Example #1
0
def xyHt2Geo(platepar, x, y, area_ht, indicate_limit=False, elev_limit=5):
    """ Given pixel coordiantes on the image and a height above sea level, compute geo coordiantes of the
        point. The elevation is limited to 5 deg above horizon.

    Arguments:
        platepar: [Platepar object]
        x: [float] Image X coordinate.
        y: [float] Image Y coordiante.
        area_ht: [float] Height above sea level (meters).

    Keyword arguments:
        indicate_limit: [bool] Indicate that the elevation was below the limit of 5 deg by setting the
            height to -1. False by default.
        elev_limit: [float] Limit of elevation above horizon (deg). 5 degrees by default.

    
    Return:
        (r, lat, lon, ht): [tuple of floats] range in meters, latitude and longitude in degrees, \
            WGS84 height in meters

    """

    # Compute RA/Dec in J2000 of the image point, at J2000 epoch time so we don't have to precess
    _, ra, dec, _ = xyToRaDecPP([jd2Date(J2000_JD.days)], [x], [y], [1], platepar, \
        extinction_correction=False)

    # Compute alt/az of the point
    azim, elev = raDec2AltAz(ra[0], dec[0], J2000_JD.days, platepar.lat,
                             platepar.lon)

    # Limit the elevation to elev_limit degrees above the horizon
    limit_hit = False
    if elev < elev_limit:
        elev = elev_limit
        limit_hit = True

    # Compute the geo location of the point along the line of sight
    p_r, p_lat, p_lon, p_ht = AEH2LatLonAlt(azim, elev, area_ht, platepar.lat, platepar.lon, \
        platepar.elev)

    # If the elevation limit was hit, and the indicate flag is True, set the elevation to -1
    if indicate_limit and limit_hit:
        p_ht = -1

    return p_r, p_lat, p_lon, p_ht
Example #2
0
def generateCalibrationReport(config,
                              night_dir_path,
                              match_radius=2.0,
                              platepar=None,
                              show_graphs=False):
    """ Given the folder of the night, find the Calstars file, check the star fit and generate a report
        with the quality of the calibration. The report contains information about both the astrometry and
        the photometry calibration. Graphs will be saved in the given directory of the night.
    
    Arguments:
        config: [Config instance]
        night_dir_path: [str] Full path to the directory of the night.

    Keyword arguments:
        match_radius: [float] Match radius for star matching between image and catalog stars (px).
        platepar: [Platepar instance] Use this platepar instead of finding one in the folder.
        show_graphs: [bool] Show the graphs on the screen. False by default.

    Return:
        None
    """

    # Find the CALSTARS file in the given folder
    calstars_file = None
    for calstars_file in os.listdir(night_dir_path):
        if ('CALSTARS' in calstars_file) and ('.txt' in calstars_file):
            break

    if calstars_file is None:
        print('CALSTARS file could not be found in the given directory!')
        return None

    # Load the calstars file
    star_list = readCALSTARS(night_dir_path, calstars_file)

    ### Load recalibrated platepars, if they exist ###

    # Find recalibrated platepars file per FF file
    platepars_recalibrated_file = None
    for file_name in os.listdir(night_dir_path):
        if file_name == config.platepars_recalibrated_name:
            platepars_recalibrated_file = file_name
            break

    # Load all recalibrated platepars if the file is available
    recalibrated_platepars = None
    if platepars_recalibrated_file:
        with open(os.path.join(night_dir_path,
                               platepars_recalibrated_file)) as f:
            recalibrated_platepars = json.load(f)
            print(
                'Loaded recalibrated platepars JSON file for the calibration report...'
            )

    ### ###

    ### Load the platepar file ###

    # Find the platepar file in the given directory if it was not given
    if platepar is None:

        # Find the platepar file
        platepar_file = None
        for file_name in os.listdir(night_dir_path):
            if file_name == config.platepar_name:
                platepar_file = file_name
                break

        if platepar_file is None:
            print('The platepar cannot be found in the night directory!')
            return None

        # Load the platepar file
        platepar = Platepar()
        platepar.read(os.path.join(night_dir_path, platepar_file),
                      use_flat=config.use_flat)

    ### ###

    night_name = os.path.split(night_dir_path.strip(os.sep))[1]

    # Go one mag deeper than in the config
    lim_mag = config.catalog_mag_limit + 1

    # Load catalog stars (load one magnitude deeper)
    catalog_stars, mag_band_str, config.star_catalog_band_ratios = StarCatalog.readStarCatalog(\
        config.star_catalog_path, config.star_catalog_file, lim_mag=lim_mag, \
        mag_band_ratios=config.star_catalog_band_ratios)

    ### Take only those CALSTARS entires for which FF files exist in the folder ###

    # Get a list of FF files in the folder
    ff_list = []
    for file_name in os.listdir(night_dir_path):
        if validFFName(file_name):
            ff_list.append(file_name)

    # Filter out calstars entries, generate a star dictionary where the keys are JDs of FFs
    star_dict = {}
    ff_dict = {}
    for entry in star_list:

        ff_name, star_data = entry

        # Check if the FF from CALSTARS exists in the folder
        if ff_name not in ff_list:
            continue

        dt = getMiddleTimeFF(ff_name, config.fps, ret_milliseconds=True)
        jd = date2JD(*dt)

        # Add the time and the stars to the dict
        star_dict[jd] = star_data
        ff_dict[jd] = ff_name

    ### ###

    # If there are no FF files in the directory, don't generate a report
    if len(star_dict) == 0:
        print('No FF files from the CALSTARS file in the directory!')
        return None

    # If the recalibrated platepars file exists, take the one with the most stars
    max_jd = 0
    using_recalib_platepars = False
    if recalibrated_platepars is not None:
        max_stars = 0
        for ff_name_temp in recalibrated_platepars:

            # Compute the Julian date of the FF middle
            dt = getMiddleTimeFF(ff_name_temp,
                                 config.fps,
                                 ret_milliseconds=True)
            jd = date2JD(*dt)

            # Check that this file exists in CALSTARS and the list of FF files
            if (jd not in star_dict) or (jd not in ff_dict):
                continue

            # Check if the number of stars on this FF file is larger than the before
            if len(star_dict[jd]) > max_stars:
                max_jd = jd
                max_stars = len(star_dict[jd])

        # Set a flag to indicate if using recalibrated platepars has failed
        if max_jd == 0:
            using_recalib_platepars = False
        else:

            print('Using recalibrated platepars, file:', ff_dict[max_jd])
            using_recalib_platepars = True

