def getPlatepar(config): """ Downloads a new platepar from the server of uses an existing one. """ # Download a new platepar from the server, if present downloadNewPlatepar(config) # Load the default platepar if it is available platepar = None platepar_fmt = None platepar_path = os.path.join(os.getcwd(), config.platepar_name) if os.path.exists(platepar_path): platepar = Platepar() platepar_fmt = platepar.read(platepar_path) log.info('Loaded platepar: ' + platepar_path) else: log.info('No platepar file found!') return platepar, platepar_path, platepar_fmt
def main(dir_path): rms_path = os.path.abspath(os.path.dirname(os.path.dirname(RMS.__file__))) try: config = RMS.ConfigReader.parse(join(dir_path, ".config")) except FileNotFoundError: logger.warning(f"Could not find .config in {dir_path}, using default") config = RMS.ConfigReader.parse(join(rms_path, ".config")) try: with open(join(dir_path, "platepars_all_recalibrated.json"), "r") as f: platepars_recalibrated = json.load(f) except FileNotFoundError: logger.warning(f"Could not find platepars_recalibrated in {dir_path}") platepars_recalibrated = {} global_platepar = Platepar() if os.path.isfile(join(dir_path, "platepar_cmn2010.cal")): global_platepar.read(join(dir_path, "platepar_cmn2010.cal")) else: logger.warning( f"Couldn't find platepar_cmn2010.cal in {dir_path}, using default") global_platepar.read(join(rms_path, "platepar_cmn2010.cal")) for ff_filename in glob(join(dir_path, "FF*fits")): logger.info(f"Updating {ff_filename}") add_fffits_metadata(ff_filename, config, platepars_recalibrated, global_platepar)
def generateCalibrationReport(config, night_dir_path, match_radius=2.0, platepar=None, show_graphs=False): """ Given the folder of the night, find the Calstars file, check the star fit and generate a report with the quality of the calibration. The report contains information about both the astrometry and the photometry calibration. Graphs will be saved in the given directory of the night. Arguments: config: [Config instance] night_dir_path: [str] Full path to the directory of the night. Keyword arguments: match_radius: [float] Match radius for star matching between image and catalog stars (px). platepar: [Platepar instance] Use this platepar instead of finding one in the folder. show_graphs: [bool] Show the graphs on the screen. False by default. Return: None """ # Find the CALSTARS file in the given folder calstars_file = None for calstars_file in os.listdir(night_dir_path): if ('CALSTARS' in calstars_file) and ('.txt' in calstars_file): break if calstars_file is None: print('CALSTARS file could not be found in the given directory!') return None # Load the calstars file star_list = readCALSTARS(night_dir_path, calstars_file) ### Load recalibrated platepars, if they exist ### # Find recalibrated platepars file per FF file platepars_recalibrated_file = None for file_name in os.listdir(night_dir_path): if file_name == config.platepars_recalibrated_name: platepars_recalibrated_file = file_name break # Load all recalibrated platepars if the file is available recalibrated_platepars = None if platepars_recalibrated_file: with open(os.path.join(night_dir_path, platepars_recalibrated_file)) as f: recalibrated_platepars = json.load(f) print( 'Loaded recalibrated platepars JSON file for the calibration report...' ) ### ### ### Load the platepar file ### # Find the platepar file in the given directory if it was not given if platepar is None: # Find the platepar file platepar_file = None for file_name in os.listdir(night_dir_path): if file_name == config.platepar_name: platepar_file = file_name break if platepar_file is None: print('The platepar cannot be found in the night directory!') return None # Load the platepar file platepar = Platepar() platepar.read(os.path.join(night_dir_path, platepar_file), use_flat=config.use_flat) ### ### night_name = os.path.split(night_dir_path.strip(os.sep))[1] # Go one mag deeper than in the config lim_mag = config.catalog_mag_limit + 1 # Load catalog stars (load one magnitude deeper) catalog_stars, mag_band_str, config.star_catalog_band_ratios = StarCatalog.readStarCatalog(\ config.star_catalog_path, config.star_catalog_file, lim_mag=lim_mag, \ mag_band_ratios=config.star_catalog_band_ratios) ### Take only those CALSTARS entires for which FF files exist in the folder ### # Get a list of FF files in the folder ff_list = [] for file_name in os.listdir(night_dir_path): if validFFName(file_name): ff_list.append(file_name) # Filter out calstars entries, generate a star dictionary where the keys are JDs of FFs star_dict = {} ff_dict = {} for entry in star_list: ff_name, star_data = entry # Check if the FF from CALSTARS exists in the folder if ff_name not in ff_list: continue dt = getMiddleTimeFF(ff_name, config.fps, ret_milliseconds=True) jd = date2JD(*dt) # Add the time and the stars to the dict star_dict[jd] = star_data ff_dict[jd] = ff_name ### ### # If there are no FF files in the directory, don't generate a report if len(star_dict) == 0: print('No FF files from the CALSTARS file in the directory!') return None # If the recalibrated platepars file exists, take the one with the most stars max_jd = 0 using_recalib_platepars = False if recalibrated_platepars is not None: max_stars = 0 for ff_name_temp in recalibrated_platepars: # Compute the Julian date of the FF middle dt = getMiddleTimeFF(ff_name_temp, config.fps, ret_milliseconds=True) jd = date2JD(*dt) # Check that this file exists in CALSTARS and the list of FF files if (jd not in star_dict) or (jd not in ff_dict): continue # Check if the number of stars on this FF file is larger than the before if len(star_dict[jd]) > max_stars: max_jd = jd max_stars = len(star_dict[jd]) # Set a flag to indicate if using recalibrated platepars has failed if max_jd == 0: using_recalib_platepars = False else: print('Using recalibrated platepars, file:', ff_dict[max_jd]) using_recalib_platepars = True # Select the platepar where the FF file has the most stars platepar_dict = recalibrated_platepars[ff_dict[max_jd]] platepar = Platepar() platepar.loadFromDict(platepar_dict, use_flat=config.use_flat) filtered_star_dict = {max_jd: star_dict[max_jd]} # Match stars on the image with the stars in the catalog n_matched, avg_dist, cost, matched_stars = matchStarsResiduals(config, platepar, catalog_stars, \ filtered_star_dict, match_radius, ret_nmatch=True, lim_mag=lim_mag) max_matched_stars = n_matched # Otherwise take the optimal FF file for evaluation if (recalibrated_platepars is None) or (not using_recalib_platepars): # If there are more than a set number of FF files to evaluate, choose only the ones with most stars on # the image if len(star_dict) > config.calstars_files_N: # Find JDs of FF files with most stars on them top_nstars_indices = np.argsort([len(x) for x in star_dict.values()])[::-1][:config.calstars_files_N \ - 1] filtered_star_dict = {} for i in top_nstars_indices: filtered_star_dict[list(star_dict.keys())[i]] = list( star_dict.values())[i] star_dict = filtered_star_dict # Match stars on the image with the stars in the catalog n_matched, avg_dist, cost, matched_stars = matchStarsResiduals(config, platepar, catalog_stars, \ star_dict, match_radius, ret_nmatch=True, lim_mag=lim_mag) # If no recalibrated platepars where found, find the image with the largest number of matched stars if (not using_recalib_platepars) or (max_jd == 0): max_jd = 0 max_matched_stars = 0 for jd in matched_stars: _, _, distances = matched_stars[jd] if len(distances) > max_matched_stars: max_jd = jd max_matched_stars = len(distances) # If there are no matched stars, use the image with the largest number of detected stars if max_matched_stars <= 2: max_jd = max(star_dict, key=lambda x: len(star_dict[x])) distances = [np.inf] # Take the FF file with the largest number of matched stars ff_name = ff_dict[max_jd] # Load the FF file ff = readFF(night_dir_path, ff_name) img_h, img_w = ff.avepixel.shape dpi = 200 plt.figure(figsize=(ff.avepixel.shape[1] / dpi, ff.avepixel.shape[0] / dpi), dpi=dpi) # Take the average pixel img = ff.avepixel # Slightly adjust the levels img = Image.adjustLevels(img, np.percentile(img, 1.0), 1.3, np.percentile(img, 99.99)) plt.imshow(img, cmap='gray', interpolation='nearest') legend_handles = [] # Plot detected stars for img_star in star_dict[max_jd]: y, x, _, _ = img_star rect_side = 5 * match_radius square_patch = plt.Rectangle((x - rect_side/2, y - rect_side/2), rect_side, rect_side, color='g', \ fill=False, label='Image stars') plt.gca().add_artist(square_patch) legend_handles.append(square_patch) # If there are matched stars, plot them if max_matched_stars > 2: # Take the solution with the largest number of matched stars image_stars, matched_catalog_stars, distances = matched_stars[max_jd] # Plot matched stars for img_star in image_stars: x, y, _, _ = img_star circle_patch = plt.Circle((y, x), radius=3*match_radius, color='y', fill=False, \ label='Matched stars') plt.gca().add_artist(circle_patch) legend_handles.append(circle_patch) ### Plot match residuals ### # Compute preducted positions of matched image stars from the catalog x_predicted, y_predicted = raDecToXYPP(matched_catalog_stars[:, 0], \ matched_catalog_stars[:, 1], max_jd, platepar) img_y, img_x, _, _ = image_stars.T delta_x = x_predicted - img_x delta_y = y_predicted - img_y # Compute image residual and angle of the error res_angle = np.arctan2(delta_y, delta_x) res_distance = np.sqrt(delta_x**2 + delta_y**2) # Calculate coordinates of the beginning of the residual line res_x_beg = img_x + 3 * match_radius * np.cos(res_angle) res_y_beg = img_y + 3 * match_radius * np.sin(res_angle) # Calculate coordinates of the end of the residual line res_x_end = img_x + 100 * np.cos(res_angle) * res_distance res_y_end = img_y + 100 * np.sin(res_angle) * res_distance # Plot the 100x residuals for i in range(len(x_predicted)): res_plot = plt.plot([res_x_beg[i], res_x_end[i]], [res_y_beg[i], res_y_end[i]], color='orange', \ lw=0.5, label='100x residuals') legend_handles.append(res_plot[0]) ### ### else: distances = [np.inf] # If there are no matched stars, plot large text in the middle of the screen plt.text(img_w / 2, img_h / 2, "NO MATCHED STARS!", color='r', alpha=0.5, fontsize=20, ha='center', va='center') ### Plot positions of catalog stars to the limiting magnitude of the faintest matched star + 1 mag ### # Find the faintest magnitude among matched stars if max_matched_stars > 2: faintest_mag = np.max(matched_catalog_stars[:, 2]) + 1 else: # If there are no matched stars, use the limiting magnitude from config faintest_mag = config.catalog_mag_limit + 1 # Estimate RA,dec of the centre of the FOV _, RA_c, dec_c, _ = xyToRaDecPP([jd2Date(max_jd)], [platepar.X_res / 2], [platepar.Y_res / 2], [1], platepar) RA_c = RA_c[0] dec_c = dec_c[0] fov_radius = np.hypot(*computeFOVSize(platepar)) # Get stars from the catalog around the defined center in a given radius _, extracted_catalog = subsetCatalog(catalog_stars, RA_c, dec_c, fov_radius, faintest_mag) ra_catalog, dec_catalog, mag_catalog = extracted_catalog.T # Compute image positions of all catalog stars that should be on the image x_catalog, y_catalog = raDecToXYPP(ra_catalog, dec_catalog, max_jd, platepar) # Filter all catalog stars outside the image temp_arr = np.c_[x_catalog, y_catalog, mag_catalog] temp_arr = temp_arr[temp_arr[:, 0] >= 0] temp_arr = temp_arr[temp_arr[:, 0] <= ff.avepixel.shape[1]] temp_arr = temp_arr[temp_arr[:, 1] >= 0] temp_arr = temp_arr[temp_arr[:, 1] <= ff.avepixel.shape[0]] x_catalog, y_catalog, mag_catalog = temp_arr.T # Plot catalog stars on the image cat_stars_handle = plt.scatter(x_catalog, y_catalog, c='none', marker='D', lw=1.0, alpha=0.4, \ s=((4.0 + (faintest_mag - mag_catalog))/3.0)**(2*2.512), edgecolor='r', label='Catalog stars') legend_handles.append(cat_stars_handle) ### ### # Add info text in the corner info_text = ff_dict[max_jd] + '\n' \ + "Matched stars within {:.1f} px radius: {:d}/{:d} \n".format(match_radius, max_matched_stars, \ len(star_dict[max_jd])) \ + "Median distance = {:.2f} px\n".format(np.median(distances)) \ + "Catalog lim mag = {:.1f}".format(lim_mag) plt.text(10, 10, info_text, bbox=dict(facecolor='black', alpha=0.5), va='top', ha='left', fontsize=4, \ color='w', family='monospace') legend = plt.legend(handles=legend_handles, prop={'size': 4}, loc='upper right') legend.get_frame().set_facecolor('k') legend.get_frame().set_edgecolor('k') for txt in legend.get_texts(): txt.set_color('w') ### Add FOV info (centre, size) ### # Mark FOV centre plt.scatter(platepar.X_res / 2, platepar.Y_res / 2, marker='+', s=20, c='r', zorder=4) # Compute FOV centre alt/az azim_centre, alt_centre = raDec2AltAz(max_jd, platepar.lon, platepar.lat, RA_c, dec_c) # Compute FOV size fov_h, fov_v = computeFOVSize(platepar) # Compute the rotation wrt. horizon rot_horizon = rotationWrtHorizon(platepar) fov_centre_text = "Azim = {:6.2f}$\\degree$\n".format(azim_centre) \ + "Alt = {:6.2f}$\\degree$\n".format(alt_centre) \ + "Rot h = {:6.2f}$\\degree$\n".format(rot_horizon) \ + "FOV h = {:6.2f}$\\degree$\n".format(fov_h) \ + "FOV v = {:6.2f}$\\degree$".format(fov_v) \ plt.text(10, platepar.Y_res - 10, fov_centre_text, bbox=dict(facecolor='black', alpha=0.5), \ va='bottom', ha='left', fontsize=4, color='w', family='monospace') ### ### # Plot RA/Dec gridlines # addEquatorialGrid(plt, platepar, max_jd) plt.axis('off') plt.gca().get_xaxis().set_visible(False) plt.gca().get_yaxis().set_visible(False) plt.xlim([0, ff.avepixel.shape[1]]) plt.ylim([ff.avepixel.shape[0], 0]) # Remove the margins plt.subplots_adjust(left=0, bottom=0, right=1, top=1, wspace=0, hspace=0) plt.savefig(os.path.join(night_dir_path, night_name + '_calib_report_astrometry.jpg'), \ bbox_inches='tight', pad_inches=0, dpi=dpi) if show_graphs: plt.show() else: plt.clf() plt.close() if max_matched_stars > 2: ### PHOTOMETRY FIT ### # If a flat is used, set the vignetting coeff to 0 if config.use_flat: platepar.vignetting_coeff = 0.0 # Extact intensities and mangitudes star_intensities = image_stars[:, 2] catalog_mags = matched_catalog_stars[:, 2] # Compute radius of every star from image centre radius_arr = np.hypot(image_stars[:, 0] - img_h / 2, image_stars[:, 1] - img_w / 2) # Fit the photometry on automated star intensities (use the fixed vignetting coeff, use robust fit) photom_params, fit_stddev, fit_resid, star_intensities, radius_arr, catalog_mags = \ photometryFitRobust(star_intensities, radius_arr, catalog_mags, \ fixed_vignetting=platepar.vignetting_coeff) photom_offset, _ = photom_params ### ### ### PLOT PHOTOMETRY ### # Note: An almost identical code exists in RMS.Astrometry.SkyFit in the PlateTool.photometry function dpi = 130 fig_p, (ax_p, ax_r) = plt.subplots(nrows=2, facecolor=None, figsize=(6.0, 7.0), dpi=dpi, \ gridspec_kw={'height_ratios':[2, 1]}) # Plot raw star intensities ax_p.scatter(-2.5 * np.log10(star_intensities), catalog_mags, s=5, c='r', alpha=0.5, label="Raw") # If a flat is used, disregard the vignetting if not config.use_flat: # Plot intensities of image stars corrected for vignetting lsp_corr_arr = np.log10(correctVignetting(star_intensities, radius_arr, \ platepar.vignetting_coeff)) ax_p.scatter(-2.5*lsp_corr_arr, catalog_mags, s=5, c='b', alpha=0.5, \ label="Corrected for vignetting") # Plot photometric offset from the platepar x_min, x_max = ax_p.get_xlim() y_min, y_max = ax_p.get_ylim() x_min_w = x_min - 3 x_max_w = x_max + 3 y_min_w = y_min - 3 y_max_w = y_max + 3 photometry_info = "Platepar: {:+.1f}*LSP + {:.2f} +/- {:.2f}".format(platepar.mag_0, \ platepar.mag_lev, platepar.mag_lev_stddev) \ + "\nVignetting coeff = {:.5f}".format(platepar.vignetting_coeff) \ + "\nGamma = {:.2f}".format(platepar.gamma) # Plot the photometry calibration from the platepar logsum_arr = np.linspace(x_min_w, x_max_w, 10) ax_p.plot(logsum_arr, logsum_arr + platepar.mag_lev, label=photometry_info, linestyle='--', \ color='k', alpha=0.5) # Plot the fitted photometry calibration fit_info = "Fit: {:+.1f}*LSP + {:.2f} +/- {:.2f}".format( -2.5, photom_offset, fit_stddev) ax_p.plot(logsum_arr, logsum_arr + photom_offset, label=fit_info, linestyle='--', color='b', alpha=0.75) ax_p.legend() ax_p.set_ylabel("Catalog magnitude ({:s})".format(mag_band_str)) ax_p.set_xlabel("Uncalibrated magnitude") # Set wider axis limits ax_p.set_xlim(x_min_w, x_max_w) ax_p.set_ylim(y_min_w, y_max_w) ax_p.invert_yaxis() ax_p.invert_xaxis() ax_p.grid() ### Plot photometry vs radius ### img_diagonal = np.hypot(img_h / 2, img_w / 2) # Plot photometry residuals (including vignetting) ax_r.scatter(radius_arr, fit_resid, c='b', alpha=0.75, s=5, zorder=3) # Plot a zero line ax_r.plot(np.linspace(0, img_diagonal, 10), np.zeros(10), linestyle='dashed', alpha=0.5, \ color='k') # Plot only when no flat is used if not config.use_flat: # Plot radius from centre vs. fit residual fit_resids_novignetting = catalog_mags - photomLine((np.array(star_intensities), \ np.array(radius_arr)), photom_offset, 0.0) ax_r.scatter(radius_arr, fit_resids_novignetting, s=5, c='r', alpha=0.5, zorder=3) px_sum_tmp = 1000 radius_arr_tmp = np.linspace(0, img_diagonal, 50) # Plot vignetting loss curve vignetting_loss = 2.5*np.log10(px_sum_tmp) \ - 2.5*np.log10(correctVignetting(px_sum_tmp, radius_arr_tmp, \ platepar.vignetting_coeff)) ax_r.plot(radius_arr_tmp, vignetting_loss, linestyle='dotted', alpha=0.5, color='k') ax_r.grid() ax_r.set_ylabel("Fit residuals (mag)") ax_r.set_xlabel("Radius from centre (px)") ax_r.set_xlim(0, img_diagonal) ### ### plt.tight_layout() plt.savefig(os.path.join(night_dir_path, night_name + '_calib_report_photometry.png'), dpi=150) if show_graphs: plt.show() else: plt.clf() plt.close()
