Example #1
0
    def createDataSet(self, dname, dcut):
        """Return named dataset, create if not exist"""
        if dname in self.dataset.keys() and not self.process.cfg['args'].force:
            self.logger.logINFO("\033[0;34;47m Dataset: ", dname,
                                " Already Exists! \033[0m. Total Entries:",
                                self.dataset[dname].sumEntries())
            self.logger.logDEBUG(dcut, Stamp=False)
            return 1
        tempfile_preload = ROOT.TFile(tempfile.gettempdir() + "/temp.root",
                                      'RECREATE')  #Pritam
        RooCut = ROOT.RooFit.Cut(dcut)
        Import = ROOT.RooFit.Import(self.ch)
        Range = ROOT.RooFit.CutRange(
            dname.split(".")[2])  # Not taking effect, need review
        Weight = ROOT.RooFit.WeightVar(self.cfg['weight'])
        if self.argset.find("Bmass"):
            self.argset.find(
                "Bmass").removeRange()  # Analysis specific line introduced
        if "dataReader" in dname or "sigMCGENReader" in dname:
            data = RooDataSet(dname, "", self.argset, Import, RooCut, Range)
        else:
            data = RooDataSet(dname, "Weighted dataset", self.argset, Import,
                              RooCut, Range, Weight)

        if self.argset.find("Phimass"):
            self.argset.find("Phimass").setBins(20)
            datahist = ROOT.RooDataHist(
                dname + ".hist", "",
                ROOT.RooArgSet(self.argset.find("Phimass")), data)
            self.dataset[dname + ".hist"] = deepcopy(datahist)
        data.Write()
        self.dataset[dname] = deepcopy(data)
        self.logger.logINFO("\033[0;34;47m Creating Dataset: ", dname,
                            ": \033[0m. Total Entries:", data.sumEntries())
        self.logger.logDEBUG(dcut, Stamp=False)
        tempfile_preload.Close()  #Pritam
        return 1
Example #2
0
dataSetAsymW = RooDataSet( 'asymDataW', 'asymDataW', obsSet, Import = dataSetAsym, WeightVar = ( 'weightVar', True ) )
del dataSetAsym
ws.put(dataSetAsymW)
del dataSetAsymW
dataSetAsymW = ws['asymDataW']
obsSet = RooArgSet( dataSetAsymW.get() )
dataSetAsymW.Print()

# get sums of weights
sumW = dict( plus = 0., minus = 0. )
for evSet in dataSetAsymW :
    if evSet.getCatIndex('asymCat') == 1 :
        sumW['plus'] += dataSetAsymW.weight()
    else :
        sumW['minus'] += dataSetAsymW.weight()
assert abs( dataSetAsymW.sumEntries() - sumW['plus'] - sumW['minus'] ) < 1.e-5
if applyAngWeights :
    ASumW = 2. * sumW['plus'] - ( sumW['plus'] + sumW['minus'] )
else :
    ASumW = 2. * sumW['plus'] / ( sumW['plus'] + sumW['minus'] ) - 1.

# create arrays of time bins
from array import array
timeArr = array( 'd', [ ( periodShift + ( float(it) + binOffset + 0.5 ) / float(numTimeBins) ) * oscPeriod\
                       for it in range( numTimeBins + 1 ) ] )
timeErrArr = array( 'd', [ 0.5 / float(numTimeBins) * oscPeriod ] * ( numTimeBins + 1 ) )
timeArrPdf = array( 'd', [ ( periodShift + ( float(it) + binOffset + float(frac) ) / float(numTimeBins) ) * oscPeriod\
                           for it in range( numTimeBins + 1 ) for frac in timeFracs ]\
                         + [ ( periodShift + 1. + ( 1. + binOffset + float( timeFracs[0] ) ) / float(numTimeBins) ) * oscPeriod ] )
timeErrArrPdf = array( 'd', [ 0. ] * len(timeArrPdf) )
Example #3
0
#  print bin,
#  for val in rVals :
#      print '%s: %.3f - %.3f ' % ( val, t.getMin(val), t.getMax(val) ),
#  for vals in tVals :
#      print '[%s]' % ', '.join( '%.3f' % val for val in vals ),
#  print

# create PDF integrals in bins for plus and minus categories
emptySet = RooArgSet()
timeSet  = RooArgSet( ws['time'] )
angleSet = RooArgSet( ws[varName] for varName in [ 'helcosthetaK', 'helcosthetaL', 'helphi' ] )
intSet   = RooArgSet(timeSet)
intSet.add(angleSet)
from ROOT import RooExplicitNormPdf
asymPdfs = dict(  plus  = RooExplicitNormPdf( 'pdfPlus', 'pdfPlus', timeSet, angleSet, pdf._var, pdf._var
                                             , projDataSets['plus'].sumEntries() / dataSetAsymW.sumEntries(), projDataSets['plus'] )
                , minus = RooExplicitNormPdf( 'pdfMinus', 'pdfMinus', timeSet, angleSet, pdf._var, pdf._var
                                             , projDataSets['minus'].sumEntries() / dataSetAsymW.sumEntries(), projDataSets['minus'] )
               )
asymPdfInts = dict(  plus  = dict( [ ( bin, RooExplicitNormPdf( 'pdfPlus%02d' % bin, 'pdfPlus%02d' % bin, emptySet, intSet, pdf._var
                                                               , pdf._var, projDataSets['plus'].sumEntries() / dataSetAsymW.sumEntries()
                                                               , projDataSets['plus'], ','.join( name for name in rangeNames[bin] )
                                                              ) ) for bin in sorted( rangeNames.keys() )
                                 ] )
                   , minus = dict( [ ( bin, RooExplicitNormPdf( 'pdfMinus%02d' % bin, 'pdfMinus%02d' % bin, emptySet, intSet, pdf._var
                                                               , pdf._var, projDataSets['minus'].sumEntries() / dataSetAsymW.sumEntries()
                                                               , projDataSets['minus'], ','.join( name for name in rangeNames[bin] )
                                                              ) ) for bin in sorted( rangeNames.keys() )
                                 ] )
                  )
Example #4
0
if args[0].startswith('MC'):
    from ROOT import TFile
    sig_file = TFile(input_data['sig_cache'])
    sig_data = sig_file.Get(input_data['sig_dataset'])
    prompt_file = TFile(input_data['prompt_cache'])
    prompt_data = prompt_file.Get(input_data['prompt_dataset'])
else:
    sig_file = TFile("/project/bfys/jleerdam/data/Bs2Jpsiphi/Reco14/fitNTuple_peakBkg_2011_2012_Reco14_TOS_HLT2B_20140415.root")
    sig_tree = sig_file.Get("DecayTree")
    period = 'p' + args[0][:4]
    sig_data = RooDataSet('sig_data', 'sig_data', RooArgSet(momentum, weight, runPeriod),
                          RooFit.Import(sig_tree), RooFit.WeightVar(weight),
                          RooFit.Cut('runPeriod == runPeriod::%s' % period))

    from ROOT import TFile
    prompt_file = TFile(input_data['cache'])
    prompt_data = prompt_file.Get(input_data['dataset'])

    
from ROOT import TCanvas
canvas = TCanvas('momentum_canvas', 'momentum_canvas', 600, 400)
canvas.SetLogy()
frame = momentum.frame(Range = (0, 500000))
from ROOT import kBlue, kGreen
sig_data.plotOn(frame, Rescale = (1 / sig_data.sumEntries()), MarkerColor = kBlue)
prompt_data.plotOn(frame, Rescale = (1 / prompt_data.sumEntries()), MarkerColor = kGreen)
frame.GetXaxis().SetTitle("P_{B} [MeV]")
frame.GetYaxis().SetTitle("scaled candidates")
frame.GetYaxis().SetRangeUser(0.00005, 0.1)
frame.Draw()
    massLb = space.var('lbl0Mass')
    massTkTk = space.var('tktkMass')

    massLb.setBins(50)

    massLb.setRange('sigRangeLb', 5.4, 5.9)

    loadDatasetLb = RooDataSet(
        'loadDatasetLb', 'loadData16', inN16,
        RooArgSet(massLb, massTkTk, space.var('lbl0Pt'))).reduce(
            'tktkMass>1.110&&tktkMass<1.120 &&{0}'.format(ptCut))
    loadDatasetlB = RooDataSet(
        'loadDatasetlB', 'loadData16', inn16,
        RooArgSet(massLb, massTkTk, space.var('lbl0Pt'))).reduce(
            'tktkMass>1.110&&tktkMass<1.120 &&{0}'.format(ptCut))
    totNum = loadDatasetLb.sumEntries()
    space.factory('numLb[{0},-1000.,{1}]'.format(
        space1st.var('numLb').getVal(), totNum))

    simulComponents = []

    # scan Lb likelihood {{{
    # jack's profile likelihood scan
    if sysFitLb:
        label = 'sysLbFit'

        numSig = spaceExt.var('numLb')
        numBkg = spaceExt.var('numCombBkg_Run2016Data_pLbL0')
        varName = 'lbl0Mass'
        figDir.cd()
class ToyDataSetManager(RootHelperBase):
    def __init__(self):
        """Initialize whatever is needed"""
        self.my_logger = Logger()
        self.log = self.my_logger.getLogger(self.__class__.__name__, 10)
        # }
        self.DEBUG = self.my_logger.is_debug()
        self.pp = pprint.PrettyPrinter(indent=4)

        # initialize RooFit
        gSystem.Load("libHiggsAnalysisCombinedLimit.so")
        self.output_filename = "worskapce_with_embedded_toys.root"

    def set_toys_path(self, toys_path):
        """
        Set the path for the toy dataset.There is aleays one active toy held in self.toys.
        """
        self.toys_path = toys_path
        self.toys = self.get_object(path=toys_path, object_type=RooAbsData, clone=False)

    def set_workspace_path(self, ws_path):
        """
        Set the path for the workspace where toys will be included.
        There is only one workspace that can be active in the class.
        """
        self.ws = self.get_object(path=ws_path, object_type=RooWorkspace, clone=False)

    def set_output_file_name(self, output_filename):
        """
        Set the name of the output root file.
        """
        self.output_filename = output_filename

    def set_new_toys_name(self, new_toys_name):
        """
        Set name for toys in the workspace
        """
        self.new_toys_name = new_toys_name

    def import_toys_to_ws(self, ws_path=None, toys_path=None, output_filename=None, new_toys_name=None):
        """
        Imports a given toys dataset (or multiple toys) into the workspace and dumps to new root file.

