids, dtype=dtype),
                                   tf.zeros_like(input_ids, dtype=dtype))
            # Make sure padding is between 0 and 1.
            paddings = tf.clip_by_value(paddings + tf.transpose(source_mask),
                                        0.0, 1.0)

        encoded, padding, segment_id = self.transformer_stack.FProp(
            theta.transformer_stack, transformer_input, paddings,
            src_segment_id)
        return py_utils.NestedMap(encoded=encoded,
                                  padding=padding,
                                  segment_id=segment_id,
                                  embedded_inputs=orig_input_embs)
    def _BeamSearchStep(self, theta, encoder_outputs, cur_step, step_ids,
                        core_bs_states, other_states, num_hyps_per_beam,
                        pre_beam_search_step_callback,
                        post_beam_search_step_callback):
        """Extend beam search hyps for one step.

      | num_beams = Number of source sequences to be decoded.
      | num_hyps_per_beam = Number of hyps to keep per source sequence.
      | num_hyps = num_beams * num_hyps_per_beam
      | src_seq_len = Number of time steps in the source sequence.
      | src_batch = Number of examples in the source sequence.
      | tgt_seq_len = Maximum allowed time steps in the target sequence.
      | tgt_batch = num_hyps_per_beam * src_batch

    Args:
      theta: A `.NestedMap` object containing weights' values of the decoder
        layer and its children layers.
      encoder_outputs: A `.NestedMap` containing encoder outputs to be passed to
        the callbacks.
      cur_step: A scalar int tensor, the current time step, 0-based.
      step_ids: An int tensor of shape [num_hyps, 1]. The input ids to the
        current search step.
      core_bs_states: A tuple of core beam search states. This list is
        maintained by this helper class.
      other_states: A `.NestedMap` of other beam search states. This
        `.NestedMap` is managed and updated by the client. It is expected that
        each of its member tensors are of rank >= 1. t[i, ...] is the state of
        the i-th hyp at the beginning of this search step.
      num_hyps_per_beam: Num of hyps to keep per beam.
      pre_beam_search_step_callback: The `PreBeamSearchStepCallback` callback.
        See class header comments for more details.
      post_beam_search_step_callback: The `PostBeamSearchStepCallback` callback.
        See class header comments for more details.

    Returns:
      A tuple of following elements for the next beam search step,
      (next step, all_done, step_ids, core_bs_states, other_states)
    """
        p = self.params

        bs_results, other_states = pre_beam_search_step_callback(
            theta, encoder_outputs, step_ids, other_states, num_hyps_per_beam)

        (best_scores, cumulative_scores, in_scores, in_hyps, in_prev_hyps,
         in_done_hyps, in_atten_probs) = core_bs_states

        (out_best_scores, out_cumulative_scores, out_scores, out_hyps,
         out_prev_hyps, out_done_hyps, out_atten_probs,
         all_done) = ops.beam_search_step(
             tf.cast(bs_results.log_probs, dtype=p.dtype),
             tf.cast(bs_results.atten_probs, dtype=p.dtype),
             best_scores,
             cumulative_scores,
             in_scores,
             in_hyps,
             in_prev_hyps,
             in_done_hyps,
             in_atten_probs,
             bs_results.is_last_chunk if self._model_uses_eoc_id else [],
             cur_step,
             eoc_id=p.target_eoc_id,
             eos_id=p.target_eos_id,
             beam_size=p.beam_size,
             num_hyps_per_beam=num_hyps_per_beam,
             valid_eos_max_logit_delta=p.valid_eos_max_logit_delta,
             merge_paths=p.merge_paths,
             allow_empty_terminated_hyp=p.allow_empty_terminated_hyp,
             ensure_full_beam=p.ensure_full_beam,
             force_eos_in_last_step=p.force_eos_in_last_step,
             local_eos_threshold=p.local_eos_threshold)