def getPlatepar(config, night_data_dir): """ Downloads a new platepar from the server of uses an existing one. Arguments: Config: [Config instance] night_data_dir: [str] Full path to the data directory. Return: platepar, platepar_path, platepar_fmt """ # Download a new platepar from the server, if present downloadNewPlatepar(config) # Construct path to the platepar in the night directory platepar_night_dir_path = os.path.join(night_data_dir, config.platepar_name) # Load the default platepar from the RMS if it is available platepar = None platepar_fmt = None platepar_path = os.path.join(os.getcwd(), config.platepar_name) if os.path.exists(platepar_path): platepar = Platepar() platepar_fmt = platepar.read(platepar_path, use_flat=config.use_flat) log.info('Loaded platepar from RMS directory: ' + platepar_path) # Otherwise, try to find the platepar in the data directory elif os.path.exists(platepar_night_dir_path): platepar_path = platepar_night_dir_path platepar = Platepar() platepar_fmt = platepar.read(platepar_path, use_flat=config.use_flat) log.info('Loaded platepar from night directory: ' + platepar_path) else: log.info('No platepar file found!') if platepar is not None: # Make sure that the station code from the config and the platepar match if platepar.station_code is not None: if config.stationID != platepar.station_code: # If they don't match, don't use this platepar log.info("The station code in the platepar doesn't match the station code in config file! Not using the platepar...") platepar = None platepar_fmt = None # Make sure the image resolution matches if platepar is not None: if (int(config.width) != int(platepar.X_res)) or (int(config.height) != int(platepar.Y_res)): # If they don't match, don't use this platepar log.info("The image resolution in config and platepar don't match! Not using the platepar...") platepar = None platepar_fmt = None return platepar, platepar_path, platepar_fmt
arg_parser = argparse.ArgumentParser( description="""Compute the FOV area given the platepar and mask files. \ """, formatter_class=argparse.RawTextHelpFormatter) arg_parser.add_argument('platepar', metavar='PLATEPAR', type=str, \ help="Path to the platepar file.") arg_parser.add_argument('mask', metavar='MASK', type=str, nargs='?', \ help="Path to the mask file.") # Parse the command line arguments cml_args = arg_parser.parse_args() ######################### # Load the platepar file pp = Platepar() pp.read(cml_args.platepar) # Load the mask file if cml_args.mask is not None: mask = loadMask(cml_args.mask) else: mask = None # Compute the FOV geo points area_list = fovArea(pp, mask) for side_points in area_list: print(side_points)
def writeCAL(night_dir, config, platepar): """ Write the CAL file. Arguments: night_dir: [str] Path of the night directory where the file will be saved. This folder will be used to construct the name of CAL file. config: [Config] platepar: [Platepar] Return: file_name: [str] Name of the CAL file. """ # Remove the last slash, if it exists if night_dir[-1] == os.sep: night_dir = night_dir[:-1] # Extract time from night name _, night_name = os.path.split(night_dir) night_time = "_".join(night_name.split('_')[1:4])[:-3] # Construct the CAL file name file_name = "CAL_{:06d}_{:s}.txt".format(config.cams_code, night_time) # If there was no platepar, init an empty one if platepar is None: platepar = Platepar() # Make a copy of the platepar that can be modified platepar = copy.deepcopy(platepar) # Compute rotations (must be done before distorsion correction) rot_horiz = rotationWrtHorizon(platepar) rot_std = rotationWrtStandard(platepar) # Switch ry in Y coeffs platepar.y_poly_fwd[11], platepar.y_poly_fwd[10] = platepar.y_poly_fwd[10], platepar.y_poly_fwd[11] # Correct distorsion parameters so they are CAMS compatible platepar.x_poly_fwd[ 1] = +platepar.x_poly_fwd[ 1] + 1.0 platepar.x_poly_fwd[ 2] = -platepar.x_poly_fwd[ 2] platepar.x_poly_fwd[ 4] = -platepar.x_poly_fwd[ 4] platepar.x_poly_fwd[ 7] = -platepar.x_poly_fwd[ 7] platepar.x_poly_fwd[ 9] = -platepar.x_poly_fwd[ 9] platepar.x_poly_fwd[11] = -platepar.x_poly_fwd[11] platepar.y_poly_fwd[ 2] = -platepar.y_poly_fwd[ 2] - 1.0 platepar.y_poly_fwd[ 4] = -platepar.y_poly_fwd[ 4] platepar.y_poly_fwd[ 7] = -platepar.y_poly_fwd[ 7] platepar.y_poly_fwd[ 9] = -platepar.y_poly_fwd[ 9] platepar.y_poly_fwd[11] = -platepar.y_poly_fwd[11] # Compute scale in arcmin/px arcminperpixel = 60/platepar.F_scale # Correct scaling and rotation for k in range(12): x_prime = platepar.x_poly_fwd[k]*math.radians(arcminperpixel/60.0) y_prime = platepar.y_poly_fwd[k]*math.radians(arcminperpixel/60.0) platepar.x_poly_fwd[k] = math.cos(math.radians(platepar.pos_angle_ref))*x_prime \ + math.sin(math.radians(platepar.pos_angle_ref))*y_prime platepar.y_poly_fwd[k] = math.sin(math.radians(platepar.pos_angle_ref))*x_prime \ - math.cos(math.radians(platepar.pos_angle_ref))*y_prime # Open the file with open(os.path.join(night_dir, file_name), 'w') as f: # Construct calibration date and time calib_dt = jd2Date(platepar.JD, dt_obj=True) calib_date = calib_dt.strftime("%m/%d/%Y") calib_time = calib_dt.strftime("%H:%M:%S.%f")[:-3] s =" Camera number = {:d}\n".format(config.cams_code) s +=" Calibration date = {:s}\n".format(calib_date) s +=" Calibration time (UT) = {:s}\n".format(calib_time) s +=" Longitude +west (deg) = {:9.5f}\n".format(-platepar.lon) s +=" Latitude +north (deg) = {:9.5f}\n".format(platepar.lat) s +=" Height above WGS84 (km) = {:8.5f}\n".format(platepar.elev/1000) s +=" FOV dimension hxw (deg) = {:.2f} x {:.2f}\n".format(platepar.fov_v, platepar.fov_h) s +=" Plate scale (arcmin/pix) = {:8.3f}\n".format(arcminperpixel) s +=" Plate roll wrt Std (deg) = {:8.3f}\n".format(rot_std) s +=" Cam tilt wrt Horiz (deg) = {:8.3f}\n".format(rot_horiz) s +=" Frame rate (Hz) = {:8.3f}\n".format(config.fps) s +=" Cal center RA (deg) = {:8.3f}\n".format(platepar.RA_d) s +=" Cal center Dec (deg) = {:8.3f}\n".format(platepar.dec_d) s +=" Cal center Azim (deg) = {:8.3f}\n".format(platepar.az_centre) s +=" Cal center Elev (deg) = {:8.3f}\n".format(platepar.alt_centre) s +=" Cal center col (colcen) = {:8.3f}\n".format(platepar.X_res/2) s +=" Cal center row (rowcen) = {:8.3f}\n".format(platepar.Y_res/2) s +=" Cal fit order = 201\n" # 201 = RMS 3rd order poly with radial terms s +="\n" s +=" Camera description = None\n" s +=" Lens description = None\n" s +=" Focal length (mm) = 0.000\n" s +=" Focal ratio = 0.000\n" s +=" Pixel pitch H (um) = 0.000\n" s +=" Pixel pitch V (um) = 0.000\n" s +=" Spectral response B = {:8.3f}\n".format(config.star_catalog_band_ratios[0]) s +=" Spectral response V = {:8.3f}\n".format(config.star_catalog_band_ratios[1]) s +=" Spectral response R = {:8.3f}\n".format(config.star_catalog_band_ratios[2]) s +=" Spectral response I = {:8.3f}\n".format(config.star_catalog_band_ratios[3]) s +=" Vignetting coef(deg/pix) = 0.000\n" s +=" Gamma = {:8.3f}\n".format(config.gamma) s +="\n" s +=" Xstd, Ystd = Radialxy2Standard( col, row, colcen, rowcen, Xcoef, Ycoef )\n" s +=" x = col - colcen\n" s +=" y = rowcen - row\n" s +="\n" s +=" Term Xcoef Ycoef \n" s +=" ---- --------------- ---------------\n" s +=" 1 {:+.7e} {:+.7e} \n".format(platepar.x_poly_fwd[0], platepar.y_poly_fwd[0]) s +=" x {:+.7e} {:+.7e} \n".format(platepar.x_poly_fwd[1], platepar.y_poly_fwd[1]) s +=" y {:+.7e} {:+.7e} \n".format(platepar.x_poly_fwd[2], platepar.y_poly_fwd[2]) s +=" xx {:+.7e} {:+.7e} \n".format(platepar.x_poly_fwd[3], platepar.y_poly_fwd[3]) s +=" xy {:+.7e} {:+.7e} \n".format(platepar.x_poly_fwd[4], platepar.y_poly_fwd[4]) s +=" yy {:+.7e} {:+.7e} \n".format(platepar.x_poly_fwd[5], platepar.y_poly_fwd[5]) s +=" xxx {:+.7e} {:+.7e} \n".format(platepar.x_poly_fwd[6], platepar.y_poly_fwd[6]) s +=" xxy {:+.7e} {:+.7e} \n".format(platepar.x_poly_fwd[7], platepar.y_poly_fwd[7]) s +=" xyy {:+.7e} {:+.7e} \n".format(platepar.x_poly_fwd[8], platepar.y_poly_fwd[8]) s +=" yyy {:+.7e} {:+.7e} \n".format(platepar.x_poly_fwd[9], platepar.y_poly_fwd[9]) s +=" rx {:+.7e} {:+.7e} \n".format(platepar.x_poly_fwd[10], platepar.y_poly_fwd[10]) s +=" ry {:+.7e} {:+.7e} \n".format(platepar.x_poly_fwd[11], platepar.y_poly_fwd[11]) s +=" ---- --------------- ---------------\n" s +="\n" s +=" Mean O-C = 0.000 +- 0.000 arcmin\n" s +="\n" s +=" Magnitude = A + B (logI-logVig) fit mV vs. -2.5 (logI-logVig), B-V < 1.20, mV < 6.60\n" s +=" A = {:8.3f} \n".format(platepar.mag_lev) s +=" B = -2.50 \n" s +="\n" s +=" Magnitude = -2.5 ( C + D (logI-logVig) ) fit logFlux vs. Gamma (logI-logVig), mV < 6.60\n" s +=" C = {:8.3f} \n".format(platepar.mag_lev/(-2.5)) s +=" D = 1.00 \n" s +="\n" s +=" logVig = log( cos( Vignetting_coef * Rpixels * pi/180 )^4 )\n" s +="\n" s +="\n" s +=" Star RA (deg) DEC (deg) row col V B-V R IR logInt logVig logFlux O-C arcmin \n" s +=" ---- --------- --------- ------- ------- ------ ------ ------ ------ ------ ------ ------- ---------- \n" # Write CAL content f.write(s) return file_name