        Parameters:
        -----------
        ws_path   : path to exisitng workspace (string)
        toys_path : path or list of paths to toys.TODO add regexp parsing to import matching toys.
        output_filename : file name of the output workspace
        new_toys_name : in case of one toy import, a new name can be set. In case of list, the name is set
                        to be the same as in the source file.

        Returns:
        --------
        Returns 0 in case it goes trough without erorrs(?).

        """
        # TODO set checks for the input provided
        if ws_path:
            self.set_workspace_path(ws_path)

        if output_filename:
            self.set_output_file_name(output_filename)
        if new_toys_name:
            self.set_new_toys_name(new_toys_name)

        try:
            self.ws
        except AttributeError:
            raise AttributeError, "You need to provide workspace path."

        if toys_path:
            toys_path_list = []
            if isinstance(toys_path, list):
                toys_path_list = toys_path
            elif isinstance(toys_path, str):
                toys_path_list = [toys_path]

            for the_toy in toys_path_list:
                self.set_toys_path(the_toy)
                toys_name = self.get_paths(the_toy)[-1]  # just getthe name of toys object in the root file.
                self.log.info("Setting toys name in workspace to: {0}".format(toys_name))
                self.set_new_toys_name(toys_name)
                self.toys.SetName(self.new_toys_name)
                getattr(self.ws, "import")(self.toys)
                self.log.info(
                    "Imported DataSet '{0}' into workspace '{1}'.".format(self.toys.GetName(), self.ws.GetName())
                )
        else:
            try:
                self.toys
            except AttributeError:
                raise AttributeError, "You need to provide toys path."

            try:
                self.new_toys_name
            except AttributeError:
                toys_name = self.get_paths(self.toys_path)[-1]  # just getthe name of toys object in the root file.
                self.log.info("Setting toys name in workspace to: {0}".format(toys_name))
                self.set_new_toys_name(toys_name)

            self.toys.SetName(self.new_toys_name)
            getattr(self.ws, "import")(self.toys)
            self.log.info("Imported DataSet '{0}' into workspace '{1}'.".format(self.toys.GetName(), self.ws.GetName()))

        self.ws.data(self.toys.GetName()).Print()
        self.ws.data(self.toys.GetName()).Print("v")

        # write workspace
        self.ws.writeToFile(self.output_filename)
        self.log.info("Writing workspace '{0}' to file {1}".format(self.ws.GetName(), self.output_filename))

        return 0

    def set_dataset_name(self, dataset_name):
        """
        Set name of the dataset in workspace.
        """
        self.dataset_name = dataset_name

    def import_dataset_to_ws(self, dataset, workspace, output_filename=None, new_name=None):
        """
        Import dataset to worspace workspace.
        """
        if new_name:
            dataset.SetName(new_name)
        if output_filename:
            self.set_output_file_name(output_filename)

        self.log.info(
            "Imported DataSet '{0}' into workspace '{1}' and written to file {2}.".format(
                dataset.GetName(), workspace.GetName(), self.output_filename
            )
        )
        pass

    def set_workspace(self, workspace):
        """
        Provide workspace from path naload it to self.ws or
        provide directly workspace and load it to self.ws
        """
        if isinstance(workspace, RooWorkspace):
            self.ws = workspace
            self.log.debug("Loaded in workspace {0}.".format(self.ws.GetName()))
        elif isinstance(workspace, str):
            self.set_workspace_path(self, workspace)
            self.log.debug("Loaded in workspace {0} from path: ".format(workspace))

    def dump_datasets_to_file(self, output_filename=None, access="RECREATE"):
        """
        Write all datasets collected in the basket(RootHelperBase) to a file.
        """
        if output_filename:
            self.set_output_file_name(output_filename)
        self.dump_basket_to_file(self.output_filename, access)
        self.log.info("All items from the basket have been written to file: {0}".format(self.output_filename))
        return 0

    def get_dataset_from_tree(
        self,
        path_to_tree,
        tree_variables,
        weight="1==1",
        weight_var_name=0,
        dataset_name="my_dataset",
        basket=True,
        category=None,
    ):
        """
        Creates RooDataSet from a plain root tree given:
        - variables name list
        - weight expression. It works in the same way as TTree cut.

        Returns:
        --------
        - RooDataSet
        - also fills the basket with datasets (basket inhereted from RootHelperBase class)

        TODO
        ----
        - add implementation for category setting(check in prepare_toy_datasets_for_sync)
            - check if adding toy dataset to each channel workspace individually behaves well
              after combineCards.py.
        """

        # make RooRealVars from tree_variables
        my_arg_set = RooArgSet()
        my_rrv = dict()
        for var_name in tree_variables:
            # TODO implement check that branch exist
            my_rrv[var_name] = RooRealVar(var_name, var_name, -999999999, 999999999)
            my_arg_set.add(my_rrv[var_name])
        if self.DEBUG:
            self.log.debug("RooArgSet is now:")
            my_arg_set.Print()

        # get the tree from path_to_tree
        my_tree = self.get_TTree(path_to_tree, cut=weight)
        self.log.debug("Selected tree contains {0} events".format(my_tree.GetEntries()))
        # create RooDataSet and reduce tree if needed
        # self.dataset_from_tree =  RooDataSet(dataset_name, dataset_name, my_tree, my_arg_set, weight).reduce(my_arg_set)
        self.dataset_from_tree = RooDataSet(dataset_name, dataset_name, my_tree, my_arg_set)
        # self.dataset_from_tree =  RooDataSet(dataset_name, dataset_name, my_tree, my_arg_set, "", weight_var_name)
        # data[j]=new RooDataSet(Form("data%d",j),Form("data%d",j),outTree,RooArgSet(rCMS_zz4l_widthKD,rCMS_zz4l_widthMass,rweightFit),"","_weight_");
        self.log.debug("RooDataSet contains {0} events".format(self.dataset_from_tree.sumEntries()))
        # .reduce(ROOT.RooArgSet(self.D0))
        self.current_arg_set = my_arg_set

        # add dataset to basket
        if basket:
            self.add_to_basket(self.dataset_from_tree, new_name=dataset_name, new_title=dataset_name)

        return self.dataset_from_tree

    def get_current_arg_set(self):
        """
        Return last dataset setup used by get_dataset_from_tree().
        """
        return self.current_arg_set
Example #7
0
def alpha(channel):

    nElec = channel.count('e')
    nMuon = channel.count('m')
    nLept = nElec + nMuon
    nBtag = channel.count('b')
    
    # Channel-dependent settings
    # Background function. Semi-working options are: EXP, EXP2, EXPN, EXPTAIL
    if nLept == 0:
        treeName = 'SR'
        signName = 'XZh'
        colorVjet = sample['DYJetsToNuNu']['linecolor']
        triName = "HLT_PFMET"
        leptCut = "0==0"
        topVeto = selection["TopVetocut"]
        massVar = "X_cmass"
        binFact = 1
        #fitFunc = "EXP"
        #fitFunc = "EXP2"
        #fitFunc = "EXPN"
        #fitFunc = "EXPTAIL"
        fitFunc = "EXPN" if nBtag < 2 else "EXP"
        fitAltFunc = "EXPTAIL" if nBtag < 2 else "EXPTAIL"
        fitFuncVjet = "ERFEXP" if nBtag < 2 else "ERFEXP"
        fitFuncVV   = "EXPGAUS"
        fitFuncTop  = "GAUS2"
    elif nLept == 1:
        treeName = 'WCR'
        signName = 'XWh'
        colorVjet = sample['WJetsToLNu']['linecolor']
        triName = "HLT_Ele" if nElec > 0 else "HLT_Mu"
        leptCut = "isWtoEN" if nElec > 0 else "isWtoMN"
        topVeto = selection["TopVetocut"]
        massVar = "X_mass"
        binFact = 2
        if nElec > 0:
            fitFunc = "EXP" if nBtag < 2 else "EXP"
            fitAltFunc  = "EXPTAIL" if nBtag < 2 else "EXPTAIL"
        else:
            fitFunc = "EXPTAIL" if nBtag < 2 else "EXP"
            fitAltFunc  = "EXPN" if nBtag < 2 else "EXPTAIL"
        fitFuncVjet = "ERFEXP" if nBtag < 2 else "ERFEXP"
        fitFuncVV   = "EXPGAUS"
        fitFuncTop  = "GAUS3" if nBtag < 2 else "GAUS2"
    else:
        treeName = 'XZh'
        signName = 'XZh'
        colorVjet = sample['DYJetsToLL']['linecolor']
        triName = "HLT_Ele" if nElec > 0 else "HLT_Mu"
        leptCut = "isZtoEE" if nElec > 0 else "isZtoMM"
        topVeto = "0==0"
        massVar = "X_mass"
        binFact = 5
        if nElec > 0:
            fitFunc = "EXP" if nBtag < 2 else "EXP"
            fitAltFunc = "POW" if nBtag < 2 else "POW"
        else:
            fitFunc = "EXP" if nBtag < 2 else "EXP"
            fitAltFunc = "POW" if nBtag < 2 else "POW"
        fitFuncVjet = "ERFEXP" if nBtag < 2 else "EXP"
        fitFuncVV   = "EXPGAUS2"
        fitFuncTop  = "GAUS"
    
    btagCut = selection["2Btag"] if nBtag == 2 else selection["1Btag"]
    
    print "--- Channel", channel, "---"
    print "  number of electrons:", nElec, " muons:", nMuon, " b-tags:", nBtag
    print "  read tree:", treeName, "and trigger:", triName
    if ALTERNATIVE: print "  using ALTERNATIVE fit functions"
    print "-"*11*2
    
    # Silent RooFit
    RooMsgService.instance().setGlobalKillBelow(RooFit.FATAL)
    
    #*******************************************************#
    #                                                       #
    #              Variables and selections                 #
    #                                                       #
    #*******************************************************#
    
