Example #1
0
def rooFit203():

    print ">>> setup model..."
    x = RooRealVar("x", "x", -10, 10)
    mean = RooRealVar("mean", "mean of gaussian", 0, -10, 10)
    gauss = RooGaussian("gauss", "gaussian PDF", x, mean, RooConst(1))

    # Construct px = 1 (flat in x)
    px = RooPolynomial("px", "px", x)

    # Construct model = f*gx + (1-f)px
    f = RooRealVar("f", "f", 0., 1.)
    model = RooAddPdf("model", "model", RooArgList(gauss, px), RooArgList(f))
    data = model.generate(RooArgSet(x), 10000)  # RooDataSet

    print ">>> fit to full data range..."
    result_full = model.fitTo(data, Save(kTRUE))  # RooFitResult

    print "\n>>> fit \"signal\" range..."
    # Define "signal" range in x as [-3,3]
    x.setRange("signal", -3, 3)
    result_sig = model.fitTo(data, Save(kTRUE),
                             Range("signal"))  # RooFitResult

    print "\n>>> plot and print results..."
    # Make plot frame in x and add data and fitted model
    frame1 = x.frame(Title("Fitting a sub range"))  # RooPlot
    data.plotOn(frame1, Name("data"))
    model.plotOn(frame1, Range("Full"), LineColor(kBlue),
                 Name("model"))  # Add shape in full ranged dashed
    model.plotOn(frame1, LineStyle(kDashed), LineColor(kRed),
                 Name("model2"))  # By default only fitted range is shown

    print "\n>>> result of fit on all data:"
    result_full.Print()

    print "\n>>> result of fit in in signal region (note increased error on signal fraction):"
    result_sig.Print()

    print ">>> draw on canvas..."
    canvas = TCanvas("canvas", "canvas", 100, 100, 800, 600)
    legend = TLegend(0.2, 0.85, 0.4, 0.65)
    legend.SetTextSize(0.032)
    legend.SetBorderSize(0)
    legend.SetFillStyle(0)
    gPad.SetLeftMargin(0.14)
    gPad.SetRightMargin(0.02)
    frame1.GetYaxis().SetLabelOffset(0.008)
    frame1.GetYaxis().SetTitleOffset(1.4)
    frame1.GetYaxis().SetTitleSize(0.045)
    frame1.GetXaxis().SetTitleSize(0.045)
    frame1.Draw()
    legend.AddEntry("data", "data", 'LEP')
    legend.AddEntry("model", "fit (full range)", 'L')
    legend.AddEntry("model2", "fit (signal range)", 'L')
    legend.Draw()
    canvas.SaveAs("rooFit203.png")
Example #2
0
def rooFit107():
    
    print ">>> setup model..."
    x      = RooRealVar("x","x",-3,3)
    mean   = RooRealVar("mean","mean of gaussian",1,-10,10)
    sigma  = RooRealVar("sigma","width of gaussian",1,0.1,10)
    gauss  = RooGaussian("gauss","gauss",x,mean,sigma)
    data   = gauss.generate(RooArgSet(x),1000) # RooDataSet
    gauss.fitTo(data)
    
    print ">>> plot pdf and data..."
    frame1 = x.frame(Name("frame1"),Title("Red Curve / SumW2 Histo errors"),Bins(20)) # RooPlot
    frame2 = x.frame(Name("frame2"),Title("Dashed Curve / No XError bars"),Bins(20)) # RooPlot
    frame3 = x.frame(Name("frame3"),Title("Filled Curve / Blue Histo"),Bins(20)) # RooPlot
    frame4 = x.frame(Name("frame4"),Title("Partial Range / Filled Bar chart"),Bins(20)) # RooPlot
    
    print ">>> data plotting styles..."
    data.plotOn(frame1,DataError(RooAbsData.SumW2))
    data.plotOn(frame2,XErrorSize(0))                           # Remove horizontal error bars
    data.plotOn(frame3,MarkerColor(kBlue),LineColor(kBlue))     # Blue markers and error bors
    data.plotOn(frame4,DrawOption("B"),DataError(RooAbsData.None),
                       XErrorSize(0),FillColor(kGray))          # Filled bar chart
    
    print ">>> data plotting styles..."
    gauss.plotOn(frame1,LineColor(kRed))    
    gauss.plotOn(frame2,LineStyle(kDashed))                              # Change line style to dashed
    gauss.plotOn(frame3,DrawOption("F"),FillColor(kOrange),MoveToBack()) # Filled shapes in green color
    gauss.plotOn(frame4,Range(-8,3),LineColor(kMagenta))
    