s +="\n" s +="\n" s +=" Star RA (deg) DEC (deg) row col V B-V R IR logInt logVig logFlux O-C arcmin \n" s +=" ---- --------- --------- ------- ------- ------ ------ ------ ------ ------ ------ ------- ---------- \n" # Write CAL content f.write(s) return file_name if __name__ == "__main__": import RMS.ConfigReader as cr # Load the default configuration file config = cr.parse(".config") # Load a platepar file pp = Platepar() pp.read("/home/dvida/Desktop/HR0010_20190216_170146_265550_detected/platepar_cmn2010.cal") night_dir = "/home/dvida/Desktop/HR0010_20190216_170146_265550_detected" #night_dir = "D:/Dropbox/RPi_Meteor_Station/data/CA0004_20180516_040459_588816_detected" # Write the CAL file writeCAL(night_dir, config, pp)
def applyAstrometryFTPdetectinfo(dir_path, ftp_detectinfo_file, platepar_file, UT_corr=0): """ Use the given platepar to calculate the celestial coordinates of detected meteors from a FTPdetectinfo file and save the updates values. Arguments: dir_path: [str] Path to the night. ftp_detectinfo_file: [str] Name of the FTPdetectinfo file. platepar_file: [str] Name of the platepar file. Keyword arguments: UT_corr: [float] Difference of time from UTC in hours. Return: None """ # Save a copy of the uncalibrated FTPdetectinfo ftp_detectinfo_copy = "".join( ftp_detectinfo_file.split('.')[:-1]) + "_uncalibrated.txt" # Back up the original FTPdetectinfo, only if a backup does not exist already if not os.path.isfile(os.path.join(dir_path, ftp_detectinfo_copy)): shutil.copy2(os.path.join(dir_path, ftp_detectinfo_file), os.path.join(dir_path, ftp_detectinfo_copy)) # Load the platepar platepar = Platepar() platepar.read(os.path.join(dir_path, platepar_file)) # Load the FTPdetectinfo file meteor_data = readFTPdetectinfo(dir_path, ftp_detectinfo_file) # List for final meteor data meteor_list = [] # Go through every meteor for meteor in meteor_data: ff_name, cam_code, meteor_No, n_segments, fps, hnr, mle, binn, px_fm, rho, phi, meteor_meas = meteor meteor_meas = np.array(meteor_meas) # Extract frame number, x, y, intensity frames = meteor_meas[:, 1] X_data = meteor_meas[:, 2] Y_data = meteor_meas[:, 3] level_data = meteor_meas[:, 8] # Get the beginning time of the FF file time_beg = filenameToDatetime(ff_name) # Calculate time data of every point time_data = [] for frame_n in frames: t = time_beg + datetime.timedelta(seconds=frame_n / fps) time_data.append([ t.year, t.month, t.day, t.hour, t.minute, t.second, int(t.microsecond / 1000) ]) # Convert image cooredinates to RA and Dec, and do the photometry JD_data, RA_data, dec_data, magnitudes = XY2CorrectedRADecPP(np.array(time_data), X_data, Y_data, \ level_data, platepar) # Compute azimuth and altitude of centroids az_data = np.zeros_like(RA_data) alt_data = np.zeros_like(RA_data) for i in range(len(az_data)): jd = JD_data[i] ra_tmp = RA_data[i] dec_tmp = dec_data[i] az_tmp, alt_tmp = raDec2AltAz(jd, platepar.lon, platepar.lat, ra_tmp, dec_tmp) az_data[i] = az_tmp alt_data[i] = alt_tmp # print(ff_name, cam_code, meteor_No, fps) # print(X_data, Y_data) # print(RA_data, dec_data) # print('------------------------------------------') # Construct the meteor measurements array meteor_picks = np.c_[frames, X_data, Y_data, RA_data, dec_data, az_data, alt_data, level_data, \ magnitudes] # Add the calculated values to the final list meteor_list.append([ff_name, meteor_No, rho, phi, meteor_picks]) # Calibration string to be written to the FTPdetectinfo file calib_str = 'Calibrated with RMS on: ' + str( datetime.datetime.utcnow()) + ' UTC' # If no meteors were detected, set dummpy parameters if len(meteor_list) == 0: cam_code = '' fps = 0 # Save the updated FTPdetectinfo writeFTPdetectinfo(meteor_list, dir_path, ftp_detectinfo_file, dir_path, cam_code, fps, calibration=calib_str, celestial_coords_given=True)
### COMMAND LINE ARGUMENTS # Init the command line arguments parser arg_parser = argparse.ArgumentParser(description="Covert the RMS platepar to a CAMS-style CAL file.") arg_parser.add_argument('platepar_path', metavar='PLATEPAR_PATH', type=str, \ help='Path to a platepar file.') arg_parser.add_argument('-c', '--config', nargs=1, metavar='CONFIG_PATH', type=str, \ help="Path to a config file which will be used instead of the default one.") # Parse the command line arguments cml_args = arg_parser.parse_args() ######################### # Extract parent directory dir_path = os.path.dirname(cml_args.platepar_path) # Load the config file config = cr.loadConfigFromDirectory(cml_args.config, dir_path) # Load a platepar file pp = Platepar() pp.read(cml_args.platepar_path, use_flat=config.use_flat) # Write the CAL file writeCAL(dir_path, config, pp)
def generateCalibrationReport(config, night_dir_path, match_radius=2.0, platepar=None, show_graphs=False): """ Given the folder of the night, find the Calstars file, check the star fit and generate a report with the quality of the calibration. The report contains information about both the astrometry and the photometry calibration. Graphs will be saved in the given directory of the night. Arguments: config: [Config instance] night_dir_path: [str] Full path to the directory of the night. Keyword arguments: match_radius: [float] Match radius for star matching between image and catalog stars (px). platepar: [Platepar instance] Use this platepar instead of finding one in the folder. show_graphs: [bool] Show the graphs on the screen. False by default. Return: None """ # Find the CALSTARS file in the given folder calstars_file = None for calstars_file in os.listdir(night_dir_path): if ('CALSTARS' in calstars_file) and ('.txt' in calstars_file): break if calstars_file is None: print('CALSTARS file could not be found in the given directory!') return None # Load the calstars file star_list = readCALSTARS(night_dir_path, calstars_file) ### Load recalibrated platepars, if they exist ### # Find recalibrated platepars file per FF file platepars_recalibrated_file = None for file_name in os.listdir(night_dir_path): if file_name == config.platepars_recalibrated_name: platepars_recalibrated_file = file_name break # Load all recalibrated platepars if the file is available recalibrated_platepars = None if platepars_recalibrated_file: with open(os.path.join(night_dir_path, platepars_recalibrated_file)) as f: recalibrated_platepars = json.load(f) print('Loaded recalibrated platepars JSON file for the calibration report...') ### ### ### Load the platepar file ### # Find the platepar file in the given directory if it was not given if platepar is None: # Find the platepar file platepar_file = None for file_name in os.listdir(night_dir_path): if file_name == config.platepar_name: platepar_file = file_name break if platepar_file is None: print('The platepar cannot be found in the night directory!') return None # Load the platepar file platepar = Platepar() platepar.read(os.path.join(night_dir_path, platepar_file)) ### ### night_name = os.path.split(night_dir_path.strip(os.sep))[1] # Go one mag deeper than in the config lim_mag = config.catalog_mag_limit + 1 # Load catalog stars (load one magnitude deeper) catalog_stars, mag_band_str, config.star_catalog_band_ratios = StarCatalog.readStarCatalog(\ config.star_catalog_path, config.star_catalog_file, lim_mag=lim_mag, \ mag_band_ratios=config.star_catalog_band_ratios) ### Take only those CALSTARS entires for which FF files exist in the folder ### # Get a list of FF files in the folder\ ff_list = [] for file_name in os.listdir(night_dir_path): if validFFName(file_name): ff_list.append(file_name) # Filter out calstars entries, generate a star dictionary where the keys are JDs of FFs star_dict = {} ff_dict = {} for entry in star_list: ff_name, star_data = entry # Check if the FF from CALSTARS exists in the folder if ff_name not in ff_list: continue dt = getMiddleTimeFF(ff_name, config.fps, ret_milliseconds=True) jd = date2JD(*dt) # Add the time and the stars to the dict