            # Select the platepar where the FF file has the most stars
            platepar_dict = recalibrated_platepars[ff_dict[max_jd]]
            platepar = Platepar()
            platepar.loadFromDict(platepar_dict, use_flat=config.use_flat)

            filtered_star_dict = {max_jd: star_dict[max_jd]}

            # Match stars on the image with the stars in the catalog
            n_matched, avg_dist, cost, matched_stars = matchStarsResiduals(config, platepar, catalog_stars, \
                filtered_star_dict, match_radius, ret_nmatch=True, lim_mag=lim_mag)

            max_matched_stars = n_matched

    # Otherwise take the optimal FF file for evaluation
    if (recalibrated_platepars is None) or (not using_recalib_platepars):

        # If there are more than a set number of FF files to evaluate, choose only the ones with most stars on
        #   the image
        if len(star_dict) > config.calstars_files_N:

            # Find JDs of FF files with most stars on them
            top_nstars_indices = np.argsort([len(x) for x in star_dict.values()])[::-1][:config.calstars_files_N \
                - 1]

            filtered_star_dict = {}
            for i in top_nstars_indices:
                filtered_star_dict[list(star_dict.keys())[i]] = list(
                    star_dict.values())[i]

            star_dict = filtered_star_dict

        # Match stars on the image with the stars in the catalog
        n_matched, avg_dist, cost, matched_stars = matchStarsResiduals(config, platepar, catalog_stars, \
            star_dict, match_radius, ret_nmatch=True, lim_mag=lim_mag)

    # If no recalibrated platepars where found, find the image with the largest number of matched stars
    if (not using_recalib_platepars) or (max_jd == 0):

        max_jd = 0
        max_matched_stars = 0
        for jd in matched_stars:
            _, _, distances = matched_stars[jd]
            if len(distances) > max_matched_stars:
                max_jd = jd
                max_matched_stars = len(distances)

        # If there are no matched stars, use the image with the largest number of detected stars
        if max_matched_stars <= 2:
            max_jd = max(star_dict, key=lambda x: len(star_dict[x]))
            distances = [np.inf]

    # Take the FF file with the largest number of matched stars
    ff_name = ff_dict[max_jd]

    # Load the FF file
    ff = readFF(night_dir_path, ff_name)
    img_h, img_w = ff.avepixel.shape

    dpi = 200
    plt.figure(figsize=(ff.avepixel.shape[1] / dpi,
                        ff.avepixel.shape[0] / dpi),
               dpi=dpi)

    # Take the average pixel
    img = ff.avepixel

    # Slightly adjust the levels
    img = Image.adjustLevels(img, np.percentile(img, 1.0), 1.3,
                             np.percentile(img, 99.99))

    plt.imshow(img, cmap='gray', interpolation='nearest')

    legend_handles = []

    # Plot detected stars
    for img_star in star_dict[max_jd]:

        y, x, _, _ = img_star

        rect_side = 5 * match_radius
        square_patch = plt.Rectangle((x - rect_side/2, y - rect_side/2), rect_side, rect_side, color='g', \
            fill=False, label='Image stars')

        plt.gca().add_artist(square_patch)

    legend_handles.append(square_patch)

    # If there are matched stars, plot them
    if max_matched_stars > 2:

        # Take the solution with the largest number of matched stars
        image_stars, matched_catalog_stars, distances = matched_stars[max_jd]

        # Plot matched stars
        for img_star in image_stars:
            x, y, _, _ = img_star

            circle_patch = plt.Circle((y, x), radius=3*match_radius, color='y', fill=False, \
                label='Matched stars')

            plt.gca().add_artist(circle_patch)

        legend_handles.append(circle_patch)

        ### Plot match residuals ###

        # Compute preducted positions of matched image stars from the catalog
        x_predicted, y_predicted = raDecToXYPP(matched_catalog_stars[:, 0], \
            matched_catalog_stars[:, 1], max_jd, platepar)

        img_y, img_x, _, _ = image_stars.T

        delta_x = x_predicted - img_x
        delta_y = y_predicted - img_y

        # Compute image residual and angle of the error
        res_angle = np.arctan2(delta_y, delta_x)
        res_distance = np.sqrt(delta_x**2 + delta_y**2)

        # Calculate coordinates of the beginning of the residual line
        res_x_beg = img_x + 3 * match_radius * np.cos(res_angle)
        res_y_beg = img_y + 3 * match_radius * np.sin(res_angle)

        # Calculate coordinates of the end of the residual line
        res_x_end = img_x + 100 * np.cos(res_angle) * res_distance
        res_y_end = img_y + 100 * np.sin(res_angle) * res_distance

        # Plot the 100x residuals
        for i in range(len(x_predicted)):
            res_plot = plt.plot([res_x_beg[i], res_x_end[i]], [res_y_beg[i], res_y_end[i]], color='orange', \
                lw=0.5, label='100x residuals')

        legend_handles.append(res_plot[0])

        ### ###

    else:

        distances = [np.inf]

        # If there are no matched stars, plot large text in the middle of the screen
        plt.text(img_w / 2,
                 img_h / 2,
                 "NO MATCHED STARS!",
                 color='r',
                 alpha=0.5,
                 fontsize=20,
                 ha='center',
                 va='center')

    ### Plot positions of catalog stars to the limiting magnitude of the faintest matched star + 1 mag ###

    # Find the faintest magnitude among matched stars
    if max_matched_stars > 2:
        faintest_mag = np.max(matched_catalog_stars[:, 2]) + 1

    else:
        # If there are no matched stars, use the limiting magnitude from config
        faintest_mag = config.catalog_mag_limit + 1

    # Estimate RA,dec of the centre of the FOV
    _, RA_c, dec_c, _ = xyToRaDecPP([jd2Date(max_jd)], [platepar.X_res / 2],
                                    [platepar.Y_res / 2], [1], platepar)

    RA_c = RA_c[0]
    dec_c = dec_c[0]

    fov_radius = np.hypot(*computeFOVSize(platepar))

    # Get stars from the catalog around the defined center in a given radius
    _, extracted_catalog = subsetCatalog(catalog_stars, RA_c, dec_c,
                                         fov_radius, faintest_mag)
    ra_catalog, dec_catalog, mag_catalog = extracted_catalog.T

    # Compute image positions of all catalog stars that should be on the image
    x_catalog, y_catalog = raDecToXYPP(ra_catalog, dec_catalog, max_jd,
                                       platepar)

    # Filter all catalog stars outside the image
    temp_arr = np.c_[x_catalog, y_catalog, mag_catalog]
    temp_arr = temp_arr[temp_arr[:, 0] >= 0]
    temp_arr = temp_arr[temp_arr[:, 0] <= ff.avepixel.shape[1]]
    temp_arr = temp_arr[temp_arr[:, 1] >= 0]
    temp_arr = temp_arr[temp_arr[:, 1] <= ff.avepixel.shape[0]]
    x_catalog, y_catalog, mag_catalog = temp_arr.T