    # Define all the variables from the trees that will be used in the cuts and fits
    # this steps actually perform a "projection" of the entire tree on the variables in thei ranges, so be careful once setting the limits
    X_mass = RooRealVar(  massVar, "m_{X}" if nLept > 0 else "m_{T}^{X}", XBINMIN, XBINMAX, "GeV")
    J_mass = RooRealVar( "fatjet1_prunedMassCorr",       "corrected pruned mass", HBINMIN, HBINMAX, "GeV")
    CSV1 = RooRealVar(   "fatjet1_CSVR1",                           "",        -1.e99,   1.e4     )
    CSV2 = RooRealVar(   "fatjet1_CSVR2",                           "",        -1.e99,   1.e4     )
    nBtag = RooRealVar(  "fatjet1_nBtag",                           "",            0.,   4        )
    CSVTop = RooRealVar( "bjet1_CSVR",                              "",        -1.e99,   1.e4     )
    isZtoEE = RooRealVar("isZtoEE",                                 "",            0.,   2        )
    isZtoMM = RooRealVar("isZtoMM",                                 "",            0.,   2        )
    isWtoEN = RooRealVar("isWtoEN",                                 "",            0.,   2        )
    isWtoMN = RooRealVar("isWtoMN",                                 "",            0.,   2        )
    weight = RooRealVar( "eventWeightLumi",                         "",         -1.e9,   1.       )
    
    # Define the RooArgSet which will include all the variables defined before
    # there is a maximum of 9 variables in the declaration, so the others need to be added with 'add'
    variables = RooArgSet(X_mass, J_mass, CSV1, CSV2, nBtag, CSVTop)
    variables.add(RooArgSet(isZtoEE, isZtoMM, isWtoEN, isWtoMN, weight))
    
    # Define the ranges in fatJetMass - these will be used to define SB and SR
    J_mass.setRange("LSBrange", LOWMIN, LOWMAX)
    J_mass.setRange("HSBrange", HIGMIN, HIGMAX)
    J_mass.setRange("VRrange",  LOWMAX, SIGMIN)
    J_mass.setRange("SRrange",  SIGMIN, SIGMAX)
    J_mass.setBins(54)
    
    # Define the selection for the various categories (base + SR / LSBcut / HSBcut )
    baseCut = leptCut + " && " + btagCut + "&&" + topVeto
    massCut = massVar + ">%d" % XBINMIN
    baseCut += " && " + massCut
    
    # Cuts
    SRcut  = baseCut + " && %s>%d && %s<%d" % (J_mass.GetName(), SIGMIN, J_mass.GetName(), SIGMAX)
    LSBcut = baseCut + " && %s>%d && %s<%d" % (J_mass.GetName(), LOWMIN, J_mass.GetName(), LOWMAX)
    HSBcut = baseCut + " && %s>%d && %s<%d" % (J_mass.GetName(), HIGMIN, J_mass.GetName(), HIGMAX)
    SBcut  = baseCut + " && ((%s>%d && %s<%d) || (%s>%d && %s<%d))" % (J_mass.GetName(), LOWMIN, J_mass.GetName(), LOWMAX, J_mass.GetName(), HIGMIN, J_mass.GetName(), HIGMAX)
    VRcut  = baseCut + " && %s>%d && %s<%d" % (J_mass.GetName(), LOWMAX, J_mass.GetName(), SIGMIN)
    
    # Binning
    binsJmass = RooBinning(HBINMIN, HBINMAX)
    binsJmass.addUniform(HBINS, HBINMIN, HBINMAX)
    binsXmass = RooBinning(XBINMIN, XBINMAX)
    binsXmass.addUniform(binFact*XBINS, XBINMIN, XBINMAX)
    
    #*******************************************************#
    #                                                       #
    #                      Input files                      #
    #                                                       #
    #*******************************************************#
    
    # Import the files using TChains (separately for the bkg "classes" that we want to describe: here DY and VV+ST+TT)
    treeData = TChain(treeName)
    treeMC   = TChain(treeName)
    treeVjet = TChain(treeName)
    treeVV   = TChain(treeName)
    treeTop  = TChain(treeName)
#    treeSign = {}
#    nevtSign = {}
    
    # Read data
    pd = getPrimaryDataset(triName)
    if len(pd)==0: raw_input("Warning: Primary Dataset not recognized, continue?")
    for i, s in enumerate(pd): treeData.Add(NTUPLEDIR + s + ".root")
    
    # Read V+jets backgrounds
    for i, s in enumerate(["WJetsToLNu_HT", "DYJetsToNuNu_HT", "DYJetsToLL_HT"]):
        for j, ss in enumerate(sample[s]['files']): treeVjet.Add(NTUPLEDIR + ss + ".root")
    
    # Read VV backgrounds
    for i, s in enumerate(["VV"]):
        for j, ss in enumerate(sample[s]['files']): treeVV.Add(NTUPLEDIR + ss + ".root")
    
    # Read Top backgrounds
    for i, s in enumerate(["ST", "TTbar"]):
        for j, ss in enumerate(sample[s]['files']): treeTop.Add(NTUPLEDIR + ss + ".root")
        
    # Sum all background MC
    treeMC.Add(treeVjet)
    treeMC.Add(treeVV)
    treeMC.Add(treeTop)
    
    # create a dataset to host data in sideband (using this dataset we are automatically blind in the SR!)
    setDataSB = RooDataSet("setDataSB", "setDataSB", variables, RooFit.Cut(SBcut), RooFit.WeightVar(weight), RooFit.Import(treeData))
    setDataLSB = RooDataSet("setDataLSB", "setDataLSB", variables, RooFit.Import(setDataSB), RooFit.Cut(LSBcut), RooFit.WeightVar(weight))
    setDataHSB = RooDataSet("setDataHSB", "setDataHSB", variables, RooFit.Import(setDataSB), RooFit.Cut(HSBcut), RooFit.WeightVar(weight))
    
    # Observed data (WARNING, BLIND!)
    setDataSR = RooDataSet("setDataSR", "setDataSR", variables, RooFit.Cut(SRcut), RooFit.WeightVar(weight), RooFit.Import(treeData))
    setDataVR = RooDataSet("setDataVR", "setDataVR", variables, RooFit.Cut(VRcut), RooFit.WeightVar(weight), RooFit.Import(treeData)) # Observed in the VV mass, just for plotting purposes
    
    # same for the bkg datasets from MC, where we just apply the base selections (not blind)
    setVjet = RooDataSet("setVjet", "setVjet", variables, RooFit.Cut(baseCut), RooFit.WeightVar(weight), RooFit.Import(treeVjet))
    setVjetSB = RooDataSet("setVjetSB", "setVjetSB", variables, RooFit.Import(setVjet), RooFit.Cut(SBcut), RooFit.WeightVar(weight))
    setVjetSR = RooDataSet("setVjetSR", "setVjetSR", variables, RooFit.Import(setVjet), RooFit.Cut(SRcut), RooFit.WeightVar(weight))
    setVV = RooDataSet("setVV", "setVV", variables, RooFit.Cut(baseCut), RooFit.WeightVar(weight), RooFit.Import(treeVV))
    setVVSB = RooDataSet("setVVSB", "setVVSB", variables, RooFit.Import(setVV), RooFit.Cut(SBcut), RooFit.WeightVar(weight))
    setVVSR = RooDataSet("setVVSR", "setVVSR", variables, RooFit.Import(setVV), RooFit.Cut(SRcut), RooFit.WeightVar(weight))
    setTop = RooDataSet("setTop", "setTop", variables, RooFit.Cut(baseCut), RooFit.WeightVar(weight), RooFit.Import(treeTop))
    setTopSB = RooDataSet("setTopSB", "setTopSB", variables, RooFit.Import(setTop), RooFit.Cut(SBcut), RooFit.WeightVar(weight))
    setTopSR = RooDataSet("setTopSR", "setTopSR", variables, RooFit.Import(setTop), RooFit.Cut(SRcut), RooFit.WeightVar(weight))
    
    print "  Data events SB: %.2f" % setDataSB.sumEntries()
    print "  V+jets entries: %.2f" % setVjet.sumEntries()
    print "  VV, VH entries: %.2f" % setVV.sumEntries()
    print "  Top,ST entries: %.2f" % setTop.sumEntries()
    
    
    # the relative normalization of the varius bkg is taken from MC by counting all the events in the full fatJetMass range
    #coef = RooRealVar("coef", "coef", setVV.sumEntries()/setVjet.sumEntries(),0.,1.)
    coef_VV_Vjet = RooRealVar("coef2_1", "coef2_1", setVV.sumEntries()/setVjet.sumEntries(), 0., 1.)
    coef_Top_VVVjet = RooRealVar("coef3_21", "coef3_21", setTop.sumEntries()/(setVjet.sumEntries()+setVV.sumEntries()),0.,1.);
    coef_VV_Vjet.setConstant(True)
    coef_Top_VVVjet.setConstant(True)
    
    # Define entries
    entryVjet = RooRealVar("entryVjets",  "V+jets normalization", setVjet.sumEntries(), 0., 1.e6)
    entryVV = RooRealVar("entryVV",  "VV normalization", setVV.sumEntries(), 0., 1.e6)
    entryTop = RooRealVar("entryTop",  "Top normalization", setTop.sumEntries(), 0., 1.e6)
    
    entrySB = RooRealVar("entrySB",  "Data SB normalization", setDataSB.sumEntries(SBcut), 0., 1.e6)
    entrySB.setError(math.sqrt(entrySB.getVal()))
    
    entryLSB = RooRealVar("entryLSB",  "Data LSB normalization", setDataSB.sumEntries(LSBcut), 0., 1.e6)
    entryLSB.setError(math.sqrt(entryLSB.getVal()))

    entryHSB = RooRealVar("entryHSB",  "Data HSB normalization", setDataSB.sumEntries(HSBcut), 0., 1.e6)
    entryHSB.setError(math.sqrt(entryHSB.getVal()))
    
    #*******************************************************#
    #                                                       #
    #                    NORMALIZATION                      #
    #                                                       #
    #*******************************************************#
    
    # set reasonable ranges for J_mass and X_mass
    # these are used in the fit in order to avoid ROOFIT to look in regions very far away from where we are fitting 
    J_mass.setRange("h_reasonable_range", LOWMIN, HIGMAX)
    X_mass.setRange("X_reasonable_range", XBINMIN, XBINMAX)
    
    # Set RooArgSets once for all, see https://root.cern.ch/phpBB3/viewtopic.php?t=11758
    jetMassArg = RooArgSet(J_mass)
    
    #*******************************************************#
    #                                                       #
    #                 V+jets normalization                  #
    #                                                       #
    #*******************************************************#
    
