Example #1
0
def sigma_xy():

    #beam sigma in x and y

    gen = make_gen()
    beam = gen.beam_par

    gx = TGraph(beam.hz.GetNbinsX() + 1)
    gy = TGraph(beam.hz.GetNbinsX() + 1)

    for ibin in range(beam.hz.GetNbinsX() + 1):
        zpos = beam.hz.GetBinCenter(ibin)
        sx = beam.gx[ibin].GetParameter(2)
        sy = beam.gy[ibin].GetParameter(2)

        gx.SetPoint(ibin, zpos, sx)
        gy.SetPoint(ibin, zpos, sy)

    ut.set_graph(gx, rt.kBlue)
    ut.set_graph(gy, rt.kRed)

    can = ut.box_canvas()
    frame = gPad.DrawFrame(-10e3, 0, 15.5e3, 3.3)

    gx.Draw("lsame")
    gy.Draw("lsame")

    gPad.SetGrid()

    ut.invert_col(gPad)
    can.SaveAs("01fig.pdf")
Example #2
0
def acc_both():

    #acceptance for quasi-real photoproduction and for Pythia

    #selection mode, 1 - s1,  2 - s2,  3 - s1 or s2,  4 - ecal,  5 - any

    #acc_qr = acc_quasi_real(False)
    acc_py_s1 = acc_pythia(False, 1)
    acc_py_s2 = acc_pythia(False, 2)
    #acc_py_s12 = acc_pythia(False, 3)
    acc_py_ecal = acc_pythia(False, 4)
    acc_py_all = acc_pythia(False, 5)

    #acc_py = acc_gap("../data/ir6_close/lmon_pythia_5M_beff2_close_5Mevt.root")

    #make the plot
    can = ut.box_canvas()

    #ut.set_graph(acc_qr, rt.kRed)
    #ut.set_graph(acc_py, rt.kBlue, rt.kFullTriangleUp)

    ut.set_graph(acc_py_s1, rt.kYellow+1)
    ut.set_graph(acc_py_s2, rt.kGreen+1)
    #ut.set_graph(acc_py_s12, rt.kBlack)
    ut.set_graph(acc_py_ecal, rt.kBlue)
    ut.set_graph(acc_py_all, rt.kBlack)

    frame = gPad.DrawFrame(-10, 0, 5, 1.1) # 0.3
    frame.Draw()

    #ytit = "Acceptance / {0:.1f} %".format(prec*100)
    ut.put_yx_tit(frame, "Acceptance", "log_{10}(#it{Q}^{2})", 1.6, 1.2)
    frame.Draw()

    ut.set_margin_lbtr(gPad, 0.11, 0.1, 0.03, 0.02)

    gPad.SetGrid()

    #acc_py.Draw("psame")
    #acc_qr.Draw("psame")

    acc_py_s1.Draw("psame")
    acc_py_s2.Draw("psame")
    #acc_py_s12.Draw("psame")
    acc_py_all.Draw("psame")
    acc_py_ecal.Draw("psame")

    #leg = ut.prepare_leg(0.2, 0.82, 0.2, 0.12, 0.035)
    leg = ut.prepare_leg(0.15, 0.78, 0.2, 0.16, 0.035)
    #leg.AddEntry(acc_qr, "Quasi-real photoproduction", "lp")
    #leg.AddEntry(acc_py, "Pythia6", "lp")
    leg.AddEntry(acc_py_s1, "Tagger 1", "lp")
    leg.AddEntry(acc_py_s2, "Tagger 2", "lp")
    #leg.AddEntry(acc_py_s12, "Tagger 1 #bf{or} Tagger 2", "lp")
    leg.AddEntry(acc_py_ecal, "ecal", "lp")
    leg.AddEntry(acc_py_all, "Tagger 1 #bf{or} Tagger 2 #bf{or} ecal", "lp")
    leg.Draw("same")

    #ut.invert_col(rt.gPad)
    can.SaveAs("01fig.pdf")
Example #3
0
def div_xy():

    #beam divergence in x and y

    gen = make_gen()
    beam = gen.beam_par

    gx = TGraph(beam.hz.GetNbinsX() + 1)
    gy = TGraph(beam.hz.GetNbinsX() + 1)

    for ibin in range(beam.hz.GetNbinsX() + 1):
        zpos = beam.hz.GetBinCenter(ibin)
        dx = beam.divx[ibin].GetParameter(2)
        dy = beam.divy[ibin].GetParameter(2)

        gx.SetPoint(ibin, zpos, dx)
        gy.SetPoint(ibin, zpos, dy)

    ut.set_graph(gx, rt.kBlue)
    ut.set_graph(gy, rt.kRed)

    can = ut.box_canvas()
    frame = gPad.DrawFrame(-10e3, 0, 15.5e3, 600e-6)

    gx.Draw("lsame")
    gy.Draw("lsame")

    gPad.SetGrid()

    ut.invert_col(gPad)
    can.SaveAs("01fig.pdf")
Example #4
0
def make_both():

    lqmin = -11
    lqmax = 5
    ymax = 8.5

    gQr = make_qr()
    gPy = make_py()
    gQr10x100 = make_qr_10x100()
    gQr5x41 = make_qr_5x41()

    can = ut.box_canvas()
    frame = gPad.DrawFrame(lqmin, 0, lqmax, ymax)
    frame.Draw()

    xtit = "log_{10}(#it{Q}^{2})"
    ytit = "#frac{d#it{#sigma}}{d(" + xtit + ")} (#mub/GeV^{2})"
    ut.put_yx_tit(frame, ytit, xtit, 1.6, 1.3)

    ut.set_margin_lbtr(gPad, 0.14, 0.1, 0.03, 0.02)

    gQr.Draw("lsame")
    gPy.Draw("lsame")
    gQr10x100.Draw("lsame")
    gQr5x41.Draw("lsame")

    leg = ut.prepare_leg(0.53, 0.83, 0.2, 0.1, 0.035)
    leg.AddEntry(gPy, "Pythia6", "l")
    leg.AddEntry(gQr, "Quasi-real photoproduction", "l")
    leg.AddEntry(gQr10x100, "Quasi-real 10x100", "l")
    leg.Draw("same")

    ut.invert_col(rt.gPad)
    can.SaveAs("01fig.pdf")
def drawrange(x, y, xtit="", ytit=""):
    if type(x) != type([]):
        if xtit == "":
            xtit = x.GetXaxis().GetTitle()
        x = [x.GetXaxis().GetBinLowEdge(1), x.GetXaxis().GetBinUpEdge(x.GetNbinsX())]
    ldrawn.append(gPad.DrawFrame(x[0], y[0], x[1], y[1], ";" + xtit + ";" + ytit))
    ldrawn[-1].GetYaxis().CenterTitle()
Example #6
0
def evt_Log10_Q2_ecal_compare():