    # Plot catalog stars on the image
    cat_stars_handle = plt.scatter(x_catalog, y_catalog, c='none', marker='D', lw=1.0, alpha=0.4, \
        s=((4.0 + (faintest_mag - mag_catalog))/3.0)**(2*2.512), edgecolor='r', label='Catalog stars')

    legend_handles.append(cat_stars_handle)

    ### ###

    # Add info text in the corner
    info_text = ff_dict[max_jd] + '\n' \
        + "Matched stars within {:.1f} px radius: {:d}/{:d} \n".format(match_radius, max_matched_stars, \
            len(star_dict[max_jd])) \
        + "Median distance = {:.2f} px\n".format(np.median(distances)) \
        + "Catalog lim mag = {:.1f}".format(lim_mag)

    plt.text(10, 10, info_text, bbox=dict(facecolor='black', alpha=0.5), va='top', ha='left', fontsize=4, \
        color='w', family='monospace')

    legend = plt.legend(handles=legend_handles,
                        prop={'size': 4},
                        loc='upper right')
    legend.get_frame().set_facecolor('k')
    legend.get_frame().set_edgecolor('k')
    for txt in legend.get_texts():
        txt.set_color('w')

    ### Add FOV info (centre, size) ###

    # Mark FOV centre
    plt.scatter(platepar.X_res / 2,
                platepar.Y_res / 2,
                marker='+',
                s=20,
                c='r',
                zorder=4)

    # Compute FOV centre alt/az
    azim_centre, alt_centre = raDec2AltAz(max_jd, platepar.lon, platepar.lat,
                                          RA_c, dec_c)

    # Compute FOV size
    fov_h, fov_v = computeFOVSize(platepar)

    # Compute the rotation wrt. horizon
    rot_horizon = rotationWrtHorizon(platepar)

    fov_centre_text = "Azim  = {:6.2f}$\\degree$\n".format(azim_centre) \
                    + "Alt   = {:6.2f}$\\degree$\n".format(alt_centre) \
                    + "Rot h = {:6.2f}$\\degree$\n".format(rot_horizon) \
                    + "FOV h = {:6.2f}$\\degree$\n".format(fov_h) \
                    + "FOV v = {:6.2f}$\\degree$".format(fov_v) \

    plt.text(10, platepar.Y_res - 10, fov_centre_text, bbox=dict(facecolor='black', alpha=0.5), \
        va='bottom', ha='left', fontsize=4, color='w', family='monospace')

    ### ###

    # Plot RA/Dec gridlines #
    addEquatorialGrid(plt, platepar, max_jd)

    plt.axis('off')
    plt.gca().get_xaxis().set_visible(False)
    plt.gca().get_yaxis().set_visible(False)

    plt.xlim([0, ff.avepixel.shape[1]])
    plt.ylim([ff.avepixel.shape[0], 0])

    # Remove the margins
    plt.subplots_adjust(left=0, bottom=0, right=1, top=1, wspace=0, hspace=0)

    plt.savefig(os.path.join(night_dir_path, night_name + '_calib_report_astrometry.jpg'), \
        bbox_inches='tight', pad_inches=0, dpi=dpi)

    if show_graphs:
        plt.show()

    else:
        plt.clf()
        plt.close()

    if max_matched_stars > 2:

        ### PHOTOMETRY FIT ###

        # If a flat is used, set the vignetting coeff to 0
        if config.use_flat:
            platepar.vignetting_coeff = 0.0

        # Extact intensities and mangitudes
        star_intensities = image_stars[:, 2]
        catalog_mags = matched_catalog_stars[:, 2]

        # Compute radius of every star from image centre
        radius_arr = np.hypot(image_stars[:, 0] - img_h / 2,
                              image_stars[:, 1] - img_w / 2)

        # Fit the photometry on automated star intensities (use the fixed vignetting coeff, use robust fit)
        photom_params, fit_stddev, fit_resid, star_intensities, radius_arr, catalog_mags = \
            photometryFitRobust(star_intensities, radius_arr, catalog_mags, \
            fixed_vignetting=platepar.vignetting_coeff)

        photom_offset, _ = photom_params

        ### ###

        ### PLOT PHOTOMETRY ###
        # Note: An almost identical code exists in RMS.Astrometry.SkyFit in the PlateTool.photometry function

        dpi = 130
        fig_p, (ax_p, ax_r) = plt.subplots(nrows=2, facecolor=None, figsize=(6.0, 7.0), dpi=dpi, \
            gridspec_kw={'height_ratios':[2, 1]})

        # Plot raw star intensities
        ax_p.scatter(-2.5 * np.log10(star_intensities),
                     catalog_mags,
                     s=5,
                     c='r',
                     alpha=0.5,
                     label="Raw")

        # If a flat is used, disregard the vignetting
        if not config.use_flat:

            # Plot intensities of image stars corrected for vignetting
            lsp_corr_arr = np.log10(correctVignetting(star_intensities, radius_arr, \
                platepar.vignetting_coeff))
            ax_p.scatter(-2.5*lsp_corr_arr, catalog_mags, s=5, c='b', alpha=0.5, \
                label="Corrected for vignetting")

        # Plot photometric offset from the platepar
        x_min, x_max = ax_p.get_xlim()
        y_min, y_max = ax_p.get_ylim()

        x_min_w = x_min - 3
        x_max_w = x_max + 3
        y_min_w = y_min - 3
        y_max_w = y_max + 3

        photometry_info = "Platepar: {:+.1f}*LSP + {:.2f} +/- {:.2f}".format(platepar.mag_0, \
            platepar.mag_lev, platepar.mag_lev_stddev) \
            + "\nVignetting coeff = {:.5f}".format(platepar.vignetting_coeff) \
            + "\nGamma = {:.2f}".format(platepar.gamma)

        # Plot the photometry calibration from the platepar
        logsum_arr = np.linspace(x_min_w, x_max_w, 10)
        ax_p.plot(logsum_arr, logsum_arr + platepar.mag_lev, label=photometry_info, linestyle='--', \
            color='k', alpha=0.5)

        # Plot the fitted photometry calibration
        fit_info = "Fit: {:+.1f}*LSP + {:.2f} +/- {:.2f}".format(
            -2.5, photom_offset, fit_stddev)
        ax_p.plot(logsum_arr,
                  logsum_arr + photom_offset,
                  label=fit_info,
                  linestyle='--',
                  color='b',
                  alpha=0.75)

        ax_p.legend()

        ax_p.set_ylabel("Catalog magnitude ({:s})".format(mag_band_str))
        ax_p.set_xlabel("Uncalibrated magnitude")

        # Set wider axis limits
        ax_p.set_xlim(x_min_w, x_max_w)
        ax_p.set_ylim(y_min_w, y_max_w)

        ax_p.invert_yaxis()
        ax_p.invert_xaxis()

        ax_p.grid()

        ### Plot photometry vs radius ###

        img_diagonal = np.hypot(img_h / 2, img_w / 2)