    # Variables for V+jets
    constVjet   = RooRealVar("constVjet",   "slope of the exp",      -0.020, -1.,   0.)
    offsetVjet  = RooRealVar("offsetVjet",  "offset of the erf",     30.,   -50., 200.)
    widthVjet   = RooRealVar("widthVjet",   "width of the erf",     100.,     1., 200.)
    offsetVjet.setConstant(True)
    a0Vjet = RooRealVar("a0Vjet", "width of the erf", -0.1, -5, 0)
    a1Vjet = RooRealVar("a1Vjet", "width of the erf", 0.6,  0, 5)
    a2Vjet = RooRealVar("a2Vjet", "width of the erf", -0.1, -1, 1)
    
    # Define V+jets model
    if fitFuncVjet == "ERFEXP": modelVjet = RooErfExpPdf("modelVjet", "error function for V+jets mass", J_mass, constVjet, offsetVjet, widthVjet)
    elif fitFuncVjet == "EXP": modelVjet = RooExponential("modelVjet", "exp for V+jets mass", J_mass, constVjet)
    elif fitFuncVjet == "POL": modelVjet = RooChebychev("modelVjet", "polynomial for V+jets mass", J_mass, RooArgList(a0Vjet, a1Vjet, a2Vjet))
    elif fitFuncVjet == "POW": modelVjet = RooGenericPdf("modelVjet", "powerlaw for X mass", "@0^@1", RooArgList(J_mass, a0Vjet))
    else:
        print "  ERROR! Pdf", fitFuncVjet, "is not implemented for Vjets"
        exit()
    
    # fit to main bkg in MC (whole range)
    frVjet = modelVjet.fitTo(setVjet, RooFit.SumW2Error(True), RooFit.Range("h_reasonable_range"), RooFit.Strategy(2), RooFit.Minimizer("Minuit2"), RooFit.Save(1), RooFit.PrintLevel(1 if VERBOSE else -1))
    
    # integrals and number of events
    iSBVjet = modelVjet.createIntegral(jetMassArg, RooFit.NormSet(jetMassArg), RooFit.Range("LSBrange,HSBrange"))
    iLSBVjet = modelVjet.createIntegral(jetMassArg, RooFit.NormSet(jetMassArg), RooFit.Range("LSBrange"))
    iHSBVjet = modelVjet.createIntegral(jetMassArg, RooFit.NormSet(jetMassArg), RooFit.Range("HSBrange"))
    iSRVjet = modelVjet.createIntegral(jetMassArg, RooFit.NormSet(jetMassArg), RooFit.Range("SRrange"))
    iVRVjet = modelVjet.createIntegral(jetMassArg, RooFit.NormSet(jetMassArg), RooFit.Range("VRrange"))
    # Do not remove the following lines, integrals are computed here
    iALVjet = modelVjet.createIntegral(jetMassArg, RooFit.NormSet(jetMassArg))
    nSBVjet = iSBVjet.getVal()/iALVjet.getVal()*setVjet.sumEntries(SBcut)
    nLSBVjet = iLSBVjet.getVal()/iALVjet.getVal()*setVjet.sumEntries(LSBcut)
    nHSBVjet = iHSBVjet.getVal()/iALVjet.getVal()*setVjet.sumEntries(HSBcut)
    nSRVjet = iSRVjet.getVal()/iALVjet.getVal()*setVjet.sumEntries(SRcut)
    
    drawPlot("JetMass_Vjet", channel, J_mass, modelVjet, setVjet, binsJmass, frVjet)

    if VERBOSE: print "********** Fit result [JET MASS Vjets] *"+"*"*40, "\n", frVjet.Print(), "\n", "*"*80
    
    #*******************************************************#
    #                                                       #
    #                 VV, VH normalization                  #
    #                                                       #
    #*******************************************************#
    
    # Variables for VV
    # Error function and exponential to model the bulk
    constVV  = RooRealVar("constVV",  "slope of the exp",  -0.030, -0.1,   0.)
    offsetVV = RooRealVar("offsetVV", "offset of the erf", 90.,     1., 300.)
    widthVV  = RooRealVar("widthVV",  "width of the erf",  50.,     1., 100.)
    erfrVV   = RooErfExpPdf("baseVV", "error function for VV jet mass", J_mass, constVV, offsetVV, widthVV)
    expoVV   = RooExponential("baseVV", "error function for VV jet mass", J_mass, constVV)
    # gaussian for the V mass peak
    meanVV   = RooRealVar("meanVV",   "mean of the gaussian",           90.,    60., 100.)
    sigmaVV  = RooRealVar("sigmaVV",  "sigma of the gaussian",          10.,     6.,  30.)
    fracVV   = RooRealVar("fracVV",   "fraction of gaussian wrt erfexp", 3.2e-1, 0.,   1.)
    gausVV   = RooGaussian("gausVV",  "gaus for VV jet mass", J_mass, meanVV, sigmaVV)
    # gaussian for the H mass peak
    meanVH   = RooRealVar("meanVH",   "mean of the gaussian",           125.,   100., 150.)
    sigmaVH  = RooRealVar("sigmaVH",  "sigma of the gaussian",           30.,     5.,  40.)
    fracVH   = RooRealVar("fracVH",   "fraction of gaussian wrt erfexp",  1.5e-2, 0.,   1.)
    gausVH   = RooGaussian("gausVH",  "gaus for VH jet mass", J_mass, meanVH, sigmaVH)
    
    # Define VV model
    if fitFuncVV == "ERFEXPGAUS": modelVV  = RooAddPdf("modelVV",   "error function + gaus for VV jet mass", RooArgList(gausVV, erfrVV), RooArgList(fracVV))
    elif fitFuncVV == "ERFEXPGAUS2": modelVV  = RooAddPdf("modelVV",   "error function + gaus + gaus for VV jet mass", RooArgList(gausVH, gausVV, erfrVV), RooArgList(fracVH, fracVV))
    elif fitFuncVV == "EXPGAUS": modelVV  = RooAddPdf("modelVV",   "error function + gaus for VV jet mass", RooArgList(gausVV, expoVV), RooArgList(fracVV))
    elif fitFuncVV == "EXPGAUS2": modelVV  = RooAddPdf("modelVV",   "error function + gaus + gaus for VV jet mass", RooArgList(gausVH, gausVV, expoVV), RooArgList(fracVH, fracVV))
    else:
        print "  ERROR! Pdf", fitFuncVV, "is not implemented for VV"
        exit()
    
    # fit to secondary bkg in MC (whole range)
    frVV = modelVV.fitTo(setVV, RooFit.SumW2Error(True), RooFit.Range("h_reasonable_range"), RooFit.Strategy(2), RooFit.Minimizer("Minuit2"), RooFit.Save(1), RooFit.PrintLevel(1 if VERBOSE else -1))
    
    # integrals and number of events
    iSBVV = modelVV.createIntegral(jetMassArg, RooFit.NormSet(jetMassArg), RooFit.Range("LSBrange,HSBrange"))
    iLSBVV = modelVV.createIntegral(jetMassArg, RooFit.NormSet(jetMassArg), RooFit.Range("LSBrange"))
    iHSBVV = modelVV.createIntegral(jetMassArg, RooFit.NormSet(jetMassArg), RooFit.Range("HSBrange"))
    iSRVV = modelVV.createIntegral(jetMassArg, RooFit.NormSet(jetMassArg), RooFit.Range("SRrange"))
    iVRVV = modelVV.createIntegral(jetMassArg, RooFit.NormSet(jetMassArg), RooFit.Range("VRrange"))
    # Do not remove the following lines, integrals are computed here
    iALVV = modelVV.createIntegral(jetMassArg, RooFit.NormSet(jetMassArg))
    nSBVV = iSBVV.getVal()/iALVV.getVal()*setVV.sumEntries(SBcut)
    nLSBVV = iLSBVV.getVal()/iALVV.getVal()*setVV.sumEntries(LSBcut)
    nHSBVV = iHSBVV.getVal()/iALVV.getVal()*setVV.sumEntries(HSBcut)
    nSRVV = iSRVV.getVal()/iALVV.getVal()*setVV.sumEntries(SRcut)
    rSBSRVV = nSRVV/nSBVV
    
    drawPlot("JetMass_VV", channel, J_mass, modelVV, setVV, binsJmass, frVV)
    
    if VERBOSE: print "********** Fit result [JET MASS VV] ****"+"*"*40, "\n", frVV.Print(), "\n", "*"*80
    
    #*******************************************************#
    #                                                       #
    #                 Top, ST normalization                 #
    #                                                       #
    #*******************************************************#
    
    # Variables for Top
    # Error Function * Exponential to model the bulk
    constTop  = RooRealVar("constTop",  "slope of the exp", -0.030,   -1.,   0.)
    offsetTop = RooRealVar("offsetTop", "offset of the erf", 175.0,   50., 250.)
    widthTop  = RooRealVar("widthTop",  "width of the erf",  100.0,    1., 300.)
    gausTop   = RooGaussian("baseTop",  "gaus for Top jet mass", J_mass, offsetTop, widthTop)
    erfrTop   = RooErfExpPdf("baseTop", "error function for Top jet mass", J_mass, constTop, offsetTop, widthTop)
    # gaussian for the W mass peak
    meanW     = RooRealVar("meanW",     "mean of the gaussian",           80., 70., 90.)
    sigmaW    = RooRealVar("sigmaW",    "sigma of the gaussian",          10.,  2., 20.)
    fracW     = RooRealVar("fracW",     "fraction of gaussian wrt erfexp", 0.1, 0.,  1.)
    gausW     = RooGaussian("gausW",    "gaus for W jet mass", J_mass, meanW, sigmaW)
    # gaussian for the Top mass peak
    meanT     = RooRealVar("meanT",     "mean of the gaussian",           175., 150., 200.)
    sigmaT    = RooRealVar("sigmaT",    "sigma of the gaussian",           12.,   5.,  50.)
    fracT     = RooRealVar("fracT",     "fraction of gaussian wrt erfexp",  0.1,  0.,   1.)
    gausT     = RooGaussian("gausT",    "gaus for T jet mass", J_mass, meanT, sigmaT)
    