    #compare log_10(Q^2) from ecal for two separate inputs

    infile1 = "../data/ir6/lmon_pythia_5M_beff2_5Mevt_v2.root"
    #infile2 = "../data/ir6_close/lmon_pythia_5M_beff2_close_5Mevt.root"
    #infile2 = "../data/ir6/lmon_pythia_5M_beff2_1p5T_5Mevt.root"
    infile2 = "../data/ir6/lmon_pythia_5M_beff2_1p5T_5Mevt_v2.root"

    lqbin = 5e-2
    lqmin = -2.5
    lqmax = 2.5

    inp1 = TFile.Open(infile1)
    inp2 = TFile.Open(infile2)
    tree1 = inp1.Get("DetectorTree")
    tree2 = inp2.Get("DetectorTree")

    hQ2ecal = ut.prepare_TH1D("hQ2ecal", lqbin, lqmin, lqmax)
    hQ2ecal_close = ut.prepare_TH1D("hQ2ecal_close", lqbin, lqmin, lqmax)

    tree1.Draw(gL10Q2 + " >> hQ2ecal", "ecal_IsHit==1")
    tree2.Draw(gL10Q2 + " >> hQ2ecal_close", "ecal_IsHit==1")

    print "All events:", hQ2ecal.GetEntries()
    #print "Selected  :", hLog10Q2Tag.GetEntries()

    can = ut.box_canvas()
    frame = gPad.DrawFrame(lqmin, 10, lqmax, 1e5)
    frame.Draw()

    ytit = "Events / {0:.3f}".format(lqbin)
    ut.put_yx_tit(frame, ytit, "log_{10}(#it{Q}^{2})", 1.4, 1.2)

    ut.set_margin_lbtr(gPad, 0.1, 0.1, 0.03, 0.02)

    ut.line_h1(hQ2ecal, rt.kBlue, 3)
    ut.line_h1(hQ2ecal_close, rt.kRed, 3)

    #hQ2ecal.SetMinimum(10)

    gPad.SetLogy()
    gPad.SetGrid()

    hQ2ecal.Draw("e1same")
    hQ2ecal_close.Draw("e1same")

    #hLog10Q2.SetMaximum(2e5) # for qr

    leg = ut.prepare_leg(0.6, 0.83, 0.2, 0.1, 0.035)
    #leg.AddEntry(hLog10Q2, "All electrons from quasi-real photoproduction", "l")
    #leg.AddEntry(hLog10Q2, "All Pythia6 scattered electrons", "l")
    #leg.AddEntry(hLog10Q2Tag, "Electrons hitting the tagger", "l")
    leg.AddEntry(hQ2ecal, "Default geometry", "l")
    #leg.AddEntry(hQ2ecal_close, "Magnets in central det", "l")
    leg.AddEntry(hQ2ecal_close, "1.5T solenoid", "l")
    leg.Draw("same")

    #ut.invert_col(rt.gPad)
    can.SaveAs("01fig.pdf")
Example #7
0
def eta():

    #acceptance in electron polar angle as  pi - theta  in mrad

    i1 = "/home/jaroslav/sim/lmon/data/taggers/tag1a/hits_tag.root"
    i2 = "/home/jaroslav/sim/lmon/data/taggers/tag1ax1/hits_tag.root"

    #tag = ["s1_IsHit", "Tagger 1", 0.15]
    tag = ["s2_IsHit", "Tagger 2", 0.3]

    in1 = TFile.Open(i1)
    t1 = in1.Get("event")
    in2 = TFile.Open(i2)
    t2 = in2.Get("event")

    #eta
    xmin = -17
    xmax = -3

    a1 = rt.acc_Q2_kine(t1, "true_el_theta", tag[0])
    a1.modif = 0  # eta from theta
    a1.prec = 0.01
    a1.bmin = 0.1
    #a1.nev = int(1e5)
    g1 = a1.get()

    a2 = rt.acc_Q2_kine(t2, "true_el_theta", tag[0])
    a2.modif = 0  # eta from theta
    a2.prec = 0.01
    a2.bmin = 0.1
    #a2.nev = int(1e5)
    g2 = a2.get()

    can = ut.box_canvas()

    frame = gPad.DrawFrame(xmin, 0, xmax, tag[2])
    ut.put_yx_tit(frame, "Tagger acceptance",
                  "Electron pseudorapidity #it{#eta}", 1.6, 1.3)

    frame.Draw()

    ut.set_margin_lbtr(gPad, 0.11, 0.1, 0.03, 0.02)

    ut.set_graph(g1, rt.kRed)
    g1.Draw("psame")

    ut.set_graph(g2, rt.kBlue)
    g2.Draw("psame")

    gPad.SetGrid()

    leg = ut.prepare_leg(0.15, 0.8, 0.24, 0.14, 0.035)  # x, y, dx, dy, tsiz
    leg.AddEntry("", tag[1], "")
    leg.AddEntry(g1, "Quasi-real photoproduction", "lp")
    leg.AddEntry(g2, "Pythia 6", "lp")
    leg.Draw("same")

    #ut.invert_col(rt.gPad)
    can.SaveAs("01fig.pdf")
Example #8
0
def energy():

    #acceptance in electron energy

    i1 = "/home/jaroslav/sim/lmon/data/taggers/tag1a/hits_tag.root"
    i2 = "/home/jaroslav/sim/lmon/data/taggers/tag1ax1/hits_tag.root"

    #tag = ["s1_IsHit", "Tagger 1", 2]
    tag = ["s2_IsHit", "Tagger 2", 11]

    in1 = TFile.Open(i1)
    t1 = in1.Get("event")
    in2 = TFile.Open(i2)
    t2 = in2.Get("event")

    #mrad
    xmin = tag[2]
    xmax = 19

    amax = 0.9

    a1 = rt.acc_Q2_kine(t1, "true_el_E", tag[0])
    a1.prec = 0.05
    a1.bmin = 0.1
    #a1.nev = int(1e5)
    g1 = a1.get()

    a2 = rt.acc_Q2_kine(t2, "true_el_E", tag[0])
    a2.prec = 0.05
    a2.bmin = 0.1
    #a2.nev = int(1e5)
    g2 = a2.get()

    can = ut.box_canvas()

    frame = gPad.DrawFrame(xmin, 0, xmax, amax)
    ut.put_yx_tit(frame, "Tagger acceptance", "Electron energy #it{E} (GeV)",
                  1.6, 1.3)

    frame.Draw()

    ut.set_margin_lbtr(gPad, 0.11, 0.1, 0.03, 0.02)

    ut.set_graph(g1, rt.kRed)
    g1.Draw("psame")

    ut.set_graph(g2, rt.kBlue)
    g2.Draw("psame")

    gPad.SetGrid()

    leg = ut.prepare_leg(0.15, 0.8, 0.24, 0.14, 0.035)  # x, y, dx, dy, tsiz
    leg.AddEntry("", tag[1], "")
    leg.AddEntry(g1, "Quasi-real photoproduction", "lp")
    leg.AddEntry(g2, "Pythia 6", "lp")
    leg.Draw("same")

    #ut.invert_col(rt.gPad)
    can.SaveAs("01fig.pdf")
Example #9
0
def acc_mlt_theta_s12():