        # Plot photometry residuals (including vignetting)
        ax_r.scatter(radius_arr, fit_resid, c='b', alpha=0.75, s=5, zorder=3)

        # Plot a zero line
        ax_r.plot(np.linspace(0, img_diagonal, 10), np.zeros(10), linestyle='dashed', alpha=0.5, \
            color='k')

        # Plot only when no flat is used
        if not config.use_flat:

            #  Plot radius from centre vs. fit residual
            fit_resids_novignetting = catalog_mags - photomLine((np.array(star_intensities), \
                np.array(radius_arr)), photom_offset, 0.0)
            ax_r.scatter(radius_arr,
                         fit_resids_novignetting,
                         s=5,
                         c='r',
                         alpha=0.5,
                         zorder=3)

            px_sum_tmp = 1000
            radius_arr_tmp = np.linspace(0, img_diagonal, 50)

            # Plot vignetting loss curve
            vignetting_loss = 2.5*np.log10(px_sum_tmp) \
                - 2.5*np.log10(correctVignetting(px_sum_tmp, radius_arr_tmp, \
                    platepar.vignetting_coeff))

            ax_r.plot(radius_arr_tmp,
                      vignetting_loss,
                      linestyle='dotted',
                      alpha=0.5,
                      color='k')

        ax_r.grid()

        ax_r.set_ylabel("Fit residuals (mag)")
        ax_r.set_xlabel("Radius from centre (px)")

        ax_r.set_xlim(0, img_diagonal)

        ### ###

        plt.tight_layout()

        plt.savefig(os.path.join(night_dir_path,
                                 night_name + '_calib_report_photometry.png'),
                    dpi=150)

        if show_graphs:
            plt.show()

        else:
            plt.clf()
            plt.close()
Example #3
0
def recalibrateIndividualFFsAndApplyAstrometry(dir_path,
                                               ftpdetectinfo_path,
                                               calstars_list,
                                               config,
                                               platepar,
                                               generate_plot=True):
    """ Recalibrate FF files with detections and apply the recalibrated platepar to those detections. 

    Arguments:
        dir_path: [str] Path where the FTPdetectinfo file is.
        ftpdetectinfo_path: [str] Name of the FTPdetectinfo file.
        calstars_list: [list] A list of entries [[ff_name, star_coordinates], ...].
        config: [Config instance]
        platepar: [Platepar instance] Initial platepar.

    Keyword arguments:
        generate_plot: [bool] Generate the calibration variation plot. True by default.

    Return:
        recalibrated_platepars: [dict] A dictionary where the keys are FF file names and values are 
            recalibrated platepar instances for every FF file.
    """

    # Use a copy of the config file
    config = copy.deepcopy(config)

    # If the given file does not exits, return nothing
    if not os.path.isfile(ftpdetectinfo_path):
        print('ERROR! The FTPdetectinfo file does not exist: {:s}'.format(
            ftpdetectinfo_path))
        print('    The recalibration on every file was not done!')

        return {}

    # Read the FTPdetectinfo data
    cam_code, fps, meteor_list = FTPdetectinfo.readFTPdetectinfo(*os.path.split(ftpdetectinfo_path), \
        ret_input_format=True)

    # Convert the list of stars to a per FF name dictionary
    calstars = {ff_file: star_data for ff_file, star_data in calstars_list}

    ### Add neighboring FF files for more robust photometry estimation ###

    ff_processing_list = []

    # Make a list of sorted FF files in CALSTARS
    calstars_ffs = sorted([ff_file for ff_file in calstars])

    # Go through the list of FF files with detections and add neighboring FFs
    for meteor_entry in meteor_list:

        ff_name = meteor_entry[0]

        if ff_name in calstars_ffs:

            # Find the index of the given FF file in the list of calstars
            ff_indx = calstars_ffs.index(ff_name)

            # Add neighbours to the processing list
            for k in range(-(RECALIBRATE_NEIGHBOURHOOD_SIZE // 2),
                           RECALIBRATE_NEIGHBOURHOOD_SIZE // 2 + 1):

                k_indx = ff_indx + k

                if (k_indx > 0) and (k_indx < len(calstars_ffs)):

                    ff_name_tmp = calstars_ffs[k_indx]
                    if ff_name_tmp not in ff_processing_list:
                        ff_processing_list.append(ff_name_tmp)

    # Sort the processing list of FF files
    ff_processing_list = sorted(ff_processing_list)

    ### ###

    # Globally increase catalog limiting magnitude
    config.catalog_mag_limit += 1

    # Load catalog stars (overwrite the mag band ratios if specific catalog is used)
    star_catalog_status = StarCatalog.readStarCatalog(config.star_catalog_path,\
        config.star_catalog_file, lim_mag=config.catalog_mag_limit, \
        mag_band_ratios=config.star_catalog_band_ratios)

    if not star_catalog_status:
        print("Could not load the star catalog!")
        print(os.path.join(config.star_catalog_path, config.star_catalog_file))
        return {}

    catalog_stars, _, config.star_catalog_band_ratios = star_catalog_status

    # Update the platepar coordinates from the config file
    platepar.lat = config.latitude
    platepar.lon = config.longitude
    platepar.elev = config.elevation

    prev_platepar = copy.deepcopy(platepar)

    # Go through all FF files with detections, recalibrate and apply astrometry
    recalibrated_platepars = {}
    for ff_name in ff_processing_list:

        working_platepar = copy.deepcopy(prev_platepar)

        # Skip this meteor if its FF file was already recalibrated
        if ff_name in recalibrated_platepars:
            continue

        print()
        print('Processing: ', ff_name)
        print(
            '------------------------------------------------------------------------------'
        )

        # Find extracted stars on this image
        if not ff_name in calstars:
            print('Skipped because it was not in CALSTARS:', ff_name)
            continue

        # Get stars detected on this FF file (create a dictionaly with only one entry, the residuals function
        #   needs this format)
        calstars_time = FFfile.getMiddleTimeFF(ff_name,
                                               config.fps,
                                               ret_milliseconds=True)
        jd = date2JD(*calstars_time)
        star_dict_ff = {jd: calstars[ff_name]}

        # Recalibrate the platepar using star matching
        result, min_match_radius = recalibrateFF(config, working_platepar, jd,
                                                 star_dict_ff, catalog_stars)

        # If the recalibration failed, try using FFT alignment
        if result is None:

            print()
            print('Running FFT alignment...')