    print ">>> draw pfds and fits on canvas..."
    canvas = TCanvas("canvas","canvas",100,100,1000,1200)
    canvas.Divide(2,2)
    for i, frame in enumerate([frame1,frame2,frame3,frame4],1):
        canvas.cd(i)
        gPad.SetLeftMargin(0.15); gPad.SetRightMargin(0.05)
        frame.GetYaxis().SetTitleOffset(1.6)
        frame.GetYaxis().SetLabelOffset(0.010)
        frame.GetYaxis().SetTitleSize(0.045)
        frame.GetYaxis().SetLabelSize(0.042)
        frame.GetXaxis().SetTitleSize(0.045)
        frame.GetXaxis().SetLabelSize(0.042)
        frame.Draw()
    canvas.SaveAs("rooFit107.png")
Example #3
0
B_1     = RooRealVar ( "B_{1}"    , "B_1 "   , 0.3  , -20   , 100   )
B_2     = RooRealVar ( "B_{2}"    , "B_2"    , 0.3  , -20   , 100   )
B_3     = RooRealVar ( "B_{3}"    , "B_3"    , 0.3  , -20   , 100   )
B_4     = RooRealVar ( "B_{4}"    , "B_4"    , 0.3  , -20   , 100   )

bkg    = RooChebychev("pdfB" , "pdfB"    , masskk   , RooArgList(aset))

tot = RooAddPdf("tot","g+cheb",RooArgList(signal,bkg),RooArgList(nSig,nBkg))

nfits = 0

mean.setConstant(True)
gamma.setConstant(True)
sigma_1.setConstant(True)
sigma_2.setConstant(True)
rPhifit = tot.fitTo(splotData,Range(phimin,phimax),RooFit.NumCPU(args.ncpu),RooFit.Verbose(False))
nfits = nfits + 1

#gamma.setConstant(False)
#sigma.setConstant(False)
#rPhifit = tot.fitTo(splotData,Range(phimin,phimax),RooFit.NumCPU(args.ncpu),RooFit.Verbose(False))
#nfits = nfits + 1

mean.setConstant(False)
gamma.setConstant(False)
sigma_1.setConstant(False)
sigma_2.setConstant(False)
rPhifit = tot.fitTo(splotData,Range(phimin,phimax),RooFit.NumCPU(args.ncpu),RooFit.Verbose(False))
nfits = nfits + 1

c = TCanvas("canvas","canvas",1200,900)
Example #4
0
B_1 = RooRealVar("B_{1}", "B_1 ", 0.3, -20, 100)
B_2 = RooRealVar("B_{2}", "B_2", 0.3, -20, 100)
B_3 = RooRealVar("B_{3}", "B_3", 0.3, -20, 100)
B_4 = RooRealVar("B_{4}", "B_4", 0.3, -20, 100)

bkg = RooChebychev("pdfB", "pdfB", masskk, RooArgList(aset))

tot = RooAddPdf("tot", "g+cheb", RooArgList(signal, bkg),
                RooArgList(nSig, nBkg))

nfits = 0

mean.setConstant(True)
gamma.setConstant(True)
rPhifit = tot.fitTo(splotData, Range(phimin, phimax), RooFit.NumCPU(args.ncpu),
                    RooFit.Verbose(False))
nfits = nfits + 1

mean.setConstant(True)
gamma.setConstant(False)
rPhifit = tot.fitTo(splotData, Range(phimin, phimax), RooFit.NumCPU(args.ncpu),
                    RooFit.Verbose(False))
nfits = nfits + 1

mean.setConstant(False)
gamma.setConstant(False)
rPhifit = tot.fitTo(splotData, Range(phimin, phimax), RooFit.NumCPU(args.ncpu),
                    RooFit.Verbose(False))
nfits = nfits + 1
B_1 = RooRealVar("B_{1}", "B_1 ", 0.3, -20, 100)
B_2 = RooRealVar("B_{2}", "B_2", 0.3, -20, 100)
B_3 = RooRealVar("B_{3}", "B_3", 0.3, -20, 100)
B_4 = RooRealVar("B_{4}", "B_4", 0.3, -20, 100)

bkg = RooChebychev("pdfB", "pdfB", psiPrimeMass, RooArgList(aset))

tot = RooAddPdf("tot", "g+cheb", RooArgList(signal, bkg),
                RooArgList(nSig, nBkg))

nfits = 0

mean.setConstant(True)
gamma.setConstant(True)
rPhifit = tot.fitTo(splotData, Range(psimin, psimax), RooFit.NumCPU(20),
                    RooFit.Verbose(False))
nfits = nfits + 1

mean.setConstant(True)
gamma.setConstant(False)
rPhifit = tot.fitTo(splotData, Range(psimin, psimax), RooFit.NumCPU(20),
                    RooFit.Verbose(False))
nfits = nfits + 1