    #acceptance in electron polar angle as  -log10(pi - theta)  in mrad for tagger 1 and tagger 2

    #inp = "/home/jaroslav/sim/lmon/data/taggers/tag1a/hits_tag.root"
    #inp = "/home/jaroslav/sim/lmon/data/taggers/tag1ax1/hits_tag.root"
    inp = "/home/jaroslav/sim/lmon/data/taggers/tag2a/hits_tag_10files.root"

    infile = TFile.Open(inp)
    tree = infile.Get("event")

    #mrad
    tmin = 1.5
    tmax = 7.5

    #amax = 0.3
    amax = 1

    as1 = rt.acc_Q2_kine(tree, "true_el_theta", "s1_IsHit")
    as1.modif = 3 # -log10(pi - theta)
    as1.prec = 0.05
    as1.bmin = 0.1
    #as1.nev = int(1e5)
    gs1 = as1.get()

    as2 = rt.acc_Q2_kine(tree, "true_el_theta", "s2_IsHit")
    as2.modif = 3 # -log10(pi - theta)
    as2.prec = 0.05
    as2.bmin = 0.1
    #as2.nev = int(1e5)
    gs2 = as2.get()

    can = ut.box_canvas()

    frame = gPad.DrawFrame(tmin, 0, tmax, amax)
    ut.put_yx_tit(frame, "Acceptance", "Electron -log_{10}(#pi - #it{#theta}_{e})", 1.6, 1.3)

    frame.Draw()

    ut.set_margin_lbtr(gPad, 0.11, 0.1, 0.03, 0.02)

    ut.set_graph(gs1, rt.kBlue)
    gs1.Draw("psame")

    ut.set_graph(gs2, rt.kRed)
    gs2.Draw("psame")

    gPad.SetGrid()

    #leg = ut.prepare_leg(0.15, 0.78, 0.24, 0.16, 0.035) # x, y, dx, dy, tsiz
    #leg.AddEntry(None, "Tagger 1", "")
    #leg.AddEntry(glQ2Py, "Pythia6", "l")
    #leg.AddEntry(glQ2Qr, "QR", "l")
    #leg.Draw("same")

    ut.invert_col(rt.gPad)
    can.SaveAs("01fig.pdf")
Example #10
0
def acc_gap_both():

    #acceptance in gap between taggers and ecal

    lqmin = -2.9
    lqmax = -0.2
    #lqmin = -8
    #lqmax = 3

    acc_py = acc_gap("../data/ir6/lmon_pythia_5M_beff2_5Mevt_v2.root", lqmin, lqmax)
    #acc_py = acc_gap("../data/ir6/lmon_pythia_5M_beff2_NoSol_5Mevt.root", lqmin, lqmax)
    #acc_py_close = acc_gap("../data/ir6_close/lmon_pythia_5M_beff2_close_5Mevt.root", -2.4, 0)
    #acc_py_close = acc_gap("../data/ir6/lmon_pythia_5M_beff2_1p5T_5Mevt.root", -2.9, -0.2)
    acc_py_close = acc_gap("../data/ir6/lmon_pythia_5M_beff2_1p5T_5Mevt_v2.root", lqmin, lqmax)
    #acc_py_close = acc_gap("../data/ir6/lmon_pythia_5M_beff2_5Mevt_v2.root", lqmin, lqmax)
    #acc_py_close = acc_gap("../data/ir6/lmon_pythia_5M_beff2_NoSol_5Mevt_v2.root", lqmin, lqmax)
    #acc_py_3 = acc_gap("../data/ir6/lmon_pythia_5M_beff2_NoSol_5Mevt.root", lqmin, lqmax)

    #make the plot
    can = ut.box_canvas()

    ut.set_graph(acc_py, rt.kBlue)
    ut.set_graph(acc_py_close, rt.kRed)
    #ut.set_graph(acc_py_3, rt.kGreen)

    #frame = gPad.DrawFrame(-3, 0, 0.1, 1.1)
    frame = gPad.DrawFrame(-3, 0.03, 0.1, 1.4) # for log scale
    #frame = gPad.DrawFrame(-10, 0, 4, 1.1)
    frame.Draw()

    #ytit = "Acceptance / {0:.1f} %".format(prec*100)
    ut.put_yx_tit(frame, "Acceptance", "log_{10}(#it{Q}^{2})", 1.6, 1.2)
    frame.Draw()

    ut.set_margin_lbtr(gPad, 0.11, 0.1, 0.03, 0.02)

    gPad.SetGrid()

    gPad.SetLogy()
    frame.GetYaxis().SetMoreLogLabels()

    acc_py.Draw("psame")
    acc_py_close.Draw("psame")
    #acc_py_3.Draw("psame")

    leg = ut.prepare_leg(0.2, 0.84, 0.2, 0.1, 0.035)
    #leg.AddEntry(acc_qr, "Quasi-real photoproduction", "lp")
    #leg.AddEntry(acc_py, "Pythia6", "lp")
    leg.AddEntry(acc_py, "Default geometry", "lp")
    #leg.AddEntry(acc_py_close, "Magnets in central det", "lp")
    leg.AddEntry(acc_py_close, "1.5T solenoid", "lp")
    #leg.AddEntry(acc_py_3, "No solenoid", "lp")
    leg.Draw("same")

    #ut.invert_col(rt.gPad)
    can.SaveAs("01fig.pdf")
Example #11
0
def plot_dSigDe_all():

    # dSigma / dEgamma over all energies, ZEUS parametrization

    parse = ConfigParser.RawConfigParser()
    parse.add_section("main")
    parse.set("main", "emin", "0.1")  # GeV

    parse.set("main", "Ee", "18")
    parse.set("main", "Ep", "275")
    sig_top = gen_zeus(parse).dSigDe

    parse.set("main", "Ee", "10")
    parse.set("main", "Ep", "110")
    sig_mid = gen_zeus(parse).dSigDe

    parse.set("main", "Ee", "5")
    parse.set("main", "Ep", "41")
    sig_low = gen_zeus(parse).dSigDe

    gStyle.SetPadTickY(1)
    can = ut.box_canvas()

    frame = gPad.DrawFrame(0.1, 1, 19, 80)
    frame.Draw()

    ut.set_F1(sig_top)
    ut.set_F1(sig_mid, rt.kYellow + 1)
    ut.set_F1(sig_low, rt.kBlue)

    sig_top.Draw("same")
    sig_mid.Draw("same")
    sig_low.Draw("same")

    ytit = "d#sigma / d#it{E}_{#gamma} (mb/GeV)"
    xtit = "#it{E}_{#gamma} (GeV)"
    ut.put_yx_tit(frame, ytit, xtit, 1.6, 1.4)

    ut.set_margin_lbtr(gPad, 0.12, 0.1, 0.01, 0.01)

    frame.GetYaxis().SetMoreLogLabels()

    leg = ut.prepare_leg(0.65, 0.77, 0.24, 0.16, 0.035)  # x, y, dx, dy, tsiz
    leg.AddEntry(sig_top, "18 #times 275 GeV", "l")
    leg.AddEntry(sig_mid, "10 #times 100 GeV", "l")
    leg.AddEntry(sig_low, "5 #times 41 GeV", "l")
    leg.Draw("same")

    gPad.SetLogy()

    gPad.SetGrid()

    ut.invert_col(gPad)
    can.SaveAs("01fig.pdf")
Example #12
0
def acc_eta_s2():