            # Run FFT alignment
            calstars_coords = np.array(star_dict_ff[jd])[:, :2]
            calstars_coords[:, [0, 1]] = calstars_coords[:, [1, 0]]
            print(calstars_time)
            test_platepar = alignPlatepar(config, prev_platepar, calstars_time, calstars_coords, \
                show_plot=False)

            # Try to recalibrate after FFT alignment
            result, _ = recalibrateFF(config, test_platepar, jd, star_dict_ff,
                                      catalog_stars)

            # If the FFT alignment failed, align the original platepar using the smallest radius that matched
            #   and force save the the platepar
            if (result is None) and (min_match_radius is not None):
                print()
                print(
                    "Using the old platepar with the minimum match radius of: {:.2f}"
                    .format(min_match_radius))
                result, _ = recalibrateFF(config,
                                          working_platepar,
                                          jd,
                                          star_dict_ff,
                                          catalog_stars,
                                          max_match_radius=min_match_radius,
                                          force_platepar_save=True)

                if result is not None:
                    working_platepar = result

            # If the alignment succeeded, save the result
            else:
                working_platepar = result

        else:
            working_platepar = result

        # Store the platepar if the fit succeeded
        if result is not None:

            # Recompute alt/az of the FOV centre
            working_platepar.az_centre, working_platepar.alt_centre = raDec2AltAz(working_platepar.JD, \
                working_platepar.lon, working_platepar.lat, working_platepar.RA_d, working_platepar.dec_d)

            # Recompute the rotation wrt horizon
            working_platepar.rotation_from_horiz = rotationWrtHorizon(
                working_platepar)

            recalibrated_platepars[ff_name] = working_platepar
            prev_platepar = working_platepar

        else:

            print(
                'Recalibration of {:s} failed, using the previous platepar...'.
                format(ff_name))

            # If the aligning failed, set the previous platepar as the one that should be used for this FF file
            recalibrated_platepars[ff_name] = prev_platepar

    ### Average out photometric offsets within the given neighbourhood size ###

    # Go through the list of FF files with detections
    for meteor_entry in meteor_list:

        ff_name = meteor_entry[0]

        # Make sure the FF was successfuly recalibrated
        if ff_name in recalibrated_platepars:

            # Find the index of the given FF file in the list of calstars
            ff_indx = calstars_ffs.index(ff_name)

            # Compute the average photometric offset and the improved standard deviation using all
            #   neighbors
            photom_offset_tmp_list = []
            photom_offset_std_tmp_list = []
            neighboring_ffs = []
            for k in range(-(RECALIBRATE_NEIGHBOURHOOD_SIZE // 2),
                           RECALIBRATE_NEIGHBOURHOOD_SIZE // 2 + 1):

                k_indx = ff_indx + k

                if (k_indx > 0) and (k_indx < len(calstars_ffs)):

                    # Get the name of the FF file
                    ff_name_tmp = calstars_ffs[k_indx]

                    # Check that the neighboring FF was successfuly recalibrated
                    if ff_name_tmp in recalibrated_platepars:

                        # Get the computed photometric offset and stddev
                        photom_offset_tmp_list.append(
                            recalibrated_platepars[ff_name_tmp].mag_lev)
                        photom_offset_std_tmp_list.append(
                            recalibrated_platepars[ff_name_tmp].mag_lev_stddev)
                        neighboring_ffs.append(ff_name_tmp)

            # Compute the new photometric offset and improved standard deviation (assume equal sample size)
            #   Source: https://stats.stackexchange.com/questions/55999/is-it-possible-to-find-the-combined-standard-deviation
            photom_offset_new = np.mean(photom_offset_tmp_list)
            photom_offset_std_new = np.sqrt(\
                np.sum([st**2 + (mt - photom_offset_new)**2 \
                for mt, st in zip(photom_offset_tmp_list, photom_offset_std_tmp_list)]) \
                / len(photom_offset_tmp_list)
                )

            # Assign the new photometric offset and standard deviation to all FFs used for computation
            for ff_name_tmp in neighboring_ffs:
                recalibrated_platepars[ff_name_tmp].mag_lev = photom_offset_new
                recalibrated_platepars[
                    ff_name_tmp].mag_lev_stddev = photom_offset_std_new

    ### ###

    ### Store all recalibrated platepars as a JSON file ###

    all_pps = {}
    for ff_name in recalibrated_platepars:

        json_str = recalibrated_platepars[ff_name].jsonStr()

        all_pps[ff_name] = json.loads(json_str)

    with open(os.path.join(dir_path, config.platepars_recalibrated_name),
              'w') as f:

        # Convert all platepars to a JSON file
        out_str = json.dumps(all_pps,
                             default=lambda o: o.__dict__,
                             indent=4,
                             sort_keys=True)

        f.write(out_str)

    ### ###

    # If no platepars were recalibrated, use the single platepar recalibration procedure
    if len(recalibrated_platepars) == 0:

        print(
            'No FF images were used for recalibration, using the single platepar calibration function...'
        )

        # Use the initial platepar for calibration
        applyAstrometryFTPdetectinfo(dir_path,
                                     os.path.basename(ftpdetectinfo_path),
                                     None,
                                     platepar=platepar)

        return recalibrated_platepars

    ### GENERATE PLOTS ###

    dt_list = []
    ang_dists = []
    rot_angles = []
    hour_list = []
    photom_offset_list = []
    photom_offset_std_list = []

    first_dt = np.min([
        FFfile.filenameToDatetime(ff_name)
        for ff_name in recalibrated_platepars
    ])

    for ff_name in recalibrated_platepars:

        pp_temp = recalibrated_platepars[ff_name]

        # If the fitting failed, skip the platepar
        if pp_temp is None:
            continue

        # Add the datetime of the FF file to the list
        ff_dt = FFfile.filenameToDatetime(ff_name)
        dt_list.append(ff_dt)

        # Compute the angular separation from the reference platepar
        ang_dist = np.degrees(angularSeparation(np.radians(platepar.RA_d), np.radians(platepar.dec_d), \
            np.radians(pp_temp.RA_d), np.radians(pp_temp.dec_d)))
        ang_dists.append(ang_dist * 60)

        # Compute rotation difference
        rot_diff = (platepar.pos_angle_ref - pp_temp.pos_angle_ref +
                    180) % 360 - 180
        rot_angles.append(rot_diff * 60)

        # Compute the hour of the FF used for recalibration
        hour_list.append((ff_dt - first_dt).total_seconds() / 3600)

        # Add the photometric offset to the list
        photom_offset_list.append(pp_temp.mag_lev)
        photom_offset_std_list.append(pp_temp.mag_lev_stddev)

    if generate_plot:

        # Generate the name the plots
        plot_name = os.path.basename(ftpdetectinfo_path).replace(
            'FTPdetectinfo_', '').replace('.txt', '')