star_dict[jd] = star_data ff_dict[jd] = ff_name ### ### # If there are no FF files in the directory, don't generate a report if len(star_dict) == 0: print('No FF files from the CALSTARS file in the directory!') return None # If the recalibrated platepars file exists, take the one with the most stars max_jd = 0 if recalibrated_platepars is not None: max_stars = 0 for ff_name_temp in recalibrated_platepars: # Compute the Julian date of the FF middle dt = getMiddleTimeFF(ff_name_temp, config.fps, ret_milliseconds=True) jd = date2JD(*dt) # Check that this file exists in CALSTARS and the list of FF files if (jd not in star_dict) or (jd not in ff_dict): continue # Check if the number of stars on this FF file is larger than the before if len(star_dict[jd]) > max_stars: max_jd = jd max_stars = len(star_dict[jd]) # Set a flag to indicate if using recalibrated platepars has failed if max_jd == 0: using_recalib_platepars = False else: print('Using recalibrated platepars, file:', ff_dict[max_jd]) using_recalib_platepars = True # Select the platepar where the FF file has the most stars platepar_dict = recalibrated_platepars[ff_dict[max_jd]] platepar = Platepar() platepar.loadFromDict(platepar_dict) filtered_star_dict = {max_jd: star_dict[max_jd]} # Match stars on the image with the stars in the catalog n_matched, avg_dist, cost, matched_stars = matchStarsResiduals(config, platepar, catalog_stars, \ filtered_star_dict, match_radius, ret_nmatch=True, lim_mag=lim_mag) max_matched_stars = n_matched # Otherwise take the optimal FF file for evaluation if (recalibrated_platepars is None) or (not using_recalib_platepars): # If there are more than a set number of FF files to evaluate, choose only the ones with most stars on # the image if len(star_dict) > config.calstars_files_N: # Find JDs of FF files with most stars on them top_nstars_indices = np.argsort([len(x) for x in star_dict.values()])[::-1][:config.calstars_files_N \ - 1] filtered_star_dict = {} for i in top_nstars_indices: filtered_star_dict[list(star_dict.keys())[i]] = list(star_dict.values())[i] star_dict = filtered_star_dict # Match stars on the image with the stars in the catalog n_matched, avg_dist, cost, matched_stars = matchStarsResiduals(config, platepar, catalog_stars, \ star_dict, match_radius, ret_nmatch=True, lim_mag=lim_mag) # If no recalibrated platepars where found, find the image with the largest number of matched stars if (not using_recalib_platepars) or (max_jd == 0): max_jd = 0 max_matched_stars = 0 for jd in matched_stars: _, _, distances = matched_stars[jd] if len(distances) > max_matched_stars: max_jd = jd max_matched_stars = len(distances) # If there are no matched stars, use the image with the largest number of detected stars if max_matched_stars <= 2: max_jd = max(star_dict, key=lambda x: len(star_dict[x])) distances = [np.inf] # Take the FF file with the largest number of matched stars ff_name = ff_dict[max_jd] # Load the FF file ff = readFF(night_dir_path, ff_name) img_h, img_w = ff.avepixel.shape dpi = 200 plt.figure(figsize=(ff.avepixel.shape[1]/dpi, ff.avepixel.shape[0]/dpi), dpi=dpi) # Take the average pixel img = ff.avepixel # Slightly adjust the levels img = Image.adjustLevels(img, np.percentile(img, 1.0), 1.2, np.percentile(img, 99.99)) plt.imshow(img, cmap='gray', interpolation='nearest') legend_handles = [] # Plot detected stars for img_star in star_dict[max_jd]: y, x, _, _ = img_star rect_side = 5*match_radius square_patch = plt.Rectangle((x - rect_side/2, y - rect_side/2), rect_side, rect_side, color='g', \ fill=False, label='Image stars') plt.gca().add_artist(square_patch) legend_handles.append(square_patch) # If there are matched stars, plot them if max_matched_stars > 2: # Take the solution with the largest number of matched stars image_stars, matched_catalog_stars, distances = matched_stars[max_jd] # Plot matched stars for img_star in image_stars: x, y, _, _ = img_star circle_patch = plt.Circle((y, x), radius=3*match_radius, color='y', fill=False, \ label='Matched stars') plt.gca().add_artist(circle_patch) legend_handles.append(circle_patch) ### Plot match residuals ### # Compute preducted positions of matched image stars from the catalog x_predicted, y_predicted = raDecToXYPP(matched_catalog_stars[:, 0], \ matched_catalog_stars[:, 1], max_jd, platepar) img_y, img_x, _, _ = image_stars.T delta_x = x_predicted - img_x delta_y = y_predicted - img_y # Compute image residual and angle of the error res_angle = np.arctan2(delta_y, delta_x) res_distance = np.sqrt(delta_x**2 + delta_y**2) # Calculate coordinates of the beginning of the residual line res_x_beg = img_x + 3*match_radius*np.cos(res_angle) res_y_beg = img_y + 3*match_radius*np.sin(res_angle) # Calculate coordinates of the end of the residual line res_x_end = img_x + 100*np.cos(res_angle)*res_distance res_y_end = img_y + 100*np.sin(res_angle)*res_distance # Plot the 100x residuals for i in range(len(x_predicted)): res_plot = plt.plot([res_x_beg[i], res_x_end[i]], [res_y_beg[i], res_y_end[i]], color='orange', \ lw=0.5, label='100x residuals') legend_handles.append(res_plot[0]) ### ### else: distances = [np.inf] # If there are no matched stars, plot large text in the middle of the screen plt.text(img_w/2, img_h/2, "NO MATCHED STARS!", color='r', alpha=0.5, fontsize=20, ha='center', va='center') ### Plot positions of catalog stars to the limiting magnitude of the faintest matched star + 1 mag ### # Find the faintest magnitude among matched stars if max_matched_stars > 2: faintest_mag = np.max(matched_catalog_stars[:, 2]) + 1 else: # If there are no matched stars, use the limiting magnitude from config faintest_mag = config.catalog_mag_limit + 1 # Estimate RA,dec of the centre of the FOV _, RA_c, dec_c, _ = xyToRaDecPP([jd2Date(max_jd)], [platepar.X_res/2], [platepar.Y_res/2], [1], platepar) RA_c = RA_c[0] dec_c = dec_c[0] fov_radius = np.hypot(*computeFOVSize(platepar)) # Get stars from the catalog around the defined center in a given radius _, extracted_catalog = subsetCatalog(catalog_stars, RA_c, dec_c, fov_radius, faintest_mag) ra_catalog, dec_catalog, mag_catalog = extracted_catalog.T # Compute image positions of all catalog stars that should be on the image x_catalog, y_catalog = raDecToXYPP(ra_catalog, dec_catalog, max_jd, platepar) # Filter all catalog stars outside the image temp_arr = np.c_[x_catalog, y_catalog, mag_catalog] temp_arr = temp_arr[temp_arr[:, 0] >= 0] temp_arr = temp_arr[temp_arr[:, 0] <= ff.avepixel.shape[1]] temp_arr = temp_arr[temp_arr[:, 1] >= 0] temp_arr = temp_arr[temp_arr[:, 1] <= ff.avepixel.shape[0]] x_catalog, y_catalog, mag_catalog = temp_arr.T # Plot catalog stars on the image cat_stars_handle = plt.scatter(x_catalog, y_catalog, c='none', marker='D', lw=1.0, alpha=0.4, \ s=((4.0 + (faintest_mag - mag_catalog))/3.0)**(2*2.512), edgecolor='r', label='Catalog stars') legend_handles.append(cat_stars_handle) ### ### # Add info text info_text = ff_dict[max_jd] + '\n' \ + "Matched stars: {:d}/{:d}\n".format(max_matched_stars, len(star_dict[max_jd])) \ + "Median distance: {:.2f} px\n".format(np.median(distances)) \ + "Catalog limiting magnitude: {:.1f}".format(lim_mag) plt.text(10, 10, info_text, bbox=dict(facecolor='black', alpha=0.5), va='top', ha='left', fontsize=4, \ color='w') legend = plt.legend(handles=legend_handles, prop={'size': 4}, loc='upper right') legend.get_frame().set_facecolor('k') legend.get_frame().set_edgecolor('k') for txt in legend.get_texts(): txt.set_color('w') plt.axis('off') plt.gca().get_xaxis().set_visible(False) plt.gca().get_yaxis().set_visible(False) plt.xlim([0, ff.avepixel.shape[1]]) plt.ylim([ff.avepixel.shape[0], 0]) # Remove the margins plt.subplots_adjust(left=0, bottom=0, right=1, top=1, wspace=0, hspace=0) plt.savefig(os.path.join(night_dir_path, night_name + '_calib_report_astrometry.jpg'), \ bbox_inches='tight', pad_inches=0, dpi=dpi) if show_graphs: plt.show() else: plt.clf() plt.close() if max_matched_stars > 2: ### Plot the photometry ### plt.figure(dpi=dpi) # Take only those stars which are inside the 3/4 of the shorter image axis from the center photom_selection_radius = np.min([img_h, img_w])/3 filter_indices = ((image_stars[:, 0] - img_h/2)**2 + (image_stars[:, 1] \ - img_w/2)**2) <= photom_selection_radius**2 star_intensities = image_stars[filter_indices, 2] catalog_mags = matched_catalog_stars[filter_indices, 2] # Plot intensities of image stars #star_intensities = image_stars[:, 2] plt.scatter(-2.5*np.log10(star_intensities), catalog_mags, s=5, c='r') # Fit the photometry on automated star intensities photom_offset, fit_stddev, _ = photometryFit(np.log10(star_intensities), catalog_mags) # Plot photometric offset from the platepar x_min, x_max = plt.gca().get_xlim() y_min, y_max = plt.gca().get_ylim() x_min_w = x_min - 3 x_max_w = x_max + 3 y_min_w = y_min - 3 y_max_w = y_max + 3 photometry_info = 'Platepar: {:+.2f}LSP {:+.2f} +/- {:.2f} \nGamma = {:.2f}'.format(platepar.mag_0, \ platepar.mag_lev, platepar.mag_lev_stddev, platepar.gamma) # Plot the photometry calibration from the platepar logsum_arr = np.linspace(x_min_w, x_max_w, 10) plt.plot(logsum_arr, logsum_arr + platepar.mag_lev, label=photometry_info, linestyle='--', \ color='k', alpha=0.5) # Plot the fitted photometry calibration fit_info = "Fit: {:+.2f}LSP {:+.2f} +/- {:.2f}".format(-2.5, photom_offset, fit_stddev) plt.plot(logsum_arr, logsum_arr + photom_offset, label=fit_info, linestyle='--', color='red', alpha=0.5) plt.legend() plt.ylabel("Catalog magnitude ({:s})".format(mag_band_str)) plt.xlabel("Uncalibrated magnitude") # Set wider axis limits plt.xlim(x_min_w, x_max_w) plt.ylim(y_min_w, y_max_w) plt.gca().invert_yaxis() plt.gca().invert_xaxis() plt.grid() plt.savefig(os.path.join(night_dir_path, night_name + '_calib_report_photometry.png'), dpi=150) if show_graphs: plt.show() else: plt.clf() plt.close()