    #Tagger 2 pseudorapidity

    emin = -17
    emax = -3

    amax = 0.3

    acc_qr = rt.acc_Q2_kine(tree_qr, "true_el_theta", "lowQ2s2_IsHit")
    acc_qr.modif = 0  # eta from theta
    acc_qr.prec = 0.01
    acc_qr.bmin = 0.1
    #acc_qr.nev = int(1e5)
    gEtaQr = acc_qr.get()

    #gprint(gPtQr)

    acc_py = rt.acc_Q2_kine(tree_py, "true_el_theta", "lowQ2s2_IsHit")
    acc_py.modif = 0
    acc_py.prec = 0.01
    acc_py.bmin = 0.1
    #acc_py.nev = int(1e5)
    gEtaPy = acc_py.get()

    can = ut.box_canvas()

    frame = gPad.DrawFrame(emin, 0, emax, amax)

    #ytit = "Acceptance / {0:.1f} %".format(acc_qr.prec*100)
    ut.put_yx_tit(frame, "Acceptance", "Electron pseudorapidity #eta", 1.6,
                  1.3)

    frame.Draw()

    ut.set_margin_lbtr(gPad, 0.11, 0.1, 0.03, 0.02)

    ut.set_graph(gEtaQr, rt.kRed)
    gEtaQr.Draw("psame")

    ut.set_graph(gEtaPy, rt.kBlue)
    gEtaPy.Draw("psame")

    gPad.SetGrid()

    leg = ut.prepare_leg(0.15, 0.78, 0.24, 0.16, 0.035)  # x, y, dx, dy, tsiz
    leg.AddEntry(None, "Tagger 2", "")
    leg.AddEntry(gEtaPy, "Pythia6", "l")
    leg.AddEntry(gEtaQr, "QR", "l")
    leg.Draw("same")

    #ut.invert_col(rt.gPad)
    can.SaveAs("01fig.pdf")
Example #13
0
def acc_eta_s12():

    #acceptance in electron pseudorapidity for tagger 1 and tagger 2

    inp = "/home/jaroslav/sim/lmon/data/taggers/tag1a/hits_tag.root"

    infile = TFile.Open(inp)
    tree = infile.Get("event")

    emin = -17
    emax = -3

    amax = 0.3

    as1 = rt.acc_Q2_kine(tree, "true_el_theta", "s1_IsHit")
    as1.modif = 0 # eta from theta
    as1.prec = 0.01
    as1.bmin = 0.1
    #as1.nev = int(1e5)
    gs1 = as1.get()

    as2 = rt.acc_Q2_kine(tree, "true_el_theta", "s2_IsHit")
    as2.modif = 0 # eta from theta
    as2.prec = 0.01
    as2.bmin = 0.1
    #as2.nev = int(1e5)
    gs2 = as2.get()

    can = ut.box_canvas()

    frame = gPad.DrawFrame(emin, 0, emax, amax)
    ut.put_yx_tit(frame, "Acceptance", "Electron pseudorapidity #eta", 1.6, 1.3)

    frame.Draw()

    ut.set_margin_lbtr(gPad, 0.11, 0.1, 0.03, 0.02)

    ut.set_graph(gs1, rt.kBlue)
    gs1.Draw("psame")

    ut.set_graph(gs2, rt.kRed)
    gs2.Draw("psame")

    gPad.SetGrid()

    #leg = ut.prepare_leg(0.15, 0.78, 0.24, 0.16, 0.035) # x, y, dx, dy, tsiz
    #leg.AddEntry(None, "Tagger 1", "")
    #leg.AddEntry(glQ2Py, "Pythia6", "l")
    #leg.AddEntry(glQ2Qr, "QR", "l")
    #leg.Draw("same")

    ut.invert_col(rt.gPad)
    can.SaveAs("01fig.pdf")
Example #14
0
def el_eta_beff():

    #electron pseudorapidity eta and angular divergence

    xbin = 0.1
    xmin = -20
    xmax = 10

    qrpy = 0
    if qrpy == 0:
        tree = tree_qr
        lab_data = "QR"
        col = rt.kBlue
    else:
        tree = tree_py
        lab_data = "Pythia6"
        col = rt.kRed

    can = ut.box_canvas()

    hE = ut.prepare_TH1D("hE", xbin, xmin, xmax)
    hB = ut.prepare_TH1D("hB", xbin, xmin, xmax)

    form = "-TMath::Log(TMath::Tan(true_el_theta/2.))"
    form2 = "-TMath::Log(TMath::Tan(el_theta/2.))"
    tree.Draw(form + " >> hE")
    tree.Draw(form2 + " >> hB")

    ut.line_h1(hE, col)
    ut.line_h1(hB, rt.kViolet)

    vmax = hB.GetMaximum() + 0.1 * hB.GetMaximum()
    frame = gPad.DrawFrame(xmin, 0.5, xmax, vmax)

    ut.put_yx_tit(frame, "Counts", "Electron #eta", 1.6, 1.3)

    frame.Draw()

    ut.set_margin_lbtr(gPad, 0.11, 0.1, 0.05, 0.02)

    gPad.SetGrid()
    #gPad.SetLogy()

    hB.Draw("same")
    hE.Draw("same")

    leg = ut.prepare_leg(0.56, 0.8, 0.24, 0.12, 0.035)  # x, y, dx, dy, tsiz
    leg.AddEntry(hE, lab_data + ", no divergence", "l")
    leg.AddEntry(hB, "Divergence included", "l")
    leg.Draw("same")

    #ut.invert_col(rt.gPad)
    can.SaveAs("01fig.pdf")
Example #15
0
def el_theta_beff():

    #electron polar angle theta and effect of angular divergence

    xbin = 5e-5
    #xmin = TMath.Pi() - 2.2e-2
    xmin = 3.13
    xmax = TMath.Pi() + 0.2e-2

    qrpy = 0
    if qrpy == 0:
        tree = tree_qr
        lab_data = "QR"
        col = rt.kBlue
    else:
        tree = tree_py
        lab_data = "Pythia6"
        col = rt.kRed

    can = ut.box_canvas()

    hT = ut.prepare_TH1D("hT", xbin, xmin, xmax)
    hB = ut.prepare_TH1D("hB", xbin, xmin, xmax)

    tree.Draw("true_el_theta >> hT")
    tree.Draw("el_theta >> hB")

    ut.line_h1(hT, col)
    ut.line_h1(hB, rt.kViolet)

    vmax = hT.GetMaximum() + 0.4 * hT.GetMaximum()
    frame = gPad.DrawFrame(xmin, 1e3, xmax, vmax)

    ut.put_yx_tit(frame, "Counts", "Electron #theta (rad)", 1.6, 1.3)

    frame.Draw()

    ut.set_margin_lbtr(gPad, 0.11, 0.1, 0.03, 0.02)

    gPad.SetGrid()
    gPad.SetLogy()

    hB.Draw("same")
    hT.Draw("same")

    leg = ut.prepare_leg(0.14, 0.8, 0.24, 0.12, 0.035)  # x, y, dx, dy, tsiz
    leg.AddEntry(hT, lab_data + ", no divergence", "l")
    leg.AddEntry(hB, "Divergence included", "l")
    leg.Draw("same")