    # Define Top model
    if fitFuncTop == "ERFEXPGAUS2": modelTop = RooAddPdf("modelTop",   "error function + gaus + gaus for Top jet mass", RooArgList(gausW, gausT, erfrTop), RooArgList(fracW, fracT))
    elif fitFuncTop == "ERFEXPGAUS": modelTop = RooAddPdf("modelTop",   "error function + gaus for Top jet mass", RooArgList(gausT, erfrTop), RooArgList(fracT))
    elif fitFuncTop == "GAUS3": modelTop  = RooAddPdf("modelTop",   "gaus + gaus + gaus for Top jet mass", RooArgList(gausW, gausT, gausTop), RooArgList(fracW, fracT))
    elif fitFuncTop == "GAUS2": modelTop  = RooAddPdf("modelTop",   "gaus + gaus for Top jet mass", RooArgList(gausT, gausTop), RooArgList(fracT))
    elif fitFuncTop == "GAUS": modelTop  = RooGaussian("modelTop", "gaus for Top jet mass", J_mass, offsetTop, widthTop)
    else:
        print "  ERROR! Pdf", fitFuncTop, "is not implemented for Top"
        exit()
    
    # fit to secondary bkg in MC (whole range)
    frTop = modelTop.fitTo(setTop, RooFit.SumW2Error(True), RooFit.Range("h_reasonable_range"), RooFit.Strategy(2), RooFit.Minimizer("Minuit2"), RooFit.Save(1), RooFit.PrintLevel(1 if VERBOSE else -1))
    
    # integrals and number of events
    iSBTop = modelTop.createIntegral(jetMassArg, RooFit.NormSet(jetMassArg), RooFit.Range("LSBrange,HSBrange"))
    iLSBTop = modelTop.createIntegral(jetMassArg, RooFit.NormSet(jetMassArg), RooFit.Range("LSBrange"))
    iHSBTop = modelTop.createIntegral(jetMassArg, RooFit.NormSet(jetMassArg), RooFit.Range("HSBrange"))
    iSRTop = modelTop.createIntegral(jetMassArg, RooFit.NormSet(jetMassArg), RooFit.Range("SRrange"))
    iVRTop = modelTop.createIntegral(jetMassArg, RooFit.NormSet(jetMassArg), RooFit.Range("VRrange"))
    # Do not remove the following lines, integrals are computed here
    iALTop = modelTop.createIntegral(jetMassArg, RooFit.NormSet(jetMassArg))
    nSBTop = iSBTop.getVal()/iALTop.getVal()*setTop.sumEntries(SBcut)
    nLSBTop = iLSBTop.getVal()/iALTop.getVal()*setTop.sumEntries(LSBcut)
    nHSBTop = iHSBTop.getVal()/iALTop.getVal()*setTop.sumEntries(HSBcut)
    nSRTop = iSRTop.getVal()/iALTop.getVal()*setTop.sumEntries(SRcut)
    
    drawPlot("JetMass_Top", channel, J_mass, modelTop, setTop, binsJmass, frTop)
    
    if VERBOSE: print "********** Fit result [JET MASS TOP] ***"+"*"*40, "\n", frTop.Print(), "\n", "*"*80
    
    #*******************************************************#
    #                                                       #
    #                 All bkg normalization                 #
    #                                                       #
    #*******************************************************#
    
    constVjet.setConstant(True)
    offsetVjet.setConstant(True)
    widthVjet.setConstant(True)
    a0Vjet.setConstant(True)
    a1Vjet.setConstant(True)
    a2Vjet.setConstant(True)
    
    constVV.setConstant(True)
    offsetVV.setConstant(True)
    widthVV.setConstant(True)
    meanVV.setConstant(True)
    sigmaVV.setConstant(True)
    fracVV.setConstant(True)
    meanVH.setConstant(True)
    sigmaVH.setConstant(True)
    fracVH.setConstant(True)
    
    constTop.setConstant(True)
    offsetTop.setConstant(True)
    widthTop.setConstant(True)
    meanW.setConstant(True)
    sigmaW.setConstant(True)
    fracW.setConstant(True)
    meanT.setConstant(True)
    sigmaT.setConstant(True)
    fracT.setConstant(True)
    
    
    # Final background model by adding the main+secondary pdfs (using 'coef': ratio of the secondary/main, from MC)
    model = RooAddPdf("model", "model", RooArgList(modelTop, modelVV, modelVjet), RooArgList(coef_Top_VVVjet, coef_VV_Vjet))#FIXME
    model.fixAddCoefRange("h_reasonable_range")
    
    # Extended fit model to data in SB
    # all the 3 sidebands (Low / High / the 2 combined) could be used
    # currently using the LOW+HIGH (the others are commented out)
    yieldLSB = RooRealVar("yieldLSB", "Lower SB normalization",  10, 0., 1.e6)
    yieldHSB = RooRealVar("yieldHSB", "Higher SB normalization", 10, 0., 1.e6)
    yieldSB  = RooRealVar("yieldSB",  "All SB normalization",    10, 0., 1.e6)
    #model_ext = RooExtendPdf("model_ext", "extended p.d.f",   model,  yieldLSB)
    #model_ext = RooExtendPdf("model_ext", "extended p.d.f",   model,  yieldHSB)
    model_ext = RooExtendPdf("model_ext", "extended p.d.f",   model,  yieldSB)
    #frMass = model_ext.fitTo(setDataSB, RooFit.ConditionalObservables(RooArgSet(J_mass)),RooFit.SumW2Error(True),RooFit.Extended(True),RooFit.Range("LSBrange"),RooFit.PrintLevel(-1))
    #frMass = model_ext.fitTo(setDataSB, RooFit.ConditionalObservables(RooArgSet(J_mass)),RooFit.SumW2Error(True),RooFit.Extended(True),RooFit.Range("HSBrange"),RooFit.PrintLevel(-1))
    #frMass = model_ext.fitTo(setDataSB, RooFit.ConditionalObservables(RooArgSet(J_mass)), RooFit.SumW2Error(True), RooFit.Extended(True), RooFit.Range("LSBrange,HSBrange"), RooFit.Strategy(2), RooFit.Minimizer("Minuit2"), RooFit.PrintLevel(1 if VERBOSE else -1))
    
    #print "********** Fit result [JET MASS DATA] **"+"*"*40
    #print frMass.Print()
    #print "*"*80
    
    # Calculate integral of the model obtained from the fit to data (fraction of PDF that is within a given region)
    #nSB = model_ext.createIntegral(jetMassArg, RooFit.NormSet(jetMassArg), RooFit.Range("LSBrange,HSBrange"))
    #nSB = model_ext.createIntegral(jetMassArg, RooFit.NormSet(jetMassArg), RooFit.Range("LSBrange"))
    #nSB = model_ext.createIntegral(jetMassArg, RooFit.NormSet(jetMassArg), RooFit.Range("HSBrange"))
    #nSR = model_ext.createIntegral(jetMassArg, RooFit.NormSet(jetMassArg), RooFit.Range("SRrange"))
    #nVR = model_ext.createIntegral(jetMassArg, RooFit.NormSet(jetMassArg), RooFit.Range("VRrange"))
    
    # scale the yieldSB from SB to SR using the ratio of the PDFs defined by the two integrals
    SRyield = RooFormulaVar("SRyield", "extrapolation to SR","(@0-@1*@3-@2*@4) * @5/@6 +@1*@7+@2*@8", RooArgList(entrySB, entryVV, entryTop, iSBVV, iSBTop, iSRVjet, iSBVjet, iSRVV, iSRTop))
    VRyield = RooFormulaVar("VRyield", "extrapolation to VR","(@0-@1*@3-@2*@4) * @5/@6 +@1*@7+@2*@8", RooArgList(entrySB, entryVV, entryTop, iSBVV, iSBTop, iVRVjet, iSBVjet, iVRVV, iVRTop))
    HSByield = RooFormulaVar("SRyield", "extrapolation to SR","(@0-@1*@3-@2*@4) * @5/@6 +@1*@7+@2*@8", RooArgList(entryLSB, entryVV, entryTop, iLSBVV, iLSBTop, iHSBVjet, iLSBVjet, iHSBVV, iHSBTop))
    #   RooFormulaVar SRyield("SRyield","extrapolation to SR","(@0/@1)*@2",RooArgList(*nSR,*nSB,yieldLowerSB))
    #   RooFormulaVar SRyield("SRyield","extrapolation to SR","(@0/@1)*@2",RooArgList(*nSR,*nSB,yieldHigherSB))
    #SRyield = RooFormulaVar("SRyield", "extrapolation to SR","(@0/@1)*@2", RooArgList(nSR, nSB, entrySB))
    
    bkgYield            = SRyield.getVal()
    bkgYield_error      = math.sqrt(SRyield.getPropagatedError(frVjet)**2 + SRyield.getPropagatedError(frVV)**2 + SRyield.getPropagatedError(frTop)**2 + (entrySB.getError()*rSBSRVV)**2)
    bkgNorm             = entrySB.getVal() + SRyield.getVal() + VRyield.getVal()
    bkgYield_eig_norm   = RooRealVar("predSR_eig_norm", "expected yield in SR", bkgYield, 0., 1.e6)
    bkgYieldExt         = HSByield.getVal()
    
    drawPlot("JetMass", channel, J_mass, model, setDataSB, binsJmass, None, None, "", bkgNorm, True)

    
    print channel, "normalization = %.3f +/- %.3f, observed = %.0f" % (bkgYield, bkgYield_error, setDataSR.sumEntries() if not BLIND else -1)
    if VERBOSE: raw_input("Press Enter to continue...")
Example #8
0
def dijet(category):

    channel = 'bb'
    stype = channel
    isSB = True  # relict from using Alberto's more complex script
    isData = not ISMC
    nTupleDir = NTUPLEDIR

    samples = data if isData else back
    pd = []
    for sample_name in samples:
        if YEAR == 'run2':
            pd += sample[sample_name]['files']
        else:
            pd += [x for x in sample[sample_name]['files'] if YEAR in x]
    print "datasets:", pd
    if not os.path.exists(PLOTDIR): os.makedirs(PLOTDIR)
    if BIAS: print "Running in BIAS mode"

    order = 0
    RSS = {}

    X_mass = RooRealVar("jj_mass_widejet", "m_{jj}", X_min, X_max, "GeV")
    weight = RooRealVar("MANtag_weight", "", -1.e9, 1.e9)

    variables = RooArgSet(X_mass)
    variables.add(RooArgSet(weight))

    if VARBINS:
        binsXmass = RooBinning(len(abins) - 1, abins)
        X_mass.setBinning(RooBinning(len(abins_narrow) - 1, abins_narrow))
        plot_binning = RooBinning(
            int((X_mass.getMax() - X_mass.getMin()) / 100), X_mass.getMin(),
            X_mass.getMax())
    else:
        X_mass.setBins(int((X_mass.getMax() - X_mass.getMin()) / 10))
        binsXmass = RooBinning(int((X_mass.getMax() - X_mass.getMin()) / 100),
                               X_mass.getMin(), X_mass.getMax())
        plot_binning = binsXmass

    baseCut = ""

    print stype, "|", baseCut

    print " - Reading from Tree"
    treeBkg = TChain("tree")
    for ss in pd:
        if os.path.exists(nTupleDir + ss + "_" + BTAGGING + ".root"):
            treeBkg.Add(nTupleDir + ss + "_" + BTAGGING + ".root")
        else:
            print "found no file for sample:", ss
    setData = RooDataSet("setData", "Data (QCD+TTbar MC)", variables,
                         RooFit.Cut(baseCut), RooFit.WeightVar(weight),
                         RooFit.Import(treeBkg))

    nevents = setData.sumEntries()
    dataMin, dataMax = array('d', [0.]), array('d', [0.])
    setData.getRange(X_mass, dataMin, dataMax)
    xmin, xmax = dataMin[0], dataMax[0]

    lastBin = X_mass.getMax()
    if VARBINS:
        for b in narrow_bins:
            if b > xmax:
                lastBin = b
                break

    print "Imported", (
        "data" if isData else "MC"
    ), "RooDataSet with", nevents, "events between [%.1f, %.1f]" % (xmin, xmax)
    #xmax = xmax+binsXmass.averageBinWidth() # start form next bin