mean.setConstant(False)
gamma.setConstant(False)
rPhifit = tot.fitTo(splotData, Range(psimin, psimax), RooFit.NumCPU(20),
                    RooFit.Verbose(False))
nfits = nfits + 1
Example #6
0
def rooFit110():
    
    print ">>> setup  model..."
    x     = RooRealVar("x","x",-10,10)
    mean  = RooConst(-2)
    sigma = RooConst(3)
    gauss = RooGaussian("gauss","gauss",x,mean,sigma)
    frame1 = x.frame(Title("Gaussian pdf")) # RooPlot
    gauss.plotOn(frame1)
    
    print ">>> retrieve raw & normalized values of RooFit pdfs...\n>>>"
    # Return 'raw' unnormalized value of gauss
    print ">>>   raw value:          gauss.getVal( )  = %.3f" % gauss.getVal() + " depends on x range"
    print ">>>   normalization:      gauss.getVal(x)  = %.3f" % gauss.getVal(RooArgSet(x))
    print ">>>   normalization:     gauss.getNorm(x)  = %.3f" % gauss.getNorm(RooArgSet(x))
    print ">>>                  1/(sigma*sqrt(2*pi))  = %.3f" % (1/(sigma.getValV()*sqrt(2*pi)))
    # Create object representing integral over gauss
    # which is used to calculate  gauss_Norm[x] == gauss / gauss_Int[x]
    igauss = gauss.createIntegral(RooArgSet(x)) # RooAbsReal
    print ">>>   integral:          igauss.getVal( )  = %.3f" % igauss.getVal()
    print ">>>                      igauss.getVal(x)  = %.3f" % igauss.getVal(RooArgSet(x))
    print ">>>                    1/igauss.getVal(x)  = %.3f" % (1/igauss.getVal(RooArgSet(x)))
    print ">>>       gauss.getVal()/igauss.getVal(x)  = %.3f" % (gauss.getVal()/igauss.getVal(RooArgSet(x)))
    # maximum
    print ">>>   maximum:         gauss.getMaxVal(x)  = %.3f" % gauss.getMaxVal(RooArgSet(x))
    print ">>>                       gauss.getMax(0)  = %.3f" % gauss.maxVal(0)
    print ">>>                       gauss.getMax(1)  = %.3f" % gauss.maxVal(1)
    print ">>>           gauss.asTF(x).GetMaximumX()  = %.3f" % gauss.asTF(RooArgList(x)).GetMaximumX()
    print ">>>            gauss.asTF(x).GetMaximum()  = %.3f" % gauss.asTF(RooArgList(x)).GetMaximum()
    xmaxVal = gauss.asTF(RooArgList(x)).GetMaximumX()
    xmax = RooRealVar("x_max","x_max",xmaxVal)
    x.setVal(xmaxVal)
    print ">>>                    gauss.getVal(    )  = %.3f" % gauss.getVal()
    print ">>>                    gauss.getVal(xmax)  = %.3f" % gauss.getVal(RooArgSet(x))
    print ">>>                    gauss.getVal(xmax)  = %.3f" % gauss.getVal(RooArgSet(xmax))
    
    print ">>> plot"
    frame2 = x.frame(Title("integral of Gaussian pdf")) # RooPlot
    line1 = RooLinearVar("line1","line1",x,RooConst(0),RooConst(gauss.getVal()))
    line2 = RooLinearVar("line2","line2",x,RooConst(0),RooConst(gauss.getVal(RooArgSet(x))))
    igauss.plotOn(frame2,LineColor(kBlue), Name(igauss.GetName()))
    line1.plotOn( frame2,LineColor(kRed),  Name(line1.GetName()))
    line2.plotOn( frame2,LineColor(kGreen),Name(line2.GetName()))
    
    print ">>>\n>>> integrate normalized pdf over subrange..."
    # Define a range named "signal" in x from -5,5
    x.setRange("signal",-5,5)
    
    # Create an integral of gauss_Norm[x] over x in range "signal"
    # This is the fraction of of p.d.f. gauss_Norm[x] which is in
    # the range named "signal"
    igauss_sig = gauss.createIntegral(RooArgSet(x),NormSet(RooArgSet(x)),Range("signal")) # RooAbsReal
    print ">>>   gauss_Int[x|signal]_Norm[x] = %.2f" % igauss_sig.getVal()
    
    print ">>> construct cumulative distribution function from pdf..."
    # Create the cumulative distribution function of
    # gauss, i.e. calculate Int[-10,x] gauss(x') dx'
    gauss_cdf = gauss.createCdf(RooArgSet(x)) # RooAbsReal
    frame3 = x.frame(Title("cdf of Gaussian pdf")) # RooPlot
    gauss_cdf.plotOn(frame3)
    