    #ut.invert_col(rt.gPad)
    can.SaveAs("01fig.pdf")
Example #16
0
def acc_theta_s12():

    #acceptance in electron polar angle for tagger 1 and tagger 2

    inp = "/home/jaroslav/sim/lmon/data/taggers/tag1a/hits_tag.root"
    #inp = "/home/jaroslav/sim/lmon/data/taggers/tag1ax1/hits_tag.root"

    infile = TFile.Open(inp)
    tree = infile.Get("event")

    tmin = TMath.Pi() - 1.1e-2
    tmax = TMath.Pi() + 1e-3

    #amax = 0.25
    amax = 0.4

    as1 = rt.acc_Q2_kine(tree, "true_el_theta", "s1_IsHit")
    as1.prec = 0.1
    as1.bmin = 2e-4
    #as1.nev = int(1e5)
    gs1 = as1.get()

    as2 = rt.acc_Q2_kine(tree, "true_el_theta", "s2_IsHit")
    as2.prec = 0.1
    as2.bmin = 2e-4
    #as2.nev = int(1e5)
    gs2 = as2.get()

    can = ut.box_canvas()

    frame = gPad.DrawFrame(tmin, 0, tmax, amax)
    ut.put_yx_tit(frame, "Tagger acceptance", "Electron polar angle #it{#theta} (rad)", 1.6, 1.3)

    frame.Draw()

    ut.set_margin_lbtr(gPad, 0.11, 0.1, 0.03, 0.02)

    ut.set_graph(gs1, rt.kRed)
    gs1.Draw("psame")

    ut.set_graph(gs2, rt.kBlue)
    gs2.Draw("psame")

    gPad.SetGrid()

    leg = ut.prepare_leg(0.15, 0.82, 0.24, 0.12, 0.035) # x, y, dx, dy, tsiz
    leg.AddEntry(gs1, "Tagger 1", "lp")
    leg.AddEntry(gs2, "Tagger 2", "lp")
    leg.Draw("same")

    ut.invert_col(rt.gPad)
    can.SaveAs("01fig.pdf")
Example #17
0
def acc_en_s1():

    #Tagger 1 energy

    emin = 0
    emax = 15

    amax = 1

    acc_qr = rt.acc_Q2_kine(tree_qr, "true_el_E", "lowQ2s1_IsHit")
    acc_qr.prec = 0.05
    acc_qr.bmin = 0.1
    #acc_qr.nev = int(1e5)
    gEnQr = acc_qr.get()

    #gprint(gPtQr)

    acc_py = rt.acc_Q2_kine(tree_py, "true_el_E", "lowQ2s1_IsHit")
    acc_py.prec = 0.05
    acc_py.bmin = 0.1
    #acc_py.nev = int(1e5)
    gEnPy = acc_py.get()

    can = ut.box_canvas()

    frame = gPad.DrawFrame(emin, 0, emax, amax)

    #ytit = "Acceptance / {0:.1f} %".format(acc_qr.prec*100)
    ut.put_yx_tit(frame, "Acceptance", "Electron energy #it{E} (GeV)", 1.6,
                  1.3)

    frame.Draw()

    ut.set_margin_lbtr(gPad, 0.11, 0.1, 0.03, 0.02)

    ut.set_graph(gEnQr, rt.kRed)
    gEnQr.Draw("psame")

    ut.set_graph(gEnPy, rt.kBlue)
    gEnPy.Draw("psame")

    gPad.SetGrid()

    leg = ut.prepare_leg(0.15, 0.78, 0.24, 0.16, 0.035)  # x, y, dx, dy, tsiz
    leg.AddEntry(None, "Tagger 1", "")
    leg.AddEntry(gEnPy, "Pythia6", "l")
    leg.AddEntry(gEnQr, "QR", "l")
    leg.Draw("same")

    ut.invert_col(rt.gPad)
    can.SaveAs("01fig.pdf")
Example #18
0
def el_phi_beff():

    #electron azimuthal angle phi

    xbin = 3e-2
    xmin = -TMath.Pi() - 0.3
    xmax = TMath.Pi() + 0.3

    qrpy = 0
    if qrpy == 0:
        tree = tree_qr
        lab_data = "QR"
        col = rt.kBlue
    else:
        tree = tree_py
        lab_data = "Pythia6"
        col = rt.kRed

    can = ut.box_canvas()

    hP = ut.prepare_TH1D("hP", xbin, xmin, xmax)
    hB = ut.prepare_TH1D("hB", xbin, xmin, xmax)

    tree.Draw("true_el_phi >> hP")
    tree.Draw("el_phi >> hB")

    ut.line_h1(hP, col)
    ut.line_h1(hB, rt.kViolet)

    vmax = hP.GetMaximum() + 0.5 * hP.GetMaximum()
    frame = gPad.DrawFrame(xmin, 0.5, xmax, vmax)

    ut.put_yx_tit(frame, "Counts", "Electron #phi (rad)", 1.6, 1.3)

    frame.Draw()

    ut.set_margin_lbtr(gPad, 0.11, 0.1, 0.05, 0.02)

    gPad.SetGrid()
    #gPad.SetLogy()

    hB.Draw("same")
    hP.Draw("same")

    leg = ut.prepare_leg(0.55, 0.8, 0.24, 0.12, 0.035)  # x, y, dx, dy, tsiz
    leg.AddEntry(hP, lab_data + ", no divergence", "l")
    leg.AddEntry(hB, "Divergence included", "l")
    leg.Draw("same")

    #ut.invert_col(rt.gPad)
    can.SaveAs("01fig.pdf")
Example #19
0
def acc_phi_s2():

    #Tagger 2 phi

    pmin = -TMath.Pi() - 0.3
    pmax = TMath.Pi() + 0.3

    amax = 0.3

    acc_qr = rt.acc_Q2_kine(tree_qr, "true_el_phi", "lowQ2s2_IsHit")
    acc_qr.prec = 0.01
    #acc_qr.bmin = 2e-4
    #acc_qr.nev = int(1e5)
    gPhiQr = acc_qr.get()

    #gprint(gPtQr)

    acc_py = rt.acc_Q2_kine(tree_py, "true_el_phi", "lowQ2s2_IsHit")
    acc_py.prec = 0.01
    #acc_py.bmin = 2e-4
    #acc_py.nev = int(1e4)
    gPhiPy = acc_py.get()

    can = ut.box_canvas()

    frame = gPad.DrawFrame(pmin, 0, pmax, amax)