        ### Plot difference from reference platepar in angular distance from (0, 0) vs rotation ###

        plt.figure()

        plt.scatter(0,
                    0,
                    marker='o',
                    edgecolor='k',
                    label='Reference platepar',
                    s=100,
                    c='none',
                    zorder=3)

        plt.scatter(ang_dists, rot_angles, c=hour_list, zorder=3)
        plt.colorbar(label="Hours from first FF file")

        plt.xlabel("Angular distance from reference (arcmin)")
        plt.ylabel("Rotation from reference (arcmin)")

        plt.title("FOV centre drift starting at {:s}".format(
            first_dt.strftime("%Y/%m/%d %H:%M:%S")))

        plt.grid()
        plt.legend()

        plt.tight_layout()

        plt.savefig(os.path.join(dir_path,
                                 plot_name + '_calibration_variation.png'),
                    dpi=150)

        # plt.show()

        plt.clf()
        plt.close()

        ### ###

        ### Plot the photometric offset variation ###

        plt.figure()

        plt.errorbar(dt_list, photom_offset_list, yerr=photom_offset_std_list, fmt="o", \
            ecolor='lightgray', elinewidth=2, capsize=0, ms=2)

        # Format datetimes
        plt.gca().xaxis.set_major_formatter(mdates.DateFormatter("%H:%M"))

        # rotate and align the tick labels so they look better
        plt.gcf().autofmt_xdate()

        plt.xlabel("UTC time")
        plt.ylabel("Photometric offset")

        plt.title("Photometric offset variation")

        plt.grid()

        plt.tight_layout()

        plt.savefig(os.path.join(dir_path,
                                 plot_name + '_photometry_variation.png'),
                    dpi=150)

        plt.clf()
        plt.close()

    ### ###

    ### Apply platepars to FTPdetectinfo ###

    meteor_output_list = []
    for meteor_entry in meteor_list:

        ff_name, meteor_No, rho, phi, meteor_meas = meteor_entry

        # Get the platepar that will be applied to this FF file
        if ff_name in recalibrated_platepars:
            working_platepar = recalibrated_platepars[ff_name]

        else:
            print('Using default platepar for:', ff_name)
            working_platepar = platepar

        # Apply the recalibrated platepar to meteor centroids
        meteor_picks = applyPlateparToCentroids(ff_name, fps, meteor_meas, working_platepar, \
            add_calstatus=True)

        meteor_output_list.append([ff_name, meteor_No, rho, phi, meteor_picks])

    # Calibration string to be written to the FTPdetectinfo file
    calib_str = 'Recalibrated with RMS on: ' + str(
        datetime.datetime.utcnow()) + ' UTC'

    # If no meteors were detected, set dummpy parameters
    if len(meteor_list) == 0:
        cam_code = ''
        fps = 0

    # Back up the old FTPdetectinfo file
    try:
        shutil.copy(ftpdetectinfo_path, ftpdetectinfo_path.strip('.txt') \
            + '_backup_{:s}.txt'.format(datetime.datetime.utcnow().strftime('%Y%m%d_%H%M%S.%f')))
    except:
        print('ERROR! The FTPdetectinfo file could not be backed up: {:s}'.
              format(ftpdetectinfo_path))

    # Save the updated FTPdetectinfo
    FTPdetectinfo.writeFTPdetectinfo(meteor_output_list, dir_path, os.path.basename(ftpdetectinfo_path), \
        dir_path, cam_code, fps, calibration=calib_str, celestial_coords_given=True)

    ### ###

    return recalibrated_platepars
Example #4
0
def fovArea(platepar, mask=None, area_ht=100000, side_points=10):
    """ Given a platepar file and a mask file, compute geo points of the FOV at the given height.

    Arguments:
        platepar: [Platepar object]

    Keyword arguments:
        mask: [Mask object] Mask object, None by default.
        area_ht: [float] Height in meters of the computed area.
        side_points: [int] How many points to use to evaluate the FOV on seach side of the image. Normalized
            to the longest side.

    Return:
        [list] A list points for every side of the image, and every side is a list of (lat, lon, elev) 
            describing the sides of the FOV area. Values are in degrees and meters.

    """

    # If the mask is not given, make a dummy mask with all white pixels
    if mask is None:
        mask = MaskStructure(255 + np.zeros(
            (platepar.Y_res, platepar.X_res), dtype=np.uint8))

    # Compute the number of points for the sizes
    longer_side_points = side_points
    shorter_side_points = int(
        np.ceil(side_points * platepar.Y_res / platepar.X_res))

    # Define operations for each side (number of points, axis of sampling, sampling start, direction of sampling, reverse sampling direction)
    side_operations = [
        [shorter_side_points, 'y', 0, 1, False],  # left
        [longer_side_points, 'x', platepar.Y_res - 1, -1, False],  # bottom
        [shorter_side_points, 'y', platepar.X_res - 1, -1, True],  # right
        [longer_side_points, 'x', 0, 1, True]
    ]  # up

    # Sample the points on image borders
    side_points_list = []
    for n_sample, axis, c0, sampling_direction, reverse_sampling in side_operations:

        # Reverse some ordering to make the sampling counter-clockwise, starting in the top-left corner
        sampling_offsets = range(n_sample + 1)
        if reverse_sampling:
            sampling_offsets = reversed(sampling_offsets)

        # Sample points on every side
        side_points = []
        for i_sample in sampling_offsets:

            # Compute x, y coordinate of the sampled pixel
            if axis == 'x':
                axis_side = platepar.X_res
                other_axis_side = platepar.Y_res
                x0 = int((i_sample / n_sample) * (axis_side - 1))
                y0 = c0
            else:
                axis_side = platepar.Y_res
                other_axis_side = platepar.X_res
                x0 = c0
                y0 = int((i_sample / n_sample) * (axis_side - 1))

            # Find a pixel position along the axis that is not masked using increments of 10 pixels
            unmasked_point_found = False

            # Make a list of points to sample
            for mask_offset in np.arange(0, other_axis_side, 10):

                # Compute the current pixel position
                if axis == 'x':
                    x = x0
                    y = y0 + sampling_direction * mask_offset
                else:
                    x = x0 + sampling_direction * mask_offset
                    y = y0

                # If the position is not masked, stop searching for unmasked point
                if mask.img[y, x] > 0:
                    unmasked_point_found = True
                    break

            # Find azimuth and altitude at the given pixel, if a found unmask pixel was found along this
            #   line
            if unmasked_point_found:

                # Compute RA/Dec in J2000 of the image point, at J2000 epoch time so we don't have to precess
                _, ra, dec, _ = xyToRaDecPP([jd2Date(J2000_JD.days)], [x], [y], [1], platepar, \
                    extinction_correction=False)

                # Compute alt/az of the point
                azim, alt = raDec2AltAz(ra[0], dec[0], J2000_JD.days,
                                        platepar.lat, platepar.lon)

                # Limit the elevation to 5 degrees above the horizon
                if alt < 5:
                    alt = 5

                # Compute the geo location of the point along the line of sight
                p_lat, p_lon, p_elev = AEH2LatLonAlt(azim, alt, area_ht, platepar.lat, platepar.lon, \
                    platepar.elev)

                side_points.append([x, y, p_lat, p_lon, p_elev])