    print ">>> draw functions on canvas..."
    canvas = TCanvas("canvas","canvas",100,100,2000,400)
    legend = TLegend(0.6,0.6,0.8,0.42)
    legend.SetTextSize(0.032)
    legend.SetBorderSize(0)
    legend.SetFillStyle(0)
    canvas.Divide(3)
    for i, frame in enumerate([frame1,frame2,frame3],1):
        canvas.cd(i)
        gPad.SetLeftMargin(0.14); gPad.SetRightMargin(0.04)
        frame.GetYaxis().SetTitleOffset(1.6)
        frame.GetYaxis().SetLabelOffset(0.010)
        frame.GetYaxis().SetTitleSize(0.045)
        frame.GetYaxis().SetLabelSize(0.042)
        frame.GetXaxis().SetTitleSize(0.045)
        frame.GetXaxis().SetLabelSize(0.042)
        frame.Draw()
        if i is 2:
            legend.AddEntry(line1.GetName(), " gauss.getVal( )",'L')
            legend.AddEntry(line2.GetName(), " gauss.getVal(x)",'L')
            legend.AddEntry(igauss.GetName(),"igauss.getVal( )",'L')
            legend.Draw()
    canvas.SaveAs("rooFit110.png")
Example #7
0
alldata.numEntries()


# In[10]:


alldata.numEntries()
c = TCanvas("canvas","canvas",1200,800)

massFrame = mass.frame()
alldata.plotOn(massFrame)

massFrame.Draw()
c.SaveAs("plots/testmass.png")

massKKFrame = masskk.frame(Range(phimin,phimax))
alldata.plotOn(massKKFrame,RooLinkedList())

massKKFrame.Draw()
c.SaveAs("plots/testmasskk.png")


# In[11]:


#b0dataNonPromptMass = b0dataNonPrompt.reduce(SelectVars(RooArgSet(mass)))


# In[12]:

Example #8
0
print "Tree entries %d"%(splotData.numEntries())

print "PHSP fit"

BkgTotalMPdf = RooGenericPdf("BkgPdf","BkgPdf","sqrt( pow(dimuonditrk_m_rf_c,4) + pow(3.0967,4) + pow(1.01946,4) - 2*pow(dimuonditrk_m_rf_c,2)*pow(3.0967,2) - 2*pow(3.0967,2)*pow(1.01946,2) - 2*pow(dimuonditrk_m_rf_c,2)*pow(1.01946,2) ) * sqrt( pow(5.279,4) + pow(dimuonditrk_m_rf_c,4) + pow(0.493677,4) - 2*pow(5.279,2)*pow(dimuonditrk_m_rf_c,2) - 2*pow(5.279,2)*pow(0.493677,2) - 2*pow(dimuonditrk_m_rf_c,2)*pow(0.493677,2) ) / (dimuonditrk_m_rf_c)", RooArgList(dimuonditrk_m_rf_c));

dimuonditrk_m_rf_c.setBins(80)
dimuonditrk_m_rf_c.setRange("baserange",4.0,5.0)
s = BkgTotalMPdf.createIntegral(RooArgSet(dimuonditrk_m_rf_c),"baserange").getVal()

#bkgFit = BkgTotalMPdf.fitTo(splotBkgData,Range(4.0,5.0),RooFit.NumCPU(args.ncpu),RooFit.Verbose(False))

cb = TCanvas("canvas_b","canvas_b",1200,800) 
print s
mumukkFrame = dimuonditrk_m_rf_c.frame(Title("Phase Space Fit"),Range(4.0,5.0),Normalization(1.0))
splotData.plotOn(mumukkFrame)

BkgTotalMPdf.plotOn(mumukkFrame,Normalization(1.65))

mumukkFrame.Draw()

if args.phsps:
    cb.SaveAs(args.path[:-5] + '_bu_phsp_plot.root')
    cb.SaveAs(args.path[:-5] + '_bu_phsp_plot.png')

    sys.exit()

print "SPLOT FIT"

a0 = RooRealVar("a0","a0",0.001,-10.,10.)
Example #9
0
sigma2 = RooRealVar("sigma2", "width of gaussian2", 0.004, 0.004, 0.01)

pdfS1 = RooGaussian("pdfS1", "gaus", mass, mean, sigma1)
pdfS2 = RooGaussian("pdfS2", "gaus", mass, mean, sigma2)
# pdfB    = RooExponential("pdfB" , "pdfB"    , mbs   , B_c)
pdfB = RooBernstein("pdfB", "pdfB", mass, RooArgList(B_c, B_b))

alist1 = RooArgList(pdfS1, pdfS2, pdfB)
alist2 = RooArgList(S1, S2, B)
tot = RooAddPdf("model", "model", alist1, alist2)