    #ytit = "Acceptance / {0:.1f} %".format(acc_qr.prec*100)
    ut.put_yx_tit(frame, "Acceptance", "Electron azimuthal angle #phi (rad)",
                  1.6, 1.3)

    frame.Draw()

    ut.set_margin_lbtr(gPad, 0.11, 0.1, 0.03, 0.02)

    ut.set_graph(gPhiQr, rt.kRed)
    gPhiQr.Draw("psame")

    ut.set_graph(gPhiPy, rt.kBlue)
    gPhiPy.Draw("psame")

    gPad.SetGrid()

    leg = ut.prepare_leg(0.72, 0.78, 0.24, 0.16, 0.035)  # x, y, dx, dy, tsiz
    leg.AddEntry(None, "Tagger 2", "")
    leg.AddEntry(gPhiPy, "Pythia6", "l")
    leg.AddEntry(gPhiQr, "QR", "l")
    leg.Draw("same")

    #ut.invert_col(rt.gPad)
    can.SaveAs("01fig.pdf")
Example #20
0
def conv_theta():

    #conversion probablity as a function of polar angle theta

    tbin = 2e-4
    tmin = 0
    tmax = 2.5e-3

    prec = 0.01
    delt = 1e-6

    gROOT.LoadMacro("get_ew_conv.C")
    #hEffV1 = rt.get_ew_conv(tree_v1, "phot_theta", "ew_conv", prec, delt, -1., TMath.Pi())
    hEffV2 = rt.get_ew_conv(tree_v2, "phot_theta", "ew_conv", prec, delt, -1.,
                            TMath.Pi())

    #hEffV1 = get_eff(tree_v1, "TMath::Pi()-phot_theta", "ew_conv", tbin, tmin, tmax)
    #hEffV2 = get_eff(tree_v2, "TMath::Pi()-phot_theta", "ew_conv", tbin, tmin, tmax)

    #ut.set_graph(hEffV1, rt.kBlue)
    #ut.set_graph(hEffV2, rt.kRed, rt.kFullTriangleUp)
    #hEffV2.SetMarkerSize(1.5)
    ut.set_graph(hEffV2)

    #plot the probability
    can = ut.box_canvas()

    frame = gPad.DrawFrame(tmin, 0.065, tmax, 0.095)

    frame.SetXTitle("Generated #vartheta (rad)")
    frame.SetYTitle("Conversion probability")

    frame.SetTitleOffset(2.1, "Y")
    frame.SetTitleOffset(1.5, "X")

    ut.set_margin_lbtr(gPad, 0.14, 0.11, 0.02, 0.01)

    frame.Draw()

    #hEffV1.Draw("psame")
    hEffV2.Draw("psame")

    leg = ut.prepare_leg(0.2, 0.84, 0.2, 0.1, 0.035)
    #leg.AddEntry(hEffV1, "Tilted plane", "lp")
    leg.AddEntry(hEffV2, "Half-cylinder", "lp")
    #leg.Draw("same")

    gPad.SetLogx()

    #ut.invert_col(rt.gPad)
    can.SaveAs("01fig.pdf")
Example #21
0
def acc_theta_s1():

    tmin = TMath.Pi() - 2.1e-2
    tmax = TMath.Pi() + 0.5e-2

    amax = 0.08

    acc_qr = rt.acc_Q2_kine(tree_qr, "true_el_theta", "lowQ2s1_IsHit")
    acc_qr.prec = 0.05
    acc_qr.bmin = 2e-4
    #acc_qr.nev = int(1e5)
    gThetaQr = acc_qr.get()

    #gprint(gPtQr)

    acc_py = rt.acc_Q2_kine(tree_py, "true_el_theta", "lowQ2s1_IsHit")
    acc_py.prec = 0.05
    acc_py.bmin = 2e-4
    #acc_py.nev = int(1e4)
    gThetaPy = acc_py.get()

    can = ut.box_canvas()

    frame = gPad.DrawFrame(tmin, 0, tmax, amax)

    #ytit = "Acceptance / {0:.1f} %".format(acc_qr.prec*100)
    ut.put_yx_tit(frame, "Acceptance", "Electron polar angle #theta (rad)",
                  1.6, 1.3)

    frame.Draw()

    ut.set_margin_lbtr(gPad, 0.11, 0.1, 0.03, 0.02)

    ut.set_graph(gThetaQr, rt.kRed)
    gThetaQr.Draw("psame")

    ut.set_graph(gThetaPy, rt.kBlue)
    gThetaPy.Draw("psame")

    gPad.SetGrid()

    leg = ut.prepare_leg(0.15, 0.78, 0.24, 0.16, 0.035)  # x, y, dx, dy, tsiz
    leg.AddEntry(None, "Tagger 1", "")
    leg.AddEntry(gThetaPy, "Pythia6", "l")
    leg.AddEntry(gThetaQr, "QR", "l")
    leg.Draw("same")

    ut.invert_col(rt.gPad)
    can.SaveAs("01fig.pdf")
Example #22
0
def acc_lQ2_s2():

    #Tagger 2 log_10(Q^2)

    lQ2min = -10
    lQ2max = 0

    amax = 0.3

    acc_qr = rt.acc_Q2_kine(tree_qr, "true_Q2", "lowQ2s2_IsHit")
    acc_qr.modif = 1  # log_10(Q^2) from Q2
    acc_qr.prec = 0.05
    acc_qr.bmin = 0.1
    #acc_qr.nev = int(1e5)
    glQ2Qr = acc_qr.get()

    acc_py = rt.acc_Q2_kine(tree_py, "true_Q2", "lowQ2s2_IsHit")
    acc_py.modif = 1
    acc_py.prec = 0.05
    acc_py.bmin = 0.1
    #acc_py.nev = int(1e5)
    glQ2Py = acc_py.get()

    can = ut.box_canvas()

    frame = gPad.DrawFrame(lQ2min, 0, lQ2max, amax)
    ut.put_yx_tit(frame, "Acceptance", "Virtuality log_{10}(#it{Q}^{2}) (GeV)",
                  1.6, 1.3)

    frame.Draw()

    ut.set_margin_lbtr(gPad, 0.11, 0.1, 0.03, 0.02)

    ut.set_graph(glQ2Qr, rt.kRed)
    glQ2Qr.Draw("psame")

    ut.set_graph(glQ2Py, rt.kBlue)
    glQ2Py.Draw("psame")

    gPad.SetGrid()

    leg = ut.prepare_leg(0.15, 0.78, 0.24, 0.16, 0.035)  # x, y, dx, dy, tsiz
    leg.AddEntry(None, "Tagger 2", "")
    leg.AddEntry(glQ2Py, "Pythia6", "l")
    leg.AddEntry(glQ2Qr, "QR", "l")
    leg.Draw("same")

    ut.invert_col(rt.gPad)
    can.SaveAs("01fig.pdf")
Example #23
0
def conv_phi():