    # 1 parameter
    print "fitting 1 parameter model"
    p1_1 = RooRealVar("CMS" + YEAR + "_" + category + "_p1_1", "p1", 7.0, 0.,
                      2000.)
    modelBkg1 = RooGenericPdf("Bkg1", "Bkg. fit (2 par.)",
                              "1./pow(@0/13000, @1)", RooArgList(X_mass, p1_1))
    normzBkg1 = RooRealVar(
        modelBkg1.GetName() + "_norm", "Number of background events", nevents,
        0., 5. * nevents)  #range dependent of actual number of events!
    modelExt1 = RooExtendPdf(modelBkg1.GetName() + "_ext",
                             modelBkg1.GetTitle(), modelBkg1, normzBkg1)
    fitRes1 = modelExt1.fitTo(setData, RooFit.Extended(True), RooFit.Save(1),
                              RooFit.SumW2Error(not isData),
                              RooFit.Strategy(2), RooFit.Minimizer("Minuit2"),
                              RooFit.PrintLevel(1 if VERBOSE else -1))
    fitRes1.Print()
    RSS[1] = drawFit("Bkg1", category, X_mass, modelBkg1, setData, binsXmass,
                     [fitRes1], normzBkg1.getVal())

    # 2 parameters
    print "fitting 2 parameter model"
    p2_1 = RooRealVar("CMS" + YEAR + "_" + category + "_p2_1", "p1", 0., -100.,
                      1000.)
    p2_2 = RooRealVar("CMS" + YEAR + "_" + category + "_p2_2", "p2",
                      p1_1.getVal(), -100., 600.)
    modelBkg2 = RooGenericPdf("Bkg2", "Bkg. fit (3 par.)",
                              "pow(1-@0/13000, @1) / pow(@0/13000, @2)",
                              RooArgList(X_mass, p2_1, p2_2))
    normzBkg2 = RooRealVar(modelBkg2.GetName() + "_norm",
                           "Number of background events", nevents, 0.,
                           5. * nevents)
    modelExt2 = RooExtendPdf(modelBkg2.GetName() + "_ext",
                             modelBkg2.GetTitle(), modelBkg2, normzBkg2)
    fitRes2 = modelExt2.fitTo(setData, RooFit.Extended(True), RooFit.Save(1),
                              RooFit.SumW2Error(not isData),
                              RooFit.Strategy(2), RooFit.Minimizer("Minuit2"),
                              RooFit.PrintLevel(1 if VERBOSE else -1))
    fitRes2.Print()
    RSS[2] = drawFit("Bkg2", category, X_mass, modelBkg2, setData, binsXmass,
                     [fitRes2], normzBkg2.getVal())

    # 3 parameters
    print "fitting 3 parameter model"
    p3_1 = RooRealVar("CMS" + YEAR + "_" + category + "_p3_1", "p1",
                      p2_1.getVal(), -2000., 2000.)
    p3_2 = RooRealVar("CMS" + YEAR + "_" + category + "_p3_2", "p2",
                      p2_2.getVal(), -400., 2000.)
    p3_3 = RooRealVar("CMS" + YEAR + "_" + category + "_p3_3", "p3", -2.5,
                      -500., 500.)
    modelBkg3 = RooGenericPdf(
        "Bkg3", "Bkg. fit (4 par.)",
        "pow(1-@0/13000, @1) / pow(@0/13000, @2+@3*log(@0/13000))",
        RooArgList(X_mass, p3_1, p3_2, p3_3))
    normzBkg3 = RooRealVar(modelBkg3.GetName() + "_norm",
                           "Number of background events", nevents, 0.,
                           5. * nevents)
    modelExt3 = RooExtendPdf(modelBkg3.GetName() + "_ext",
                             modelBkg3.GetTitle(), modelBkg3, normzBkg3)
    fitRes3 = modelExt3.fitTo(setData, RooFit.Extended(True), RooFit.Save(1),
                              RooFit.SumW2Error(not isData),
                              RooFit.Strategy(2), RooFit.Minimizer("Minuit2"),
                              RooFit.PrintLevel(1 if VERBOSE else -1))
    fitRes3.Print()
    RSS[3] = drawFit("Bkg3", category, X_mass, modelBkg3, setData, binsXmass,
                     [fitRes3], normzBkg3.getVal())

    # 4 parameters
    print "fitting 4 parameter model"
    p4_1 = RooRealVar("CMS" + YEAR + "_" + category + "_p4_1", "p1",
                      p3_1.getVal(), -2000., 2000.)
    p4_2 = RooRealVar("CMS" + YEAR + "_" + category + "_p4_2", "p2",
                      p3_2.getVal(), -2000., 2000.)
    p4_3 = RooRealVar("CMS" + YEAR + "_" + category + "_p4_3", "p3",
                      p3_3.getVal(), -50., 50.)
    p4_4 = RooRealVar("CMS" + YEAR + "_" + category + "_p4_4", "p4", 0.1, -50.,
                      50.)
    modelBkg4 = RooGenericPdf(
        "Bkg4", "Bkg. fit (5 par.)",
        "pow(1 - @0/13000, @1) / pow(@0/13000, @2+@3*log(@0/13000)+@4*pow(log(@0/13000), 2))",
        RooArgList(X_mass, p4_1, p4_2, p4_3, p4_4))
    normzBkg4 = RooRealVar(modelBkg4.GetName() + "_norm",
                           "Number of background events", nevents, 0.,
                           5. * nevents)
    modelExt4 = RooExtendPdf(modelBkg4.GetName() + "_ext",
                             modelBkg4.GetTitle(), modelBkg4, normzBkg4)
    fitRes4 = modelExt4.fitTo(setData, RooFit.Extended(True), RooFit.Save(1),
                              RooFit.SumW2Error(not isData),
                              RooFit.Strategy(2), RooFit.Minimizer("Minuit2"),
                              RooFit.PrintLevel(1 if VERBOSE else -1))
    fitRes4.Print()
    RSS[4] = drawFit("Bkg4", category, X_mass, modelBkg4, setData, binsXmass,
                     [fitRes4], normzBkg4.getVal())

    # Normalization parameters are should be set constant, but shape ones should not
    #    if BIAS:
    #        p1_1.setConstant(True)
    #        p2_1.setConstant(True)
    #        p2_2.setConstant(True)
    #        p3_1.setConstant(True)
    #        p3_2.setConstant(True)
    #        p3_3.setConstant(True)
    #        p4_1.setConstant(True)
    #        p4_2.setConstant(True)
    #        p4_3.setConstant(True)
    #        p4_4.setConstant(True)
    normzBkg1.setConstant(True)
    normzBkg2.setConstant(True)
    normzBkg3.setConstant(True)
    normzBkg4.setConstant(True)

    #*******************************************************#
    #                                                       #
    #                         Fisher                        #
    #                                                       #
    #*******************************************************#

    # Fisher test
    with open(PLOTDIR + "/Fisher_" + category + ".tex", 'w') as fout:
        fout.write(r"\begin{tabular}{c|c|c|c|c}")
        fout.write("\n")
        fout.write(r"function & $\chi^2$ & RSS & ndof & F-test \\")
        fout.write("\n")
        fout.write("\hline")
        fout.write("\n")
        CL_high = False
        for o1 in range(1, 5):
            o2 = min(o1 + 1, 5)
            fout.write("%d par & %.2f & %.2f & %d & " %
                       (o1 + 1, RSS[o1]["chi2"], RSS[o1]["rss"],
                        RSS[o1]["nbins"] - RSS[o1]["npar"]))
            if o2 > len(RSS):
                fout.write(r"\\")
                fout.write("\n")
                continue  #order==0 and
            CL = fisherTest(RSS[o1]['rss'], RSS[o2]['rss'], o1 + 1., o2 + 1.,
                            RSS[o1]["nbins"])
            fout.write("CL=%.3f " % (CL))
            if CL > 0.10:  # The function with less parameters is enough
                if not CL_high:
                    order = o1
                    #fout.write( "%d par are sufficient " % (o1+1))
                    CL_high = True
            else:
                #fout.write( "%d par are needed " % (o2+1))
                if not CL_high:
                    order = o2
            fout.write(r"\\")
            fout.write("\n")
        fout.write("\hline")
        fout.write("\n")
        fout.write(r"\end{tabular}")
    print "saved F-test table as", PLOTDIR + "/Fisher_" + category + ".tex"