# In[ ]:

#xDataPromptKK = xdataPrompt.reduce(SelectVars(RooArgSet(masskk)))
mean.setConstant(True)
rPhifit = tot.fitTo(xdataPrompt, Range(massmin, massmax), RooFit.NumCPU(8))

mean.setConstant(False)
rPhifit = tot.fitTo(xdataPrompt, Range(massmin, massmax), RooFit.NumCPU(8))

# In[ ]:

c = TCanvas("canvas", "canvas", 1200, 800)
phiFrame = masskk.frame(Range(massmin, massmax))
xdataPrompt.plotOn(phiFrame)
tot.plotOn(phiFrame)

phiFrame.Draw()
c.SaveAs("phiMassSPlotPhi.png")
c.SaveAs("phiMassSPlotPhi.root")
c.Clear()
Example #10
0
B_1 = RooRealVar("B_1", "B_1 ", 0.3, -20, 100)
B_2 = RooRealVar("B_2", "B_2", 0.3, -20, 100)
B_3 = RooRealVar("B_3", "B_3", 0.3, -20, 100)
B_4 = RooRealVar("B_4", "B_4", 0.3, -20, 100)

bkg = RooBernstein("pdfB", "pdfB", masskk, RooArgList(B_1, B_2, B_3, B_4))

tot = RooAddPdf("tot", "g+cheb", RooArgList(signal, bkg),
                RooArgList(nSig, nBkg))

# In[ ]:

#xDataPromptKK = xdataPrompt.reduce(SelectVars(RooArgSet(masskk)))
mean.setConstant(True)
gamma.setConstant(True)
rPhifit = tot.fitTo(xdataPrompt, Range(phimin, phimax), RooFit.NumCPU(4))

#rPhifit = tot.fitTo(xdataPrompt,Range(phimin,phimax),RooFit.NumCPU(4))

mean.setConstant(False)
gamma.setConstant(False)
rPhifit = tot.fitTo(xdataPrompt, Range(phimin, phimax), RooFit.NumCPU(4))

# In[ ]:

c = TCanvas("canvas", "canvas", 1200, 800)
phiFrame = masskk.frame(Range(phimin, phimax),
                        Normalization((nSig.getValV() + nBkg.getValV())))
xdataPrompt.plotOn(phiFrame)
tot.plotOn(phiFrame)
Example #11
0
def rooFit108():
    
    print ">>> setup model - a B decay with mixing..."
    dt  = RooRealVar("dt","dt",-20,20)
    dm  = RooRealVar("dm","dm",0.472)
    tau = RooRealVar("tau","tau",1.547)
    w   = RooRealVar("w","mistag rate",0.1)
    dw  = RooRealVar("dw","delta mistag rate",0.)
    
    # Build categories - possible values states
    # https://root.cern/doc/v610/classRooCategory.html
    mixState = RooCategory("mixState","B0/B0bar mixing state")
    mixState.defineType("mixed",-1)
    mixState.defineType("unmixed",1)
    tagFlav  = RooCategory("tagFlav","Flavour of the tagged B0")
    tagFlav.defineType("B0",1)
    tagFlav.defineType("B0bar",-1)
    
    # Build a gaussian resolution model
    dterr   = RooRealVar("dterr","dterr",0.1,1.0)
    bias1   = RooRealVar("bias1","bias1",0)
    sigma1  = RooRealVar("sigma1","sigma1",0.1)
    gm1     = RooGaussModel("gm1","gauss model 1",dt,bias1,sigma1)
    
    # Construct Bdecay (x) gauss
    # https://root.cern/doc/v610/classRooBMixDecay.html
    bmix    = RooBMixDecay("bmix","decay",dt,mixState,tagFlav,tau,dm,w,dw,gm1,RooBMixDecay.DoubleSided)
    
    print ">>> sample data from data..."
    data    =  bmix.generate(RooArgSet(dt,mixState,tagFlav),2000) # RooDataSet
    
    print ">>> show dt distribution with custom binning..."
    # Make plot of dt distribution of data in range (-15,15) with fine binning for dt>0
    # and coarse binning for dt<0
    tbins = RooBinning(-15,15)  # Create binning object with range (-15,15)
    tbins.addUniform(60,-15,0)  # Add 60 bins with uniform spacing in range (-15,0)
    tbins.addUniform(15,0,15)   # Add 15 bins with uniform spacing in range (0,15)
    dtframe = dt.frame(Range(-15,15),Title("dt distribution with custom binning")) # RooPlot
    data.plotOn(dtframe,Binning(tbins))
    bmix.plotOn(dtframe)
    
    # NB: Note that bin density for each bin is adjusted to that of default frame
    # binning as shown in Y axis label (100 bins --> Events/0.4*Xaxis-dim) so that
    # all bins represent a consistent density distribution
    