if file_name == config.platepar_name: platepar_path = os.path.join(dir_path, file_name) # Locate mask if file_name == config.mask_file: mask_path = os.path.join(dir_path, file_name) if platepar_path is None: print("No platepar find was found in {:s}!".format(dir_path)) sys.exit() else: print("Found platepar!") # Load the platepar file pp = Platepar() pp.read(platepar_path) # Assign mask mask_path = None if cml_args.mask is not None: mask_path = cml_args.mask # Load the mask file if mask_path is not None: mask = loadMask(mask_path) print("Loading mask:", mask_path) else: mask = None # Generate a KML file from the platepar
def runCapture(config, duration=None, video_file=None, nodetect=False, detect_end=False, upload_manager=None): """ Run capture and compression for the given time.given Arguments: config: [config object] Configuration read from the .config file Keyword arguments: duration: [float] Time in seconds to capture. None by default. video_file: [str] Path to the video file, if it was given as the video source. None by default. nodetect: [bool] If True, detection will not be performed. False by defualt. detect_end: [bool] If True, detection will be performed at the end of the night, when capture finishes. False by default. upload_manager: [UploadManager object] A handle to the UploadManager, which handles uploading files to the central server. None by default. """ global STOP_CAPTURE # Create a directory for captured files night_data_dir_name = str( config.stationID) + '_' + datetime.datetime.utcnow().strftime( '%Y%m%d_%H%M%S_%f') # Full path to the data directory night_data_dir = os.path.join(os.path.abspath(config.data_dir), config.captured_dir, night_data_dir_name) # Make a directory for the night mkdirP(night_data_dir) log.info('Data directory: ' + night_data_dir) # Load the default flat field image if it is available flat_struct = None if config.use_flat: # Check if the flat exists if os.path.exists(os.path.join(os.getcwd(), config.flat_file)): flat_struct = Image.loadFlat(os.getcwd(), config.flat_file) log.info('Loaded flat field image: ' + os.path.join(os.getcwd(), config.flat_file)) # Load the default platepar if it is available platepar = None platepar_path = os.path.join(os.getcwd(), config.platepar_name) if os.path.exists(platepar_path): platepar = Platepar() platepar_fmt = platepar.read(platepar_path) log.info('Loaded platepar: ' + platepar_path) else: log.info('No platepar file found!') log.info('Initializing frame buffers...') ### For some reason, the RPi 3 does not like memory chunks which size is the multipier of its L2 ### cache size (512 kB). When such a memory chunk is provided, the compression becomes 10x slower ### then usual. We are applying a dirty fix here where we just add an extra image row and column ### if such a memory chunk will be created. The compression is performed, and the image is cropped ### back to its original dimensions. array_pad = 0 # Check if the image dimensions are divisible by RPi3 L2 cache size and add padding if (256 * config.width * config.height) % (512 * 1024) == 0: array_pad = 1 # Init arrays for parallel compression on 2 cores sharedArrayBase = multiprocessing.Array( ctypes.c_uint8, 256 * (config.width + array_pad) * (config.height + array_pad)) sharedArray = np.ctypeslib.as_array(sharedArrayBase.get_obj()) sharedArray = sharedArray.reshape(256, (config.height + array_pad), (config.width + array_pad)) startTime = multiprocessing.Value('d', 0.0) sharedArrayBase2 = multiprocessing.Array( ctypes.c_uint8, 256 * (config.width + array_pad) * (config.height + array_pad)) sharedArray2 = np.ctypeslib.as_array(sharedArrayBase2.get_obj()) sharedArray2 = sharedArray2.reshape(256, (config.height + array_pad), (config.width + array_pad)) startTime2 = multiprocessing.Value('d', 0.0) log.info('Initializing frame buffers done!') # Check if the detection should be performed or not if nodetect: detector = None else: if detect_end: # Delay detection until the end of the night delay_detection = duration else: # Delay the detection for 2 minutes after capture start delay_detection = 120 # Initialize the detector detector = QueuedPool(detectStarsAndMeteors, cores=1, log=log, delay_start=delay_detection) detector.startPool() # Initialize buffered capture bc = BufferedCapture(sharedArray, startTime, sharedArray2, startTime2, config, video_file=video_file) # Initialize the live image viewer live_view = LiveViewer(window_name='Maxpixel') # Initialize compression compressor = Compressor(night_data_dir, sharedArray, startTime, sharedArray2, startTime2, config, detector=detector, live_view=live_view, flat_struct=flat_struct) # Start buffered capture bc.startCapture() # Start the compression compressor.start() # Capture until Ctrl+C is pressed wait(duration) # If capture was manually stopped, end capture if STOP_CAPTURE: log.info('Ending capture...') # Stop the capture log.debug('Stopping capture...') bc.stopCapture() log.debug('Capture stopped') dropped_frames = bc.dropped_frames log.info('Total number of dropped frames: ' + str(dropped_frames)) # Stop the compressor log.debug('Stopping compression...') detector, live_view = compressor.stop() log.debug('Compression stopped') # Stop the live viewer log.debug('Stopping live viewer...') live_view.stop() del live_view log.debug('Live view stopped') # Init data lists star_list = [] meteor_list = [] ff_detected = [] # If detection should be performed if not nodetect: log.info('Finishing up the detection, ' + str(detector.input_queue.qsize()) + ' files to process...') # Reset the Ctrl+C to KeyboardInterrupt resetSIGINT() try: # If there are some more files to process, process them on more cores if detector.input_queue.qsize() > 0: # Let the detector use all cores, but leave 1 free available_cores = multiprocessing.cpu_count() - 1 if available_cores > 1: log.info('Running the detection on {:d} cores...'.format( available_cores)) # Start the detector detector.updateCoreNumber(cores=available_cores) log.info('Waiting for the detection to finish...') # Wait for the detector to finish and close it detector.closePool() log.info('Detection finished!') except KeyboardInterrupt: log.info('Ctrl + C pressed, exiting...') if upload_manager is not None: # Stop the upload manager if upload_manager.is_alive(): log.debug('Closing upload manager...') upload_manager.stop() del upload_manager # Terminate the detector if detector is not None: del detector sys.exit() # Set the Ctrl+C back to 'soft' program kill setSIGINT() ### SAVE DETECTIONS TO FILE log.info('Collecting results...') # Get the detection results from the queue detection_results = detector.getResults() # Remove all 'None' results, which were errors detection_results = [ res for res in detection_results if res is not None ] # Count the number of detected meteors meteors_num = 0 for _, _, meteor_data in detection_results: for meteor in meteor_data: meteors_num += 1 log.info('TOTAL: ' + str(meteors_num) + ' detected meteors.') # Save the detections to a file for ff_name, star_data, meteor_data in detection_results: x2, y2, background, intensity = star_data # Skip if no stars were found if not x2: continue # Construct the table of the star parameters star_data = zip(x2, y2, background, intensity) # Add star info to the star list star_list.append([ff_name, star_data]) # Handle the detected meteors meteor_No = 1 for meteor in meteor_data: rho, theta, centroids = meteor # Append to the