    #conversion probablity as a function of azimuthal angle phi

    pbin = 0.4
    pmin = -TMath.Pi() - 0.3
    pmax = TMath.Pi() + 0.3

    prec = 0.01
    delt = 1e-6

    gROOT.LoadMacro("get_ew_conv.C")
    #hEffV1 = rt.get_ew_conv(tree_v1, "phot_phi", "ew_conv", prec, delt)
    hEffV2 = rt.get_ew_conv(tree_v2, "phot_phi", "ew_conv", prec, delt)

    #hEffV1 = get_eff(tree_v1, "phot_phi", "ew_conv", pbin, pmin, pmax)
    #hEffV2 = get_eff(tree_v2, "phot_phi", "ew_conv", pbin, pmin, pmax)

    #ut.set_graph(hEffV1, rt.kBlue)
    #ut.set_graph(hEffV2, rt.kRed, rt.kFullTriangleUp)
    #hEffV2.SetMarkerSize(1.5)
    ut.set_graph(hEffV2)

    #plot the probability
    can = ut.box_canvas()

    #frame = gPad.DrawFrame(pmin, 0.075, pmax, 0.087)
    frame = gPad.DrawFrame(pmin, 0.065, pmax, 0.095)

    frame.SetXTitle("Generated #phi (rad)")
    frame.SetYTitle("Conversion probability")

    frame.SetTitleOffset(2.1, "Y")
    frame.SetTitleOffset(1.2, "X")

    ut.set_margin_lbtr(gPad, 0.14, 0.09, 0.02, 0.01)

    frame.Draw()

    #hEffV1.Draw("psame")
    hEffV2.Draw("psame")

    leg = ut.prepare_leg(0.2, 0.84, 0.2, 0.1, 0.035)
    #leg.AddEntry(hEffV1, "Tilted plane", "lp")
    leg.AddEntry(hEffV2, "Half-cylinder", "lp")
    #leg.Draw("same")

    #ut.invert_col(rt.gPad)
    can.SaveAs("01fig.pdf")
Example #24
0
def sigma_en():

    #cross section as a function of electron energy

    emin = 0 # GeV
    emax = 24
    smin = 1e-4
    smax = 1e3 # mb

    ebin = 0.2

    basedir = "/home/jaroslav/sim/GETaLM_data"

    g1 = make_sigma(basedir+"/lumi/lumi_18x275_Lif_emin0p5_T3p3_10Mevt.root", "true_el_E", 0.1, emin, emax, 171.3)
    g2 = make_sigma(basedir+"/qr/qr_18x275_T3p3_5Mevt.root", "true_el_E", ebin, emin, emax, 0.053)
    g3 = make_sigma(basedir+"/py/pythia_ep_18x275_Q2all_beff2_5Mevt.root", "true_el_E", ebin, emin, emax, 0.055)

    can = ut.box_canvas()
    frame = gPad.DrawFrame(emin, smin, emax, smax)
    frame.Draw()

    xtit = "#it{E_{e}}' (GeV)"
    ytit = "#frac{d#it{#sigma}}{d#it{E_{e}}'} (mb/GeV)"
    ut.put_yx_tit(frame, ytit, xtit, 1.6, 1.3)

    ut.set_margin_lbtr(gPad, 0.14, 0.1, 0.02, 0.02)

    g1.SetLineColor(rt.kBlue)
    g2.SetLineColor(rt.kRed)
    g3.SetLineColor(rt.kGreen+1)
    g3.SetLineStyle(rt.kDashed)

    g1.Draw("lsame")
    g2.Draw("lsame")
    g3.Draw("lsame")

    gPad.SetLogy()

    gPad.SetGrid()

    leg = ut.prepare_leg(0.2, 0.75, 0.24, 0.15, 0.035) # x, y, dx, dy, tsiz
    leg.AddEntry(g1, "Bremsstrahlung", "l")
    leg.AddEntry(g2, "Quasi-real", "l")
    leg.AddEntry(g3, "Pythia6", "l")
    leg.Draw("same")

    #ut.invert_col(rt.gPad)
    can.SaveAs("01fig.pdf")
Example #25
0
def plot_dSigDe():

    # dSigma / dEgamma according to ZEUS parametrization

    parse = ConfigParser.RawConfigParser()
    parse.add_section("main")
    parse.set("main", "emin", "6")
    parse.set("main", "Ee", "18")
    parse.set("main", "Ep", "275")
    gen = gen_zeus(parse)
    sig = gen.dSigDe

    gStyle.SetPadTickY(1)
    can = ut.box_canvas()

    #frame = gPad.DrawFrame(6, 0, 29, 6)
    frame = gPad.DrawFrame(5, 0, 19, 7.2)

    sig.SetLineWidth(3)
    sig.SetNpx(1000)
    sig.SetTitle("")
    sig.Draw("same")

    frame.GetXaxis().SetTitle("#it{E}_{#gamma} (GeV)")
    frame.GetYaxis().SetTitle("d#sigma / d#it{E}_{#gamma} (mb/GeV)")

    frame.GetYaxis().SetTitleOffset(1.1)
    frame.GetXaxis().SetTitleOffset(1.3)

    frame.SetTickLength(0.015, "X")
    frame.SetTickLength(0.015, "Y")

    gPad.SetTopMargin(0.02)
    gPad.SetRightMargin(0.01)
    gPad.SetLeftMargin(0.09)

    leg = ut.prepare_leg(0.65, 0.73, 0.24, 0.2, 0.035)  # x, y, dx, dy, tsiz
    leg.AddEntry(sig, "#frac{d#sigma}{d#it{E}_{#gamma}}", "l")
    leg.AddEntry(None, "", "")
    #leg.AddEntry(None, "#it{E}_{e} = 27.6 GeV", "")
    #leg.AddEntry(None, "#it{E}_{p} = 920 GeV", "")
    leg.AddEntry(None, "#it{E}_{e} = 18 GeV", "")
    leg.AddEntry(None, "#it{E}_{p} = 275 GeV", "")
    leg.Draw("same")

    ut.invert_col(gPad)
    can.SaveAs("01fig.pdf")
Example #26
0
def sigma_pitheta():