    #print "-"*25
    #print "function & $\\chi^2$ & RSS & ndof & F-test & result \\\\"
    #print "\\multicolumn{6}{c}{", "Zprime_to_bb", "} \\\\"
    #print "\\hline"
    #CL_high = False
    #for o1 in range(1, 5):
    #    o2 = min(o1 + 1, 5)
    #    print "%d par & %.2f & %.2f & %d & " % (o1+1, RSS[o1]["chi2"], RSS[o1]["rss"], RSS[o1]["nbins"]-RSS[o1]["npar"]),
    #    if o2 > len(RSS):
    #        print "\\\\"
    #        continue #order==0 and
    #    CL = fisherTest(RSS[o1]['rss'], RSS[o2]['rss'], o1+1., o2+1., RSS[o1]["nbins"])
    #    print "%d par vs %d par CL=%f & " % (o1+1, o2+1, CL),
    #    if CL > 0.10: # The function with less parameters is enough
    #        if not CL_high:
    #            order = o1
    #            print "%d par are sufficient" % (o1+1),
    #            CL_high=True
    #    else:
    #        print "%d par are needed" % (o2+1),
    #        if not CL_high:
    #            order = o2
    #    print "\\\\"
    #print "\\hline"
    #print "-"*25
    #print "@ Order is", order, "("+category+")"

    #order = min(3, order)
    #order = 2
    if order == 1:
        modelBkg = modelBkg1  #.Clone("Bkg")
        modelAlt = modelBkg2  #.Clone("BkgAlt")
        normzBkg = normzBkg1  #.Clone("Bkg_norm")
        fitRes = fitRes1
    elif order == 2:
        modelBkg = modelBkg2  #.Clone("Bkg")
        modelAlt = modelBkg3  #.Clone("BkgAlt")
        normzBkg = normzBkg2  #.Clone("Bkg_norm")
        fitRes = fitRes2
    elif order == 3:
        modelBkg = modelBkg3  #.Clone("Bkg")
        modelAlt = modelBkg4  #.Clone("BkgAlt")
        normzBkg = normzBkg3  #.Clone("Bkg_norm")
        fitRes = fitRes3
    elif order == 4:
        modelBkg = modelBkg4  #.Clone("Bkg")
        modelAlt = modelBkg3  #.Clone("BkgAlt")
        normzBkg = normzBkg4  #.Clone("Bkg_norm")
        fitRes = fitRes4
    else:
        print "Functions with", order + 1, "or more parameters are needed to fit the background"
        exit()

    modelBkg.SetName("Bkg_" + YEAR + "_" + category)
    modelAlt.SetName("Alt_" + YEAR + "_" + category)
    normzBkg.SetName("Bkg_" + YEAR + "_" + category + "_norm")

    print "-" * 25

    # Generate pseudo data
    setToys = RooDataSet()
    setToys.SetName("data_toys")
    setToys.SetTitle("Data (toys)")
    if not isData:
        print " - Generating", nevents, "events for toy data"
        setToys = modelBkg.generate(RooArgSet(X_mass), nevents)
        #setToys = modelAlt.generate(RooArgSet(X_mass), nevents)
        print "toy data generated"

    if VERBOSE: raw_input("Press Enter to continue...")

    #*******************************************************#
    #                                                       #
    #                         Plot                          #
    #                                                       #
    #*******************************************************#

    print "starting to plot"
    c = TCanvas("c_" + category, category, 800, 800)
    c.Divide(1, 2)
    setTopPad(c.GetPad(1), RATIO)
    setBotPad(c.GetPad(2), RATIO)
    c.cd(1)
    frame = X_mass.frame()
    setPadStyle(frame, 1.25, True)
    if VARBINS: frame.GetXaxis().SetRangeUser(X_mass.getMin(), lastBin)
    signal = getSignal(
        category, stype,
        2000)  #replacing Alberto's getSignal by own dummy function

    graphData = setData.plotOn(frame, RooFit.Binning(plot_binning),
                               RooFit.Scaling(False), RooFit.Invisible())
    modelBkg.plotOn(frame, RooFit.VisualizeError(fitRes, 1, False),
                    RooFit.LineColor(602), RooFit.FillColor(590),
                    RooFit.FillStyle(1001), RooFit.DrawOption("FL"),
                    RooFit.Name("1sigma"))
    modelBkg.plotOn(frame, RooFit.LineColor(602), RooFit.FillColor(590),
                    RooFit.FillStyle(1001), RooFit.DrawOption("L"),
                    RooFit.Name(modelBkg.GetName()))
    modelAlt.plotOn(frame, RooFit.LineStyle(7), RooFit.LineColor(613),
                    RooFit.FillColor(609), RooFit.FillStyle(1001),
                    RooFit.DrawOption("L"), RooFit.Name(modelAlt.GetName()))
    if not isSB and signal[0] is not None:  # FIXME remove /(2./3.)
        signal[0].plotOn(
            frame,
            RooFit.Normalization(signal[1] * signal[2], RooAbsReal.NumEvent),
            RooFit.LineStyle(3), RooFit.LineWidth(6), RooFit.LineColor(629),
            RooFit.DrawOption("L"), RooFit.Name("Signal"))
    graphData = setData.plotOn(
        frame, RooFit.Binning(plot_binning), RooFit.Scaling(False),
        RooFit.XErrorSize(0 if not VARBINS else 1),
        RooFit.DataError(RooAbsData.Poisson if isData else RooAbsData.SumW2),
        RooFit.DrawOption("PE0"), RooFit.Name(setData.GetName()))
    fixData(graphData.getHist(), True, True, not isData)
    pulls = frame.pullHist(setData.GetName(), modelBkg.GetName(), True)
    chi = frame.chiSquare(setData.GetName(), modelBkg.GetName(), True)
    #setToys.plotOn(frame, RooFit.DataError(RooAbsData.Poisson), RooFit.DrawOption("PE0"), RooFit.MarkerColor(2))
    frame.GetYaxis().SetTitle("Events / ( 100 GeV )")
    frame.GetYaxis().SetTitleOffset(1.05)
    frame.Draw()
    #print "frame drawn"
    # Get Chi2
    #    chi2[1] = frame.chiSquare(modelBkg1.GetName(), setData.GetName())
    #    chi2[2] = frame.chiSquare(modelBkg2.GetName(), setData.GetName())
    #    chi2[3] = frame.chiSquare(modelBkg3.GetName(), setData.GetName())
    #    chi2[4] = frame.chiSquare(modelBkg4.GetName(), setData.GetName())

    frame.SetMaximum(frame.GetMaximum() * 10)
    frame.SetMinimum(max(frame.GetMinimum(), 1.e-1))
    c.GetPad(1).SetLogy()

    drawAnalysis(category)
    drawRegion(category, True)
    #drawCMS(LUMI, "Simulation Preliminary")
    drawCMS(LUMI, "Work in Progress", suppressCMS=True)

    leg = TLegend(0.575, 0.6, 0.95, 0.9)
    leg.SetBorderSize(0)
    leg.SetFillStyle(0)  #1001
    leg.SetFillColor(0)
    leg.AddEntry(setData.GetName(),
                 setData.GetTitle() + " (%d events)" % nevents, "PEL")
    leg.AddEntry(modelBkg.GetName(), modelBkg.GetTitle(),
                 "FL")  #.SetTextColor(629)
    leg.AddEntry(modelAlt.GetName(), modelAlt.GetTitle(), "L")
    if not isSB and signal[0] is not None:
        leg.AddEntry("Signal", signal[0].GetTitle(), "L")
    leg.SetY1(0.9 - leg.GetNRows() * 0.05)
    leg.Draw()

    latex = TLatex()
    latex.SetNDC()
    latex.SetTextSize(0.04)
    latex.SetTextFont(42)
    if not isSB:
        latex.DrawLatex(leg.GetX1() * 1.16,
                        leg.GetY1() - 0.04, "HVT model B (g_{V}=3)")
    #    latex.DrawLatex(0.67, leg.GetY1()-0.045, "#sigma_{X} = 1.0 pb")

    c.cd(2)
    frame_res = X_mass.frame()
    setPadStyle(frame_res, 1.25)
    frame_res.addPlotable(pulls, "P")
    setBotStyle(frame_res, RATIO, False)
    if VARBINS: frame_res.GetXaxis().SetRangeUser(X_mass.getMin(), lastBin)
    frame_res.GetYaxis().SetRangeUser(-5, 5)
    frame_res.GetYaxis().SetTitle("pulls(#sigma)")
    frame_res.GetYaxis().SetTitleOffset(0.3)
    frame_res.Draw()
    fixData(pulls, False, True, False)

    drawChi2(RSS[order]["chi2"], RSS[order]["nbins"] - (order + 1), True)
    line = drawLine(X_mass.getMin(), 0, lastBin, 0)

    if VARBINS:
        c.SaveAs(PLOTDIR + "/BkgSR_" + category + ".pdf")
        c.SaveAs(PLOTDIR + "/BkgSR_" + category + ".png")
    else:
        c.SaveAs(PLOTDIR + "/BkgSR_" + category + ".pdf")
        c.SaveAs(PLOTDIR + "/BkgSR_" + category + ".png")

    #*******************************************************#
    #                                                       #
    #                   Generate workspace                  #
    #                                                       #
    #*******************************************************#

    if BIAS:
        gSystem.Load("libHiggsAnalysisCombinedLimit.so")
        from ROOT import RooMultiPdf
        cat = RooCategory("pdf_index", "Index of Pdf which is active")
        pdfs = RooArgList(modelBkg, modelAlt)
        roomultipdf = RooMultiPdf("roomultipdf", "All Pdfs", cat, pdfs)
        normulti = RooRealVar("roomultipdf_norm",
                              "Number of background events", nevents, 0., 1.e6)

    normzBkg.setConstant(
        False
    )  ## newly put here to ensure it's freely floating in the combine fit

    # create workspace
    w = RooWorkspace("Zprime_" + YEAR, "workspace")
    # Dataset
    if isData: getattr(w, "import")(setData, RooFit.Rename("data_obs"))
    else: getattr(w, "import")(setToys, RooFit.Rename("data_obs"))
    #getattr(w, "import")(setData, RooFit.Rename("data_obs"))
    if BIAS:
        getattr(w, "import")(cat, RooFit.Rename(cat.GetName()))
        getattr(w, "import")(normulti, RooFit.Rename(normulti.GetName()))
        getattr(w, "import")(roomultipdf, RooFit.Rename(roomultipdf.GetName()))
    getattr(w, "import")(modelBkg, RooFit.Rename(modelBkg.GetName()))
    getattr(w, "import")(modelAlt, RooFit.Rename(modelAlt.GetName()))
    getattr(w, "import")(normzBkg, RooFit.Rename(normzBkg.GetName()))
    w.writeToFile(WORKDIR + "%s_%s.root" % (DATA_TYPE + "_" + YEAR, category),
                  True)
    print "Workspace", WORKDIR + "%s_%s.root" % (
        DATA_TYPE + "_" + YEAR, category), "saved successfully"
    if VERBOSE: raw_input("Press Enter to continue...")
def FitMassPoint(filename, massin, massmin, massmax, rwCPS=1, nbins=50):