        # Add points from every side to the list (store a copy)
        side_points_list.append(list(side_points))

    # Postprocess the point list by removing points which intersect points on the previous side
    side_points_list_filtered = []
    for i, (n_sample, axis, c0, sampling_direction,
            reverse_sampling) in enumerate(side_operations):

        # Get the current and previous points list
        side_points = side_points_list[i]
        side_points_prev = side_points_list[i - 1]

        # Remove all points from the list that intersect points on the previous side
        side_points_filtered = []
        for x, y, p_lat, p_lon, p_elev in side_points:

            # Check all points from the previous side
            skip_point = False
            for entry_prev in side_points_prev:

                x_prev, y_prev = entry_prev[:2]

                # # Skip duplicates
                # if (x == x_prev) and (y == y_prev):
                #     skip_point = True
                #     break

                if axis == 'x':

                    if reverse_sampling:
                        if (y_prev < y) and (x_prev < x):
                            skip_point = True
                            break
                    else:
                        if (y_prev > y) and (x_prev > x):
                            skip_point = True
                            break

                else:
                    if reverse_sampling:
                        if (y_prev < y) and (x_prev > x):
                            skip_point = True
                            break
                    else:
                        if (y_prev > y) and (x_prev < x):
                            skip_point = True
                            break

            # If the point should not be skipped, add it to the final list
            if not skip_point:
                side_points_filtered.append([p_lat, p_lon, p_elev])

            #     print("ADDING   = {:4d}, {:4d}, {:10.6f}, {:11.6f}, {:.2f}".format(int(x), int(y), p_lat, p_lon, p_elev))

            # else:
            #     print("SKIPPING = {:4d}, {:4d}, {:10.6f}, {:11.6f}, {:.2f}".format(int(x), int(y), p_lat, p_lon, p_elev))

        side_points_list_filtered.append(side_points_filtered)

    return side_points_list_filtered
Example #5
0
def autoCheckFit(config,
                 platepar,
                 calstars_list,
                 distorsion_refinement=False,
                 _fft_refinement=False):
    """ Attempts to refine the astrometry fit with the given stars and and initial astrometry parameters.

    Arguments:
        config: [Config structure]
        platepar: [Platepar structure] Initial astrometry parameters.
        calstars_list: [list] A list containing stars extracted from FF files. See RMS.Formats.CALSTARS for
            more details.

    Keyword arguments:
        distorsion_refinement: [bool] Whether the distorsion should be fitted as well. False by default.
        _fft_refinement: [bool] Internal flag indicating that autoCF is running the second time recursively
            after FFT platepar adjustment.
    
    Return:
        (platepar, fit_status):
            platepar: [Platepar structure] Estimated/refined platepar.
            fit_status: [bool] True if fit was successfuly, False if not.
    """


    def _handleFailure(config, platepar, calstars_list, catalog_stars, distorsion_refinement, \
        _fft_refinement):
        """ Run FFT alignment before giving up on ACF. """

        if not _fft_refinement:

            print()
            print(
                "-------------------------------------------------------------------------------"
            )
            print(
                'The initial platepar is bad, trying to refine it using FFT phase correlation...'
            )
            print()

            # Prepare data for FFT image registration

            calstars_dict = {
                ff_file: star_data
                for ff_file, star_data in calstars_list
            }

            # Extract star list from CALSTARS file from FF file with most stars
            max_len_ff = max(calstars_dict,
                             key=lambda k: len(calstars_dict[k]))

            # Take only X, Y (change order so X is first)
            calstars_coords = np.array(calstars_dict[max_len_ff])[:, :2]
            calstars_coords[:, [0, 1]] = calstars_coords[:, [1, 0]]

            # Get the time of the FF file
            calstars_time = FFfile.getMiddleTimeFF(max_len_ff,
                                                   config.fps,
                                                   ret_milliseconds=True)

            # Try aligning the platepar using FFT image registration
            platepar_refined = alignPlatepar(config, platepar, calstars_time,
                                             calstars_coords)

            print()

            ### If there are still not enough stars matched, try FFT again ###
            min_radius = 10

            # Prepare star dictionary to check the match
            dt = FFfile.getMiddleTimeFF(max_len_ff,
                                        config.fps,
                                        ret_milliseconds=True)
            jd = date2JD(*dt)
            star_dict_temp = {}
            star_dict_temp[jd] = calstars_dict[max_len_ff]

            # Check the number of matched stars
            n_matched, _, _, _ = matchStarsResiduals(config, platepar_refined, catalog_stars, \
                star_dict_temp, min_radius, ret_nmatch=True, verbose=True)

            # Realign again if necessary
            if n_matched < config.min_matched_stars:
                print()
                print(
                    "-------------------------------------------------------------------------------"
                )
                print(
                    'Doing a second FFT pass as the number of matched stars was too small...'
                )
                print()
                platepar_refined = alignPlatepar(config, platepar_refined,
                                                 calstars_time,
                                                 calstars_coords)
                print()

            ### ###

            # Redo autoCF
            return autoCheckFit(config, platepar_refined, calstars_list, \
                distorsion_refinement=distorsion_refinement, _fft_refinement=True)

        else:
            print(
                'Auto Check Fit failed completely, please redo the plate manually!'
            )
            return platepar, False

    if _fft_refinement:
        print(
            'Second ACF run with an updated platepar via FFT phase correlation...'
        )

    # Load catalog stars (overwrite the mag band ratios if specific catalog is used)
    catalog_stars, _, config.star_catalog_band_ratios = StarCatalog.readStarCatalog(config.star_catalog_path, \
        config.star_catalog_file, lim_mag=config.catalog_mag_limit, \
        mag_band_ratios=config.star_catalog_band_ratios)

    # Dictionary which will contain the JD, and a list of (X, Y, bg_intens, intens) of the stars
    star_dict = starListToDict(config,
                               calstars_list,
                               max_ffs=config.calstars_files_N)

    # There has to be a minimum of 200 FF files for star fitting
    if len(star_dict) < config.calstars_files_N:
        print('Not enough FF files in CALSTARS for ACF!')
        return platepar, False

    # Calculate the total number of calibration stars used
    total_calstars = sum([len(star_dict[key]) for key in star_dict])
    print('Total calstars:', total_calstars)

    if total_calstars < config.calstars_min_stars:
        print('Not enough calibration stars, need at least',
              config.calstars_min_stars)
        return platepar, False

    # A list of matching radiuses to try, pairs of [radius, fit_distorsion_flag]
    #   The distorsion will be fitted only if explicity requested
    min_radius = 0.5
    radius_list = [[10, False], [5, False], [3, False],
                   [1.5, True and distorsion_refinement],
                   [min_radius, True and distorsion_refinement]]