    #cross section as a function of electron scattering angle as pi - theta in mrad

    tmin = 0 # mrad
    tmax = 25
    smin = 1e-4
    smax = 2e3 # mb

    basedir = "/home/jaroslav/sim/GETaLM_data"

    form = "(TMath::Pi()-true_el_theta)*1e3"

    g1 = make_sigma_2(basedir+"/lumi/lumi_18x275_Lif_emin0p5_T3p3_10Mevt.root", form, 0.2, tmin, tmax, 171.3, 5, 1.2)
    g2 = make_sigma(basedir+"/qr/qr_18x275_T3p3_5Mevt.root", form, 0.2, tmin, tmax, 0.053)
    g3 = make_sigma(basedir+"/py/pythia_ep_18x275_Q2all_beff2_5Mevt.root", form, 0.2, tmin, tmax, 0.055)

    can = ut.box_canvas()
    frame = gPad.DrawFrame(tmin, smin, tmax, smax)
    frame.Draw()

    xtit = "#it{#pi - #theta_{e}}' (mrad)"
    ytit = "#frac{d#it{#sigma}}{d#it{#theta_{e}}'} (mb/mrad)"
    ut.put_yx_tit(frame, ytit, xtit, 1.6, 1.3)

    ut.set_margin_lbtr(gPad, 0.14, 0.1, 0.02, 0.02)
    g1.SetLineColor(rt.kBlue)
    g2.SetLineColor(rt.kRed)
    g3.SetLineColor(rt.kGreen+1)
    g3.SetLineStyle(rt.kDashed)

    g1.Draw("lsame")
    g2.Draw("lsame")
    g3.Draw("lsame")

    leg = ut.prepare_leg(0.6, 0.75, 0.24, 0.15, 0.035) # x, y, dx, dy, tsiz
    leg.AddEntry(g1, "Bremsstrahlung", "l")
    leg.AddEntry(g2, "Quasi-real", "l")
    leg.AddEntry(g3, "Pythia6", "l")
    leg.Draw("same")

    gPad.SetLogy()

    gPad.SetGrid()

    #ut.invert_col(rt.gPad)
    can.SaveAs("01fig.pdf")
Example #27
0
def make_all_E():

    lqmin = -11
    lqmax = 5
    smax = 7.5

    basedir = "/home/jaroslav/sim/lgen/data"

    #sigma in micro barn

    #g18x275 = make_sigma(basedir+"/lgen_18x275_qr_Qe_beff2_5Mevt.root", 55.1)
    #g10x100 = make_sigma(basedir+"/lgen_10x100_qr_5Mevt.root", 44.8)
    #g5x41 = make_sigma(basedir+"/lgen_5x41_qr_5Mevt.root", 33.4)

    g18x275 = make_sigma(basedir+"/lgen_py_18x275_Q2all_5Mevt.root", 54.7)
    g10x100 = make_sigma(basedir+"/lgen_py_10x100_Q2all_5Mevt.root", 40.9)
    g5x41 = make_sigma(basedir+"/lgen_py_5x41_Q2all_5Mevt.root", 28.4)

    can = ut.box_canvas()
    frame = gPad.DrawFrame(lqmin, 0, lqmax, smax)
    frame.Draw()

    xtit = "log_{10}(#it{Q}^{2})"
    ytit = "#frac{d#it{#sigma}}{d("+xtit+")} (#mub/GeV^{2})"
    ut.put_yx_tit(frame, ytit, xtit, 1.6, 1.3)

    ut.set_margin_lbtr(gPad, 0.14, 0.1, 0.01, 0.01)

    g18x275.SetLineColor(rt.kRed)
    g10x100.SetLineColor(rt.kYellow+1)
    g5x41.SetLineColor(rt.kBlue)

    g18x275.Draw("lsame")
    g10x100.Draw("lsame")
    g5x41.Draw("lsame")

    leg = ut.prepare_leg(0.72, 0.8, 0.24, 0.16, 0.035) # x, y, dx, dy, tsiz
    leg.AddEntry(g18x275, "18 #times 275 GeV", "l")
    leg.AddEntry(g10x100, "10 #times 100 GeV", "l")
    leg.AddEntry(g5x41, "5 #times 41 GeV", "l")
    leg.Draw("same")

    gPad.SetGrid()

    ut.invert_col(rt.gPad)
    can.SaveAs("01fig.pdf")
Example #28
0
def acc_pT_s2():

    ptmin = 0
    ptmax = 0.25

    amax = 0.25

    acc_qr = rt.acc_Q2_kine(tree_qr, "true_el_pT", "lowQ2s2_IsHit")
    acc_qr.prec = 0.05
    acc_qr.bmin = 0.003
    #acc_qr.nev = int(1e5)
    gPtQr = acc_qr.get()

    acc_py = rt.acc_Q2_kine(tree_py, "true_el_pT", "lowQ2s2_IsHit")
    acc_py.prec = 0.05
    acc_py.bmin = 0.003
    #acc_py.nev = int(1e4)
    gPtPy = acc_py.get()

    can = ut.box_canvas()

    frame = gPad.DrawFrame(ptmin, 0, ptmax, amax)

    #ytit = "Acceptance / {0:.1f} %".format(acc_qr.prec*100)
    ut.put_yx_tit(frame, "Acceptance", "Electron #it{p}_{T} (GeV)", 1.6, 1.3)

    frame.Draw()

    ut.set_margin_lbtr(gPad, 0.11, 0.1, 0.03, 0.05)

    ut.set_graph(gPtQr, rt.kRed)
    gPtQr.Draw("psame")

    ut.set_graph(gPtPy, rt.kBlue)
    gPtPy.Draw("psame")

    gPad.SetGrid()

    leg = ut.prepare_leg(0.72, 0.78, 0.24, 0.16, 0.035)  # x, y, dx, dy, tsiz
    leg.AddEntry(None, "Tagger 2", "")
    leg.AddEntry(gPtPy, "Pythia6", "l")
    leg.AddEntry(gPtQr, "QR", "l")
    leg.Draw("same")

    #ut.invert_col(rt.gPad)
    can.SaveAs("01fig.pdf")
Example #29
0
def conv_prob_en():

    #conversion probability as a function of photon energy

    #plot range
    emin = 0
    emax = 19
    pmin = 0.05
    pmax = 0.1
    #pmax = 1

    inp = TFile.Open("ew.root")
    tree = inp.Get("conv_tree")

    prec = 0.01
    calc = rt.conv_calc(prec, 1e-6)
    calc.set_tree(tree)
    #calc.nev = 300000

    conv = calc.get_conv()
    calc.release_tree()

    #calc.conv_in_all = True
    #calc.clean_in_sel = True
    #clean = calc.get_conv()

    can = ut.box_canvas()
    frame = gPad.DrawFrame(emin, pmin, emax, pmax)

    ut.put_yx_tit(frame, "Conversion probability", "#it{E}_{#gamma} (GeV)",
                  1.8)

    ut.set_margin_lbtr(gPad, 0.12, 0.09, 0.02, 0.01)

    frame.Draw()
    gPad.SetGrid()

    ut.set_graph(conv, rt.kBlue)
    conv.Draw("psame")

    #ut.set_graph(clean, rt.kRed)
    #clean.Draw("psame")

    ut.invert_col(rt.gPad)
    can.SaveAs("01fig.pdf")
Example #30
0
def pressure_func():

    gen = make_gen()

    #pressure function
    pf = gen.pressure_func

    ut.set_F1(pf, rt.kBlue)

    can = ut.box_canvas()
    frame = gPad.DrawFrame(-5.5e3, 0, 15.5e3, 7e-9)

    pf.Draw("same")

    gPad.SetGrid()

    ut.invert_col(gPad)
    can.SaveAs("01fig.pdf")