    
    
    print ">>> plot mixstate asymmetry with custom binning..."
    # Make plot of dt distribution of data asymmetry in 'mixState' with variable binning 
    abins = RooBinning(-10,10)  # Create binning object with range (-10,10)
    abins.addBoundary(0)        # Add boundaries at 0
    abins.addBoundaryPair(1)    # Add boundaries at (-1,1)
    abins.addBoundaryPair(2)    # Add boundaries at (-2,2)
    abins.addBoundaryPair(3)    # Add boundaries at (-3,3)
    abins.addBoundaryPair(4)    # Add boundaries at (-4,4)
    abins.addBoundaryPair(6)    # Add boundaries at (-6,6)
    aframe = dt.frame(Range(-10,10),Title("MixState asymmetry distribution with custom binning")) # RooPlot
    
    # Plot mixState asymmetry of data with specified customg binning
    data.plotOn(aframe,Asymmetry(mixState),Binning(abins))
    
    # Plot corresponding property of pdf
    bmix.plotOn(aframe,Asymmetry(mixState))
    
    # Adjust vertical range of plot to sensible values for an asymmetry
    aframe.SetMinimum(-1.1)
    aframe.SetMaximum( 1.1)
    
    # NB: For asymmetry distributions no density corrects are needed (and are thus not applied)
    
    
    
    print "\n>>> draw on canvas..."
    canvas = TCanvas("canvas","canvas",100,100,1400,600)
    canvas.Divide(2)
    canvas.cd(1)
    gPad.SetLeftMargin(0.15); gPad.SetRightMargin(0.02)
    dtframe.GetYaxis().SetLabelOffset(0.008)
    dtframe.GetYaxis().SetTitleOffset(1.6)
    dtframe.GetYaxis().SetTitleSize(0.045)
    dtframe.GetXaxis().SetTitleSize(0.045)
    dtframe.Draw()
    canvas.cd(2)
    gPad.SetLeftMargin(0.15); gPad.SetRightMargin(0.02)
    aframe.GetYaxis().SetLabelOffset(0.008)
    aframe.GetYaxis().SetTitleOffset(1.6)
    aframe.GetYaxis().SetTitleSize(0.045)
    aframe.GetXaxis().SetTitleSize(0.045)
    aframe.Draw()
    canvas.SaveAs("rooFit108.png")
Example #12
0
    # kkfit = kkTot.fitTo(traKFitData,Range(fitphimin+0.005,fitphimax-0.005),RooFit.PrintLevel(-1), RooFit.NumCPU(7),RooFit.Save())
    # nfit +=1

    if not debugging:

        kkMean.setConstant(ROOT.kFALSE)
        # kkfit = kkTot.fitTo(traKFitData,Range(fitphimin+0.005,fitphimax-0.005),RooFit.PrintLevel(-1), RooFit.NumCPU(7),RooFit.Save())
        # nfit +=1

        kkGamma.setConstant(ROOT.kFALSE)
        # kkfit = kkTot.fitTo(traKFitData,Range(fitphimin+0.005,fitphimax-0.005),RooFit.PrintLevel(-1), RooFit.NumCPU(7),RooFit.Save())
        # nfit +=1

        kkfit = kkTot.fitTo(traKFitData,
                            Range(fitphimin + 0.005, fitphimax - 0.005),
                            RooFit.NumCPU(7), RooFit.Save())
        nfit += 1

    sigmaside_kk = math.sqrt(kkGamma.getValV()**2 + kkSigma.getValV()**2)

    kkFrame = tt_mass.frame(Range(fitphimin + 0.005, fitphimax - 0.005))

    leftlowside_kk = -6. * sigmaside_kk + kkMean.getValV()
    leftupside_kk = -4. * sigmaside_kk + kkMean.getValV()
    rightlowside_kk = +4. * sigmaside_kk + kkMean.getValV()
    rightupside_kk = +6. * sigmaside_kk + kkMean.getValV()

    signallow = -3. * sigmaside_kk + kkMean.getValV()
    signalup = +3. * sigmaside_kk + kkMean.getValV()
event = 2

xTuple.SetBranchAddress("event", AddressOf(milk, 'price5'))
newfile = TFile("small.root", "recreate")
newtree = xTuple.CloneTree()
newtree.CopyEntries(xTuple)

newtree.Write()

sys.exit()