results list meteor_list.append([ff_name, meteor_No, rho, theta, centroids]) meteor_No += 1 # Add the FF file to the archive list if a meteor was detected on it if meteor_data: ff_detected.append(ff_name) # Generate the name for the CALSTARS file calstars_name = 'CALSTARS_' + "{:s}".format(str(config.stationID)) + '_' \ + os.path.basename(night_data_dir) + '.txt' # Write detected stars to the CALSTARS file CALSTARS.writeCALSTARS(star_list, night_data_dir, calstars_name, config.stationID, config.height, \ config.width) # Generate FTPdetectinfo file name ftpdetectinfo_name = 'FTPdetectinfo_' + os.path.basename( night_data_dir) + '.txt' # Write FTPdetectinfo file FTPdetectinfo.writeFTPdetectinfo(meteor_list, night_data_dir, ftpdetectinfo_name, night_data_dir, \ config.stationID, config.fps) # Run calibration check and auto astrometry refinement if platepar is not None: # Read in the CALSTARS file calstars_list = CALSTARS.readCALSTARS(night_data_dir, calstars_name) # Run astrometry check and refinement platepar, fit_status = autoCheckFit(config, platepar, calstars_list) # If the fit was sucessful, apply the astrometry to detected meteors if fit_status: log.info('Astrometric calibration SUCCESSFUL!') # Save the refined platepar to the night directory and as default platepar.write(os.path.join(night_data_dir, config.platepar_name), fmt=platepar_fmt) platepar.write(platepar_path, fmt=platepar_fmt) else: log.info( 'Astrometric calibration FAILED!, Using old platepar for calibration...' ) # Calculate astrometry for meteor detections applyAstrometryFTPdetectinfo(night_data_dir, ftpdetectinfo_name, platepar_path) log.info('Plotting field sums...') # Plot field sums to a graph plotFieldsums(night_data_dir, config) # Archive all fieldsums to one archive archiveFieldsums(night_data_dir) # List for any extra files which will be copied to the night archive directory. Full paths have to be # given extra_files = [] log.info('Making a flat...') # Make a new flat field flat_img = makeFlat(night_data_dir, config) # If making flat was sucessfull, save it if flat_img is not None: # Save the flat in the root directory, to keep the operational flat updated scipy.misc.imsave(config.flat_file, flat_img) flat_path = os.path.join(os.getcwd(), config.flat_file) log.info('Flat saved to: ' + flat_path) # Copy the flat to the night's directory as well extra_files.append(flat_path) else: log.info('Making flat image FAILED!') # Add the platepar to the archive if it exists if os.path.exists(platepar_path): extra_files.append(platepar_path) night_archive_dir = os.path.join(os.path.abspath(config.data_dir), config.archived_dir, night_data_dir_name) log.info('Archiving detections to ' + night_archive_dir) # Archive the detections archive_name = archiveDetections(night_data_dir, night_archive_dir, ff_detected, config, \ extra_files=extra_files) # Put the archive up for upload if upload_manager is not None: log.info('Adding file on upload list: ' + archive_name) upload_manager.addFiles([archive_name]) # If capture was manually stopped, end program if STOP_CAPTURE: log.info('Ending program') # Stop the upload manager if upload_manager is not None: if upload_manager.is_alive(): upload_manager.stop() log.info('Closing upload manager...') sys.exit()
s += "\n" s += " logVig = log( cos( Vignetting_coef * Rpixels * pi/180 )^4 )\n" s += "\n" s += "\n" s += " Star RA (deg) DEC (deg) row col V B-V R IR logInt logVig logFlux O-C arcmin \n" s += " ---- --------- --------- ------- ------- ------ ------ ------ ------ ------ ------ ------- ---------- \n" # Write CAL content f.write(s) return file_name if __name__ == "__main__": import RMS.ConfigReader as cr from RMS.Formats.Platepar import Platepar # Load the default configuration file config = cr.parse(".config") # Load a platepar file pp = Platepar() pp.read("/home/dvida/Desktop/HR0010_20190216_170146_265550_detected/platepar_cmn2010.cal", \ use_flat=config.use_flat) night_dir = "/home/dvida/Desktop/HR0010_20190216_170146_265550_detected" #night_dir = "D:/Dropbox/RPi_Meteor_Station/data/CA0004_20180516_040459_588816_detected" # Write the CAL file writeCAL(night_dir, config, pp)
def getPlatepar(config, night_data_dir): """ Downloads a new platepar from the server of uses an existing one. Arguments: Config: [Config instance] night_data_dir: [str] Full path to the data directory. Return: platepar, platepar_path, platepar_fmt """ # Download a new platepar from the server, if present downloadNewPlatepar(config) # Construct path to the platepar in the night directory platepar_night_dir_path = os.path.join(night_data_dir, config.platepar_name) # Load the default platepar from the RMS if it is available platepar = None platepar_fmt = None platepar_path = os.path.join(os.getcwd(), config.platepar_name) if os.path.exists(platepar_path): platepar = Platepar() platepar_fmt = platepar.read(platepar_path) log.info('Loaded platepar from RMS directory: ' + platepar_path) # Otherwise, try to find the platepar in the data directory elif os.path.exists(platepar_night_dir_path): platepar_path = platepar_night_dir_path platepar = Platepar() platepar_fmt = platepar.read(platepar_path) log.info('Loaded platepar from night directory: ' + platepar_path) else: log.info('No platepar file found!') if platepar is not None: # Make sure that the station code from the config and the platepar match if platepar.station_code is not None: if config.stationID != platepar.station_code: # If they don't match, don't use this platepar log.info("The station code in the platepar doesn't match the station code in config file! Not using the platepar...") platepar = None platepar_fmt = None # Make sure the image resolution matches if platepar is not None: if (int(config.width) != int(platepar.X_res)) or (int(config.height) != int(platepar.Y_res)): # If they don't match, don't use this platepar log.info("The image resolution in config and platepar don't match! Not using the platepar...") platepar = None platepar_fmt = None return platepar, platepar_path, platepar_fmt
def trackStack(dir_path, config, border=5, background_compensation=True, hide_plot=False): """ Generate a stack with aligned stars, so the sky appears static. The folder should have a platepars_all_recalibrated.json file. Arguments: dir_path: [str] Path to the directory with image files. config: [Config instance] Keyword arguments: border: [int] Border around the image to exclude (px). background_compensation: [bool] Normalize the background by applying a median filter to avepixel and use it as a flat field. Slows down the procedure and may sometimes introduce artifacts. True by default. """ # Load recalibrated platepars, if they exist ### # Find recalibrated platepars file per FF file platepars_recalibrated_file = None for file_name in os.listdir(dir_path): if file_name == config.platepars_recalibrated_name: platepars_recalibrated_file = file_name break # Load all recalibrated platepars if the file is available recalibrated_platepars = None if platepars_recalibrated_file is not None: with open(os.path.join(dir_path, platepars_recalibrated_file)) as f: recalibrated_platepars = json.load(f) print( 'Loaded recalibrated platepars JSON file for the calibration report...' ) # ### # If the recalib platepars is not found, stop if recalibrated_platepars is None: print("The {:s} file was not found!".format( config.platepars_recalibrated_name)) return False # Get a list of FF files in the folder ff_list = [] for file_name in os.listdir(dir_path): if validFFName(file_name): ff_list.append(file_name) # Take the platepar with the middle time as the reference one ff_found_list = [] jd_list = [] for ff_name_temp in recalibrated_platepars: if ff_name_temp in ff_list: # Compute the Julian date of the FF middle dt = getMiddleTimeFF(ff_name_temp, config.fps, ret_milliseconds=True) jd = date2JD(*dt) jd_list.append(jd) ff_found_list.append(ff_name_temp) if len(jd_list) < 2: print("Not more than 1 FF image!") return False # Take the FF file with the middle JD jd_list = np.array(jd_list) jd_middle = np.mean(jd_list) jd_mean_index = np.argmin(np.abs(jd_list - jd_middle)) ff_mid = ff_found_list[jd_mean_index] # Load the middle platepar as the reference one pp_ref = Platepar() pp_ref.loadFromDict(recalibrated_platepars[ff_mid], use_flat=config.use_flat) # Try loading the mask mask_path = None if os.path.exists(os.path.join(dir_path, config.mask_file)): mask_path = os.path.join(dir_path, config.mask_file) # Try loading the default mask elif os.path.exists(config.mask_file): mask_path = os.path.abspath(config.mask_file) # Load the mask if given mask = None if mask_path is not None: mask = loadMask(mask_path) print("Loaded mask:", mask_path) # If the shape of the mask doesn't fit, init an empty mask if mask is not None: if (mask.img.shape[0] != pp_ref.Y_res) or (mask.img.shape[1] != pp_ref.X_res): print("Mask is of wrong shape!") mask = None if mask is None: mask = MaskStructure(255 + np.zeros( (pp_ref.Y_res, pp_ref.X_res), dtype=np.uint8)) # Compute the middle RA/Dec of the reference platepar _, ra_temp, dec_temp, _ = xyToRaDecPP([jd2Date(jd_middle)], [pp_ref.X_res / 2], [pp_ref.Y_res / 2], [1], pp_ref, extinction_correction=False) ra_mid, dec_mid = ra_temp[0], dec_temp[0] # Go through all FF files and find RA/Dec of image corners to find the size of the stack image ### # List of corners x_corns = [0, pp_ref.X_res, 0, pp_ref.X_res] y_corns = [0, 0, pp_ref.Y_res, pp_ref.Y_res] ra_list = [] dec_list = [] for ff_temp in ff_found_list: # Load the recalibrated platepar pp_temp = Platepar() pp_temp.loadFromDict(recalibrated_platepars[ff_temp], use_flat=config.use_flat) for x_c, y_c in zip(x_corns, y_corns): _, ra_temp, dec_temp, _ = xyToRaDecPP( [getMiddleTimeFF(ff_temp, config.fps, ret_milliseconds=True)], [x_c], [y_c], [1], pp_ref, extinction_correction=False) ra_c, dec_c = ra_temp[0], dec_temp[0] ra_list.append(ra_c) dec_list.append(dec_c) # Compute the angular separation from the middle equatorial coordinates of the reference image to all # RA/Dec corner coordinates ang_sep_list = [] for ra_c, dec_c in zip(ra_list, dec_list): ang_sep = np.degrees( angularSeparation(np.radians(ra_mid), np.radians(dec_mid), np.radians(ra_c), np.radians(dec_c))) ang_sep_list.append(ang_sep) # Find the maximum angular separation and compute the image size using the plate scale # The image size will be resampled to 1/2 of the original size to avoid interpolation scale = 0.5 ang_sep_max = np.max(ang_sep_list) img_size = int(scale * 2 * ang_sep_max * pp_ref.F_scale) # # Create the stack platepar with no distortion and a large image size pp_stack = copy.deepcopy(pp_ref) pp_stack.resetDistortionParameters() pp_stack.X_res = img_size pp_stack.Y_res = img_size pp_stack.F_scale *= scale pp_stack.refraction = False # Init the image avg_stack_sum = np.zeros((img_size, img_size), dtype=float) avg_stack_count = np.zeros((img_size, img_size), dtype=int) max_deaveraged = np.zeros((img_size, img_size), dtype=np.uint8) # Load individual FFs and map them to the stack for i, ff_name in enumerate(ff_found_list): print("Stacking {:s}, {:.1f}% done".format( ff_name, 100 * i / len(ff_found_list))) # Read the FF file ff = readFF(dir_path, ff_name) # Load the recalibrated platepar pp_temp = Platepar() pp_temp.loadFromDict(recalibrated_platepars[ff_name], use_flat=config.use_flat) # Make a list of X and Y image coordinates x_coords, y_coords = np.meshgrid( np.arange(border, pp_ref.X_res - border), np.arange(border, pp_ref.Y_res - border)) x_coords = x_coords.ravel() y_coords = y_coords.ravel() # Map image pixels to sky jd_arr, ra_coords, dec_coords, _ = xyToRaDecPP( len(x_coords) * [getMiddleTimeFF(ff_name, config.fps, ret_milliseconds=True)], x_coords, y_coords, len(x_coords) * [1], pp_temp, extinction_correction=False) # Map sky coordinates to stack image coordinates stack_x, stack_y = raDecToXYPP(ra_coords, dec_coords, jd_middle, pp_stack) # Round pixel coordinates stack_x = np.round(stack_x, decimals=0).astype(int) stack_y = np.round(stack_y, decimals=0).astype(int) # Cut the image to limits filter_arr = (stack_x > 0) & (stack_x < img_size) & (stack_y > 0) & ( stack_y < img_size) x_coords = x_coords[filter_arr].astype(int) y_coords = y_coords[filter_arr].astype(int) stack_x = stack_x[filter_arr] stack_y = stack_y[filter_arr] # Apply the mask to maxpixel and avepixel maxpixel = copy.deepcopy(ff.maxpixel) maxpixel[mask.img == 0] = 0 avepixel = copy.deepcopy(ff.avepixel) avepixel[mask.img == 0] = 0 # Compute deaveraged maxpixel max_deavg = maxpixel - avepixel # Normalize the backgroud brightness by applying a large-kernel median filter to avepixel if background_compensation: # # Apply a median filter to the avepixel to get an estimate of the background brightness # avepixel_median = scipy.ndimage.median_filter(ff.avepixel, size=101) avepixel_median = cv2.medianBlur(ff.avepixel, 301) # Make sure to avoid zero division avepixel_median[avepixel_median < 1] = 1 # Normalize the avepixel by subtracting out the background brightness avepixel = avepixel.astype(float) avepixel /= avepixel_median avepixel *= 50 # Normalize to a good background value, which is usually 50 avepixel = np.clip(avepixel, 0, 255) avepixel = avepixel.astype(np.uint8) # plt.imshow(avepixel, cmap='gray', vmin=0, vmax=255) # plt.show() # Add the average pixel to the sum avg_stack_sum[stack_y, stack_x] += avepixel[y_coords, x_coords] # Increment the counter image where the avepixel is not zero ones_img = np.ones_like(avepixel) ones_img[avepixel == 0] = 0 avg_stack_count[stack_y, stack_x] += ones_img[y_coords, x_coords] # Set pixel values to the stack, only take the max values max_deaveraged[stack_y, stack_x] = np.max(np.dstack( [max_deaveraged[stack_y, stack_x], max_deavg[y_coords, x_coords]]), axis=2) # Compute the blended avepixel background stack_img = avg_stack_sum stack_img[avg_stack_count > 0] /= avg_stack_count[avg_stack_count > 0] stack_img += max_deaveraged stack_img = np.clip(stack_img, 0, 255) stack_img = stack_img.astype(np.uint8) # Crop image non_empty_columns = np.where(stack_img.max(axis=0) > 0)[0] non_empty_rows = np.where(stack_img.max(axis=1) > 0)[0] crop_box = (np.min(non_empty_rows), np.max(non_empty_rows), np.min(non_empty_columns), np.max(non_empty_columns)) stack_img = stack_img[crop_box[0]:crop_box[1] + 1, crop_box[2]:crop_box[3] + 1] # Plot and save the stack ### dpi = 200 plt.figure(figsize=(stack_img.shape[1] / dpi, stack_img.shape[0] / dpi), dpi=dpi) plt.imshow(stack_img, cmap='gray', vmin=0, vmax=256, interpolation='nearest') plt.axis('off') plt.gca().get_xaxis().set_visible(False) plt.gca().get_yaxis().set_visible(False) plt.xlim([0, stack_img.shape[1]]) plt.ylim([stack_img.shape[0], 0]) # Remove the margins (top and right are set to 0.9999, as setting them to 1.0 makes the image blank in # some matplotlib versions) plt.subplots_adjust(left=0, bottom=0, right=0.9999, top=0.9999, wspace=0, hspace=0) filenam = os.path.join(dir_path, os.path.basename(dir_path) + "_track_stack.jpg") plt.savefig(filenam, bbox_inches='tight', pad_inches=0, dpi=dpi) # if hide_plot is False: plt.show()
def add_fffits_metadata(ff_filename, config, platepars_recalibrated, fallback_platepar): """ Add FITS metadata and WCS to FF files generated by RMS Args: ff_filename (str): full or relative path to FF file config (RMS.Config): config instance platepars_recalibrated (dict): dictionary with recalibrated platepars fallback_platepar (RMS.Platepar): platepar with fitted stars Returns: None """ ff_basename = os.path.basename(ff_filename) platepar_recalibrated = Platepar() try: platepar_data = platepars_recalibrated[ff_basename] with open("platepar_tmp.cal", "w") as f: json.dump(platepar_data, f) platepar_recalibrated.read("platepar_tmp.cal") except (FileNotFoundError, KeyError): platepar_recalibrated = fallback_platepar logger.warning(f"Using non-recalibrated platepar for {ff_basename}") fftime = getMiddleTimeFF(ff_basename, config.fps) fit_xy = np.array(fallback_platepar.star_list)[:, 1:3] _, fit_ra, fit_dec, _ = xyToRaDecPP([fftime] * len(fit_xy), fit_xy[:, 0], fit_xy[:, 1], [1] * len(fit_xy), platepar_recalibrated, extinction_correction=False) x0 = platepar_recalibrated.X_res / 2 y0 = platepar_recalibrated.Y_res / 2 _, ra0, dec0, _ = xyToRaDecPP([fftime], [x0], [y0], [1], platepar_recalibrated, extinction_correction=False) w = fit_wcs(fit_xy[:, 0], fit_xy[:, 1], fit_ra, fit_dec, x0, y0, ra0[0], dec0[0], 5, projection="ZEA") hdu_list = fits.open(ff_filename, scale_back=True) obstime = Time(filenameToDatetime(ff_basename)) header_meta = {} header_meta["OBSERVER"] = config.stationID.strip() header_meta["INSTRUME"] = "Global Meteor Network" header_meta["MJD-OBS"] = obstime.mjd header_meta["DATE-OBS"] = obstime.fits header_meta["NFRAMES"] = 256 header_meta["EXPTIME"] = 256 / config.fps header_meta["SITELONG"] = round(config.longitude, 2) header_meta["SITELAT"] = round(config.latitude, 2) for hdu in hdu_list: if hdu.header[ "NAXIS"] == 0: # First header is not an image so should not get WCS new_header = Header() else: new_header = w.to_fits(relax=True)[0].header for key, value in header_meta.items(): new_header.append((key, value)) for key, value in new_header.items(): if key in hdu.header: continue hdu.header[key] = value hdu_list.writeto(ff_filename, overwrite=True)