        new_step_ids = tf.reshape(out_hyps[cur_step, :], tf.shape(step_ids))
        new_step_ids.set_shape(step_ids.get_shape())

        old_hyp_ids = tf.reshape(
            tf.slice(out_prev_hyps, begin=[cur_step, 0], size=[1, -1]), [-1])

        if p.batch_major_compute:
            # Transformed the indices into the key/value cache for fast decoding
            # (prefix_states in other_states) due to the num_hyps dimension of
            # cache is computed as num_beams by num_hyps_per_beam, which is different
            # from the old_hyp_ids assumption (num_hyps_per_beam by num_beams).
            # Both transpose and recomputation are required to correct the indices.
            num_beams = tf.shape(best_scores)[0]
            old_hyp_ids_in_cache_order = tf.reshape(
                tf.transpose(tf.reshape(old_hyp_ids, [num_hyps_per_beam, -1])),
                [-1])
            old_hyp_ids_in_cache_order = (
                (old_hyp_ids_in_cache_order % num_beams) * num_hyps_per_beam +
                old_hyp_ids_in_cache_order // num_beams)

        new_bs_states = (out_best_scores, out_cumulative_scores, out_scores,
                         out_hyps, out_prev_hyps, out_done_hyps,
                         out_atten_probs)

        def ReOrderHyps(x_in):
            """Reorders x_in based on prev hyp ids."""
            if (isinstance(x_in, tf.Tensor) and x_in.shape.ndims
                    and x_in.shape.ndims > 0):
                if x_in.shape.ndims > 2 and not p.batch_major_state:
                    # Use corrected indices only here for batch major compute as key/value
                    # caches are the states being affected.
                    correct_old_hyp_ids = (old_hyp_ids_in_cache_order
                                           if p.batch_major_compute else
                                           old_hyp_ids)
                    x_out = tf.gather(x_in, correct_old_hyp_ids, axis=1)
                else:
                    x_out = tf.gather(x_in, old_hyp_ids)
                x_out.set_shape(x_in.get_shape())
                return x_out
            else:
                return x_in

        new_other_states = other_states.Transform(ReOrderHyps)

        final_other_states = post_beam_search_step_callback(
            theta, encoder_outputs, new_step_ids, new_other_states)

        return (cur_step + 1, all_done, new_step_ids, new_bs_states,
                final_other_states)
Example #17
0
    def FProp(self, theta, input_batch):
        """Embeds source ids and transforms with TransformerStack.

    Args:
      theta: A `.NestedMap` object containing weights' values of this layer and
        its children layers.
      input_batch: A `.NestedMap` object containing: ids - The inputs tensor of
        shape [batch, time]. paddings - The ids' paddings of shape [batch,
        time].

    Returns:
      A '.NestedMap' object containing:
        encoded - The encoded features of shape [time, batch, dim] or [batch,
          time, dim], depending p.output_data_format.
        padding - The encoded features' padding of shape [time, batch] or
          [batch, time].
        segment_id - The segmentation of packed inputs of shape [time, batch] or
          [batch, time] if it is supported by the model, or None otherwise.
        embedded_inputs - The embedded inputs tokens without positional
          encodings of shape [time, batch, dim] or [batch, time, dim].
    """

        p = self.params
        with tf.name_scope(p.name):
            # [batch, time]
            input_ids = input_batch.ids
            # [batch, time]
            paddings = input_batch.paddings

            # [batch, time]
            segment_ids = input_batch.segment_ids if p.packed_input else None

            batch = py_utils.GetShape(input_ids)[0]
            time = py_utils.GetShape(input_ids)[1]

            # Embedding layer.
            # [batch, time, dim]
            if not p.shared_emb:
                input_embs = self.token_emb.EmbLookup(theta.token_emb,
                                                      input_ids)
            else:
                input_embs = self.softmax.EmbLookup(theta.softmax, input_ids)
            orig_input_embs = input_embs