# In[16]:

file = TFile("newFile.root", "RECREATE")
canvas = TCanvas("canvas", "canvas", 1200, 1000)
mass = RooRealVar("xM", "M(#mu#mu#mu#mu)[GeV]", 5.15, 5.55)
trigger = RooRealVar("trigger", "trigger", 0.0, 10000)
vProb = RooRealVar("vProb", "vProb", -1.0, 1.0)
alldata = RooDataSet("alldata", "alldata", xTuple, RooArgSet(mass),
                     RooFormulaVar("vProb", "vProb", "vProb>0.01",
                                   RooArgList(vProb)))  #,cutFormula)
frame = mass.frame(Range(5.15, 5.55))
alldata.plotOn(frame, RooLinkedList())
alldata.Write()
frame.Draw()

# In[ ]:

canvas.SaveAs("testCanvas.eps")
Example #14
0
#xb->setRange("alt","x_coarse_bin1,x_coarse_bin3,x_coarse_bin5,x_coarse_bin7,x_coarse_bin9") ;
b0dataNonPrompt = ((
    alldata.reduce('xHlt!=8')).reduce('xM>5.2')).reduce("xL>3.0")

# In[ ]:

b0dataNonPromptMass = b0dataNonPrompt.reduce(SelectVars(RooArgSet(mass)))
b0dataNonPrompt.numEntries()

# In[ ]:

c = TCanvas("canvas", "canvas", 1200, 800)
mass.setRange("fitRange", massmin, massmax)
mass.setBins(200)
massFrame = mass.frame(Range(massmin, massmax))
b0dataNonPrompt.plotOn(massFrame)
massFrame.Draw()
c.SaveAs("testmass.png")

# In[13]:

phimean = 1.019

sigma = RooRealVar("sigma", "width of gaussian", 0.0013)
gamma = RooRealVar("gamma", "gamma of bw", 0.004253, 0.001, 0.01)
mean = RooRealVar("mean", "mean of gaussian", phimean, phimean - 0.005,
                  phimean + 0.005)

nSig = RooRealVar("nSig", "nSig", 1E6, 0., 5.0E6)
nBkg = RooRealVar("nBkg", "nBkg", 5E5, 0., 5.0E6)
def rooFit111():

    print ">>> setup model..."
    x = RooRealVar("x", "x", -10, 10)
    mean = RooRealVar("mean", "mean of gaussian", 1, -10, 10)
    sigma = RooRealVar("sigma", "width of gaussian", 1, 0.1, 10)
    gauss = RooGaussian("gauss", "gaussian PDF", x, mean, sigma)

    print ">>> create and plot derivatives wrt x..."
    dgdx = gauss.derivative(x, 1)  # RooAbsReal
    d2gdx2 = gauss.derivative(x, 2)  # RooAbsReal
    d3gdx3 = gauss.derivative(x, 3)  # RooAbsReal

    print ">>> plot gaussian and its first two derivatives..."
    frame1 = x.frame(Title("d^{n}(Gauss)/dx^{n}"))  # RooPlot
    norm1 = 10
    gauss.plotOn(frame1, LineColor(kBlue), Name(gauss.GetName()),
                 Normalization(norm1))
    dgdx.plotOn(frame1, LineColor(kMagenta), Name("dgdx"))
    d2gdx2.plotOn(frame1, LineColor(kRed), Name("d2gdx2"))
    d3gdx3.plotOn(frame1, LineColor(kOrange), Name("d3gdx3"))

    print ">>> create and plot derivatives wrt sigma..."
    dgds = gauss.derivative(sigma, 1)  # RooAbsReal
    d2gds2 = gauss.derivative(sigma, 2)  # RooAbsReal
    d3gds3 = gauss.derivative(sigma, 3)  # RooAbsReal

    print ">>> plot gaussian and its first two derivatives..."
    frame2 = sigma.frame(Title("d^{n}(Gauss)/d(sigma)^{n}"),
                         Range(0., 2.))  # RooPlot
    (norm2, norm21, norm22) = (8000, 15, 5)
    gauss.plotOn(frame2, LineColor(kBlue), Name(gauss.GetName()),
                 Normalization(norm2))
    dgds.plotOn(frame2, LineColor(kMagenta), Name("dgds"),
                Normalization(norm21))
    d2gds2.plotOn(frame2, LineColor(kRed), Name("d2gds2"),
                  Normalization(norm22))
    d3gds3.plotOn(frame2, LineColor(kOrange), Name("d3gds3"))