    # Calculate the function tolerance, so the desired precision can be reached (the number is calculated
    # in the same regard as the cost function)
    fatol, xatol_ang = computeMinimizationTolerances(config, platepar,
                                                     len(star_dict))

    ### If the initial match is good enough, do only quick recalibratoin ###

    # Match the stars and calculate the residuals
    n_matched, avg_dist, cost, _ = matchStarsResiduals(config, platepar, catalog_stars, star_dict, \
        min_radius, ret_nmatch=True)

    if n_matched >= config.calstars_files_N:

        # Check if the average distance with the tightest radius is close
        if avg_dist < config.dist_check_quick_threshold:

            # Use a reduced set of initial radius values
            radius_list = [[1.5, True and distorsion_refinement],
                           [min_radius, True and distorsion_refinement]]

    ##########

    # Match increasingly smaller search radiia around image stars
    for i, (match_radius, fit_distorsion) in enumerate(radius_list):

        # Match the stars and calculate the residuals
        n_matched, avg_dist, cost, _ = matchStarsResiduals(config, platepar, catalog_stars, star_dict, \
            match_radius, ret_nmatch=True)

        print('Max radius:', match_radius)
        print('Initial values:')
        print(' Matched stars:', n_matched)
        print(' Average deviation:', avg_dist)

        # The initial number of matched stars has to be at least the number of FF imaages, otherwise it means
        #   that the initial platepar is no good
        if n_matched < config.calstars_files_N:
            print(
                'The total number of initially matched stars is too small! Please manually redo the plate or make sure there are enough calibration stars.'
            )

            # Try to refine the platepar with FFT phase correlation and redo the ACF
            return _handleFailure(config, platepar, calstars_list, catalog_stars, distorsion_refinement, \
                _fft_refinement)

        # Check if the platepar is good enough and do not estimate further parameters
        if checkFitGoodness(config,
                            platepar,
                            catalog_stars,
                            star_dict,
                            min_radius,
                            verbose=True):

            # Print out notice only if the platepar is good right away
            if i == 0:
                print("Initial platepar is good enough!")

            return platepar, True

        # Initial parameters for the astrometric fit
        p0 = [
            platepar.RA_d, platepar.dec_d, platepar.pos_angle_ref,
            platepar.F_scale
        ]

        # Fit the astrometric parameters
        res = scipy.optimize.minimize(_calcImageResidualsAstro, p0, args=(config, platepar, catalog_stars, \
            star_dict, match_radius), method='Nelder-Mead', \
            options={'fatol': fatol, 'xatol': xatol_ang})

        print(res)

        # If the fit was not successful, stop further fitting
        if not res.success:

            # Try to refine the platepar with FFT phase correlation and redo the ACF
            return _handleFailure(config, platepar, calstars_list, catalog_stars, distorsion_refinement, \
                _fft_refinement)

        else:
            # If the fit was successful, use the new parameters from now on
            ra_ref, dec_ref, pos_angle_ref, F_scale = res.x

            platepar.RA_d = ra_ref
            platepar.dec_d = dec_ref
            platepar.pos_angle_ref = pos_angle_ref
            platepar.F_scale = F_scale

        # Check if the platepar is good enough and do not estimate further parameters
        if checkFitGoodness(config,
                            platepar,
                            catalog_stars,
                            star_dict,
                            min_radius,
                            verbose=True):
            return platepar, True

        # Fit the lens distorsion parameters
        if fit_distorsion:

            ### REVERSE DISTORSION POLYNOMIALS FIT ###

            # Fit the distortion parameters (X axis)
            res = scipy.optimize.minimize(_calcImageResidualsDistorsion, platepar.x_poly_rev, args=(config, \
                platepar, catalog_stars, star_dict, match_radius, 'x'), method='Nelder-Mead', \
                options={'fatol': fatol, 'xatol': 0.1})

            print(res)

            # If the fit was not successfull, stop further fitting
            if not res.success:
                # Try to refine the platepar with FFT phase correlation and redo the ACF
                return _handleFailure(config, platepar, calstars_list, catalog_stars, distorsion_refinement, \
                    _fft_refinement)

            else:
                platepar.x_poly_rev = res.x

            # Fit the distortion parameters (Y axis)
            res = scipy.optimize.minimize(_calcImageResidualsDistorsion, platepar.y_poly_rev, args=(config, \
                platepar,catalog_stars, star_dict, match_radius, 'y'), method='Nelder-Mead', \
                options={'fatol': fatol, 'xatol': 0.1})

            print(res)

            # If the fit was not successfull, stop further fitting
            if not res.success:

                # Try to refine the platepar with FFT phase correlation and redo the ACF
                return _handleFailure(config, platepar, calstars_list, catalog_stars, distorsion_refinement, \
                    _fft_refinement)

            else:
                platepar.y_poly_rev = res.x

            ### ###

            ### FORWARD DISTORSION POLYNOMIALS FIT ###

            # Fit the distortion parameters (X axis)
            res = scipy.optimize.minimize(_calcSkyResidualsDistorsion, platepar.x_poly_fwd, args=(config, \
                platepar, catalog_stars, star_dict, match_radius, 'x'), method='Nelder-Mead', \
                options={'fatol': fatol, 'xatol': 0.1})

            print(res)

            # If the fit was not successfull, stop further fitting
            if not res.success:

                # Try to refine the platepar with FFT phase correlation and redo the ACF
                return _handleFailure(config, platepar, calstars_list, catalog_stars, distorsion_refinement, \
                    _fft_refinement)

            else:
                platepar.x_poly_fwd = res.x

            # Fit the distortion parameters (Y axis)
            res = scipy.optimize.minimize(_calcSkyResidualsDistorsion, platepar.y_poly_fwd, args=(config, \
                platepar,catalog_stars, star_dict, match_radius, 'y'), method='Nelder-Mead', \
                options={'fatol': fatol, 'xatol': 0.1})

            print(res)

            # If the fit was not successfull, stop further fitting
            if not res.success:
                return platepar, False

            else:
                platepar.y_poly_fwd = res.x

            ### ###

    # Match the stars and calculate the residuals
    n_matched, avg_dist, cost, matched_stars = matchStarsResiduals(config, platepar, catalog_stars, \
        star_dict, min_radius, ret_nmatch=True)

    print('FINAL SOLUTION with {:f} px:'.format(min_radius))
    print('Matched stars:', n_matched)
    print('Average deviation:', avg_dist)

    # Mark the platepar to indicate that it was automatically refined with CheckFit
    platepar.auto_check_fit_refined = True

    # Recompute alt/az of the FOV centre
    platepar.az_centre, platepar.alt_centre = raDec2AltAz(platepar.JD, platepar.lon, platepar.lat, \
        platepar.RA_d, platepar.dec_d)

    # Recompute the rotation wrt horizon
    platepar.rotation_from_horiz = rotationWrtHorizon(platepar)

    return platepar, True