            # [1, time, dim]
            if p.packed_input:
                positions = input_batch.segment_pos
                position_embs = tf.expand_dims(
                    self.position_emb.FPropWithPosition(
                        theta.position_emb, positions), 0)
            else:
                position_embs = tf.expand_dims(
                    self.position_emb.FProp(theta.position_emb, time), 0)

            # [batch, time, dim]
            input_embs += tf.cast(position_embs, tf.bfloat16)

            if p.input_dropout_tpl.fprop_dtype:
                input_embs = tf.cast(input_embs,
                                     p.input_dropout_tpl.fprop_dtype)
                paddings = tf.cast(paddings, p.input_dropout_tpl.fprop_dtype)

            input_embs = self.input_dropout.FProp(theta.input_dropout,
                                                  input_embs)
            # [batch, time, dim]
            transformer_input = input_embs
            # Explicitly set the input shape of Transformer layers, to avoid
            # unknown shape error occurred to tf.einsum on nonTPU devices.
            transformer_input = tf.reshape(transformer_input,
                                           [batch, time, p.model_dim])

            # Compute self-attention segment mask once.
            if p.packed_input:
                segment_mask = batch_major_attention.SegmentMask(
                    segment_ids, segment_ids, dtype=transformer_input.dtype)
            else:
                segment_mask = tf.zeros([batch, 1, time, time])

            encoded, padding = self.transformer_stack.FProp(
                theta.transformer_stack, transformer_input, paddings,
                segment_mask)

            if p.final_layer_norm:
                encoded = self.final_ln.FProp(theta.final_ln, encoded)

            seq_lengths = tf.cast(tf.reduce_sum(1. - padding, axis=1),
                                  tf.int32)

            if p.output_data_format == 'TBC':
                encoded = tf.transpose(encoded,
                                       [1, 0, 2])  # [time, batch, dim]
                padding = tf.transpose(padding)  # [time, batch]
                segment_ids = tf.transpose(
                    segment_ids) if p.packed_input else None
                orig_input_embs = tf.transpose(orig_input_embs, [1, 0, 2])

            return py_utils.NestedMap(
                encoded=encoded,
                padding=padding,
                seq_lengths=seq_lengths,  # used by beam_search_helper.
                segment_id=segment_ids,
                embedded_inputs=orig_input_embs)
    def _ConstructWarpMatrix(self, batch_size, matrix_size, origin,
                             destination, choose_range, dtype):
        """Returns warp matrices according to origin, destination and choose_range.

    This function constructs a batch of warp matrices which maps the batch
    of origin points to the batch of destination points with fixed boundary
    coordinates at 0 and choose_range.

    The warping function, defined by the origin anchor point `origin`,
    the destination of the origin anchor point `destination` and the
    length of the domain in the warping axis `choose_range` is a piecewise
    linear map that fixes the points 0 and `choose_range` and maps
    `origin` to `destination`.

    For the warping matrix to be non-singular, destination must lie in the
    range 1<= destination <= choose_range - 1, so a destination
    out of this range is adjusted to be in this range before the warping
    matrix is constructed.

    The warping map can be explicitly written by first defining the slopes:
      1) slope_0 = origin / destination.
      2) slope_1 = (choose_range - origin) / (choose_range - destination).
      3) slope_2 = 1.0.

    Then the origin point orig_i of the mapped coordinate i is given by:
      1) i < destination: orig_i = slope_0 * i.
      2) destination <= i < choose_range:
         orig_i = slope_1 * i - (slope_1 - slope_0) * destination.
      3) i >= choose_range: orig_i = i.

    Denoting n_i = ceil(orig_i), the warp matrix element warp[i][j] is given by:
      1) j = n_i: 1 - n_i + orig_i.
      2) j = n_i - 1: n_i - orig_i.
      3) Otherwise: 0.

    Applying the warp matrix to an array of pixels, i.e.,
    warped_pixel[i] = sum_j warp[i][j] * pixel[j], one would get
    warped_pixel[i] = (n_i-orig_i) pixel[n_i-1] + (1-n_i+orig_i) pixel[n_i].