    print ">>> draw pdfs and fits on canvas..."
    canvas = TCanvas("canvas", "canvas", 100, 100, 1400, 600)
    legend1 = TLegend(0.22, 0.85, 0.4, 0.65)
    legend2 = TLegend(0.60, 0.85, 0.8, 0.65)
    for legend in [legend1, legend2]:
        legend.SetTextSize(0.032)
        legend.SetBorderSize(0)
        legend.SetFillStyle(0)
    canvas.Divide(2)
    canvas.cd(1)
    gPad.SetLeftMargin(0.15)
    gPad.SetRightMargin(0.02)
    frame1.GetYaxis().SetLabelOffset(0.008)
    frame1.GetYaxis().SetTitleOffset(1.6)
    frame1.GetYaxis().SetTitleSize(0.045)
    frame1.GetXaxis().SetTitleSize(0.045)
    frame1.Draw()
    legend1.AddEntry(gauss.GetName(), "gaussian G (#times%s)" % norm1, 'L')
    legend1.AddEntry("dgdx", "d(G)/dx", 'L')
    legend1.AddEntry("d2gdx2", "d^{2}(G)/dx^{2}", 'L')
    legend1.AddEntry("d3gdx3", "d^{3}(G)/dx^{3}", 'L')
    legend1.Draw()
    canvas.cd(2)
    gPad.SetLeftMargin(0.15)
    gPad.SetRightMargin(0.02)
    frame2.GetYaxis().SetLabelOffset(0.008)
    frame2.GetYaxis().SetTitleOffset(1.6)
    frame2.GetYaxis().SetTitleSize(0.045)
    frame2.GetXaxis().SetTitleSize(0.045)
    frame2.Draw()
    legend2.AddEntry(gauss.GetName(), "gaussian G (#times%s)" % norm2, 'L')
    legend2.AddEntry("dgds", "d(G)/ds (#times%s)" % norm21, 'L')
    legend2.AddEntry("d2gds2", "d^{2}(G)/ds^{2} (#times%s)" % norm22, 'L')
    legend2.AddEntry("d3gds3", "d^{3}(G)/ds^{3}", 'L')
    legend2.Draw()
    canvas.SaveAs("rooFit111.png")
        a3.setConstant(kTRUE)
        a4.setConstant(kTRUE)
        a5.setConstant(kTRUE)
        # a6.setConstant(kTRUE)

        kkMean.setConstant(kFALSE)
        # kkfit = kkTot.fitTo(traKFitData,Range(fitphimin+0.005,fitphimax-0.005),RooFit.PrintLevel(-1), RooFit.NumCPU(7),RooFit.Save())
        # nfit +=1

        kkGamma.setConstant(kFALSE)
        # kkfit = kkTot.fitTo(traKFitData,Range(fitphimin+0.005,fitphimax-0.005),RooFit.PrintLevel(-1), RooFit.NumCPU(7),RooFit.Save())
        # nfit +=1

        #kkfit = kkTot.fitTo(traKFitData,Range(fitphimin+0.005,fitphimax-0.005), RooFit.NumCPU(7),RooFit.Save())

    kkfit = kkTot.fitTo(traKFitData, Range(fitphimin, fitphimax),
                        RooFit.PrintLevel(-1), RooFit.NumCPU(numcpus),
                        RooFit.Save())
    nfit += 1

    sigmaside_kk = math.sqrt(kkGamma.getValV()**2 + kkSigma.getValV()**2)
    sigmaside_kk = kkGamma.getValV()
    if debugging:
        sigmaside_kk = 0.001

    leftlowside = -sidehigh * sigmaside_kk + kkMean.getValV()
    leftupside = -sidelow * sigmaside_kk + kkMean.getValV()
    rightlowside = +sidelow * sigmaside_kk + kkMean.getValV()
    rightupside = +sidehigh * sigmaside_kk + kkMean.getValV()

    signallow = -signalside * sigmaside_kk + kkMean.getValV()
Example #17
0
B_1 = RooRealVar("B_{1}", "B_1 ", 0.3, -20, 100)
B_2 = RooRealVar("B_{2}", "B_2", 0.3, -20, 100)
B_3 = RooRealVar("B_{3}", "B_3", 0.3, -20, 100)
B_4 = RooRealVar("B_{4}", "B_4", 0.3, -20, 100)

bkg = RooChebychev("pdfB", "pdfB", mass_ref_c_kkk, RooArgList(aset))

tot = RooAddPdf("tot", "g+cheb", RooArgList(signal, bkg),
                RooArgList(nSig, nBkg))

nfits = 0

mean.setConstant(True)
gamma.setConstant(True)
rPhifit = tot.fitTo(splotData, Range(bumin, bumax), RooFit.NumCPU(8),
                    RooFit.Verbose(False))
nfits = nfits + 1

mean.setConstant(True)
gamma.setConstant(False)
rPhifit = tot.fitTo(splotData, Range(bumin, bumax), RooFit.NumCPU(8),
                    RooFit.Verbose(False))
nfits = nfits + 1

mean.setConstant(False)
gamma.setConstant(False)
rPhifit = tot.fitTo(splotData, Range(bumin, bumax), RooFit.NumCPU(8),
                    RooFit.Verbose(False))
nfits = nfits + 1