    Args:
      batch_size: Batch size. Integer number.
      matrix_size: Dimension of the vector space the warp matrix is applied to.
        Integer number.
      origin: Origin anchor point for warping. Tensor of shape (batch_size,) and
        data type dtype.
      destination: Destination of the origin anchor point upon warping. Tensor
        of shape (batch_size,) and data type dtype.
      choose_range: Range within which the warp reference points must lie.
        Tensor of shape (batch_size,) data type dtype.
      dtype: Data type of origin, destination, choose_range and the output warp
        matrix.

    Returns:
      warp_matrix: An array of fixed size warp matrices with shape
      (batch_size, matrix_size, matrix_size).
    """
        p = self.params

        # Entries of destination must be in the range
        # 1 <= destination <= choose_range - 1
        # for warp matrix to have non-singular values.
        destination = tf.minimum(tf.maximum(destination, 1.0),
                                 choose_range - 1.0)

        # Construct piece-wise linear function fixing boundary points
        # specified by zero, choose_range and matrix size and maps
        # the origin anchor point to the destination.
        destination_bc = tf.broadcast_to(destination,
                                         (matrix_size, batch_size))
        destination_bc = tf.transpose(destination_bc)
        choose_range_bc = tf.broadcast_to(choose_range,
                                          (matrix_size, batch_size))
        choose_range_bc = tf.transpose(choose_range_bc)

        # Slopes of piece-wise linear function.
        slope_0 = origin / destination
        slope_1 = (choose_range - origin) / (choose_range - destination)
        slope_2 = 1.0

        # x is a batch of origin matrices.
        # The origin matrix is the matrix such that
        # origin[i][j] = Origin coordinate of coordinate i for the warp map.
        # Denoting the destination of the origin anchor point in the
        # warp map as "dest," the origin coordinate of point i is given by:
        # 1) i < dest: slope_0 * i.
        # 2) dest <= i < choose_range: slope_1 * i - (slope_1 - slope_0) * dest.
        # 3) i >= choose_range: i.
        x = tf.broadcast_to(tf.cast(tf.range(matrix_size), dtype=dtype),
                            (batch_size, matrix_size))
        x = (self.EinsumBBmBm(slope_0, x) + self.EinsumBBmBm(
            slope_1 - slope_0, tf.nn.relu(x - destination_bc)) +
             self.EinsumBBmBm(slope_2 - slope_1,
                              tf.nn.relu(x - choose_range_bc)))
        x = tf.broadcast_to(x, (matrix_size, batch_size, matrix_size))
        x = tf.transpose(x, perm=[1, 2, 0])

        # y is a batch of coordinate matrices.
        # A coordinate matrix is a matrix such that
        # coordinate[i][j] = j.
        y = tf.broadcast_to(tf.cast(tf.range(matrix_size), dtype=dtype),
                            (batch_size, matrix_size, matrix_size))
        # Warp matrix is obtained by applying hat function element-wise to (x-y).
        # Denoting the origin point of i under the warp map as orig_i,
        # and n_i = ceil(orig_i), the warp matrix element warp[i][j] is given by:
        # 1) j = n_i: 1 - n_i + orig_i.
        # 2) j = n_i - 1: n_i - orig_i.
        # 3) Otherwise: 0.
        # Applying the warp matrix to pixels, i.e.,
        # warped_pixel[i] = sum_j warp[i][j] * original_pixel[j], one would get
        # warped_pixel[i] = (n_i - orig_i) * original_pixel[n_i-1]
        #                   + (1 - n_i + orig_i) * original_pixel[n_i].
        warp_matrix = x - y
        warp_matrix = _hat(warp_matrix)
        if p.fprop_dtype is not None and p.fprop_dtype != dtype:
            warp_matrix = tf.cast(warp_matrix, p.fprop_dtype)

        return warp_matrix