    ### take the input tree from the file
    inputFile = ROOT.TFile(filename);
    tree      = inputFile.Get("WJet");
    
    print "Lineshape Higgs mass -->  n entries: ", tree.GetEntries();
    
    # RooFitting
    rrv_mass   = RooRealVar("rrv_mass","rrv_mass",massin,massmin,massmax);
    rrv_weight = RooRealVar("rrv_weight","rrv_weight",0. ,10000000.); 

    rrv_mH1    = RooRealVar("rrv_mH1","rrv_mH1", massin, massmin, massmax );
    rrv_gamma1 = RooRealVar("rrv_gamma1","rrv_gamma1",20.,0.,massmax);

    rrv_mH2    = RooRealVar("rrv_mH2","rrv_mH2", massin, massmin, massmax )
    rrv_gamma2 = RooRealVar("rrv_gamma2","rrv_gamma2",20.,0.,massmax)

    rrv_mH3    = RooRealVar("rrv_mH3","rrv_mH3", massin, massmin, massmax );
    rrv_gamma3 = RooRealVar("rrv_gamma3","rrv_gamma3",20.,0.,massmax);

    rds_raw      = RooDataSet("rds_raw","rds_raw",RooArgSet(rrv_mass,rrv_weight),RooFit.WeightVar(rrv_weight)); ## created the raw dataset --> raw lineshape
    rds_cps      = RooDataSet("rds_cps","rds_cps",RooArgSet(rrv_mass,rrv_weight),RooFit.WeightVar(rrv_weight)); ## create the cps dataset  --> cps lineshape
    rds_cps_intf = ROOT.RooDataSet("rds_cps_intf","rds_cps_intf",RooArgSet(rrv_mass,rrv_weight),RooFit.WeightVar(rrv_weight)); ## create the cps + interference dataset

    model1_pdf = ROOT.RooRelBWRunningWidth("model1_pdf","model1_pdf",rrv_mass,rrv_mH1,rrv_gamma1); ## BWRunningWidth Pdf from the dedicated library
    model2_pdf = ROOT.RooRelBWRunningWidth("model2_pdf","model2_pdf",rrv_mass,rrv_mH2,rrv_gamma2); ## BWRunningWidth Pdf from the dedicated library
    model3_pdf = ROOT.RooRelBWRunningWidth("model3_pdf","model3_pdf",rrv_mass,rrv_mH3,rrv_gamma3); ## BWRunningWidth Pdf from the dedicated library
    
    ### loop on Higgs signal events 
    for i in range(tree.GetEntries()):
        
        if i % 10000 == 0: print "reweighter, i: ", i;
        tree.GetEntry(i);
        
        curmass = getattr(tree,"W_H_mass_gen"); ## take the higgs generated mass inside the window; point not in the window are neglected
        if curmass < massmax and curmass > massmin:
            
            rrv_mass.setVal( curmass ); ## set the value of the RooRealVar            
            tmpweight_cps = getattr(tree,"complexpolewtggH"+str(massin))*rwCPS/getattr(tree,"avecomplexpolewtggH"+str(massin)); ## take the cps weight from the tree
            tmpweight_cps_intf = getattr(tree,"complexpolewtggH"+str(massin))*rwCPS*getattr(tree,"interferencewtggH"+str(massin))/getattr(tree,"avecomplexpolewtggH"+str(massin)); ## cps*int

            rds_raw.add( RooArgSet( rrv_mass ), 1. );
            rds_cps.add( RooArgSet( rrv_mass ), tmpweight_cps );
            rds_cps_intf.add( RooArgSet( rrv_mass ), tmpweight_cps_intf );


    print ">>>>"
    RooTrace.dump(ROOT.cout,ROOT.kTRUE);
    RooTrace.mark();                
    print "<<<<"

    #### final fit  

    model1_pdf.fitTo(rds_raw,RooFit.Save(1), RooFit.SumW2Error(kTRUE));  
    model1_pdf.fitTo(rds_raw,RooFit.Save(1), RooFit.SumW2Error(kTRUE), RooFit.Minimizer("Minuit2"));  

    model2_pdf.fitTo(rds_cps,RooFit.Save(1), RooFit.SumW2Error(kTRUE));  
    model2_pdf.fitTo(rds_cps,RooFit.Save(1), RooFit.SumW2Error(kTRUE), RooFit.Minimizer("Minuit2"));  

    model3_pdf.fitTo(rds_cps_intf,RooFit.Save(1), RooFit.SumW2Error(kTRUE));  
    model3_pdf.fitTo(rds_cps_intf,RooFit.Save(1), RooFit.SumW2Error(kTRUE), RooFit.Minimizer("Minuit2"));  

    ## plot of the fits
    mplot = rrv_mass.frame(RooFit.Title("mass plot"));
    rds_raw.plotOn(mplot, RooFit.MarkerColor(kBlack), RooFit.LineColor(kBlack), RooFit.Binning(nbins,massmin,massmax), RooFit.DataError(RooAbsData.SumW2) );
    rds_cps.plotOn(mplot, RooFit.MarkerColor(kRed), RooFit.LineColor(kRed), RooFit.Binning(nbins,massmin,massmax), RooFit.DataError(RooAbsData.SumW2) );
    rds_cps_intf.plotOn(mplot, RooFit.MarkerColor(kBlue), RooFit.LineColor(kBlue), RooFit.Binning(nbins,massmin,massmax), RooFit.DataError(RooAbsData.SumW2) );
    model1_pdf.plotOn(mplot, RooFit.LineColor(kBlack));
    model2_pdf.plotOn(mplot, RooFit.LineColor(kRed), RooFit.LineStyle(2) );
    model3_pdf.plotOn(mplot, RooFit.LineColor(kBlue), RooFit.LineStyle(3) );
    rds_raw.plotOn(mplot, RooFit.MarkerColor(kBlack), RooFit.LineColor(kBlack), RooFit.Binning(nbins,massmin,massmax), RooFit.DataError(RooAbsData.SumW2) );
    rds_cps.plotOn(mplot, RooFit.MarkerColor(kRed), RooFit.LineColor(kRed), RooFit.Binning(nbins,massmin,massmax), RooFit.DataError(RooAbsData.SumW2) );
    rds_cps_intf.plotOn(mplot, RooFit.MarkerColor(kBlue), RooFit.LineColor(kBlue), RooFit.Binning(nbins,massmin,massmax), RooFit.DataError(RooAbsData.SumW2) );

    print "rds_raw.sumEntries() = ", rds_raw.sumEntries()
    print "model1_pdf: mH = ", rrv_mH1.getVal(), ", gamma = ", rrv_gamma1.getVal();    
    print "rds_cps.sumEntries() = ", rds_cps.sumEntries()
    print "model2_pdf: mH = ", rrv_mH2.getVal(), ", gamma = ", rrv_gamma2.getVal();    
    print "rds_cps_intf.sumEntries() = ", rds_cps_intf.sumEntries()
    print "model3_pdf: mH = ", rrv_mH3.getVal(), ", gamma = ", rrv_gamma3.getVal();    

    dummy_h1 = ROOT.TH1F("dummy_h1","dummy_h1",1,0,1); 
    dummy_h1.SetMarkerColor( ROOT.kBlack );
    dummy_h2 = ROOT.TH1F("dummy_h2","dummy_h2",1,0,1); 
    dummy_h2.SetMarkerColor( ROOT.kRed );
    dummy_h3 = ROOT.TH1F("dummy_h3","dummy_h3",1,0,1); 
    dummy_h3.SetMarkerColor( ROOT.kBlue );


    L = TLegend(0.65,0.60,0.93,0.85);
    L.SetFillStyle(0);
    L.AddEntry(dummy_h1,"Powheg","p");
    L.AddEntry(dummy_h2,"w/CPS weight","p");
    L.AddEntry(dummy_h3,"w/CPS,Intf weight","p");

    can2 = ROOT.TCanvas("can2","can2",800,800);
    mplot.Draw();
    L.Draw();
    
    os.system("mkdir -p massFits");
    can2.SaveAs("massFits/mass_rf_"+str(massin)+".pdf");
    can2.SaveAs("massFits/mass_rf_"+str(massin)+".png");

    outputpar_1 = [];
    outputpar_1.append( rrv_mH1.getVal() );
    outputpar_1.append( rrv_gamma1.getVal() );
    outputpar_2 = [];
    outputpar_2.append( rrv_mH2.getVal() );
    outputpar_2.append( rrv_gamma2.getVal() );
    outputpar_3 = [];
    outputpar_3.append( rrv_mH3.getVal() );
    outputpar_3.append( rrv_gamma3.getVal() );


    model1_pdf.Delete();
    model2_pdf.Delete();
    model3_pdf.Delete();

    rds_raw.Delete(),
    rds_cps.Delete(),
    rds_cps_intf.Delete();

    rrv_mH1.Delete(),
    rrv_gamma1.Delete();
    rrv_mH2.Delete(),
    rrv_gamma2.Delete();
    rrv_mH3.Delete(),
    rrv_gamma3.Delete();

    rrv_mass.Delete();

    return outputpar_2
Example #10
0
data4_SB  = RooDataSet("data4_SB", "data4 SB", RooArgSet(x), RooFit.Import( data4 ), RooFit.Cut("x<-2||x>4") )

# set range

x.setRange("signal_region",-2 ,4 )
x.setRange("left_side_band_region",-10 ,-2 )
x.setRange("right_side_band_region",4 ,10 )

# use gauss 13 to generate toy MC and cut right SB 

data_gauss13 = gauss13.generate(RooArgSet(x), n_generate*(1-frac_combine4.getVal() ) )
#data_gauss13.plotOn(xframe8,RooFit.LineColor(RooFit.kGreen))
data_gauss13_right_SB = RooDataSet("data_gauss13_right_SB", "data_gauss13_right_SB", RooArgSet(x), RooFit.Import( data_gauss13 ), RooFit.Cut("x>4") )
#data_gauss13_right_SB.plotOn(xframe8,RooFit.LineColor(RooFit.kGreen))
nDataGauss_right_SB = data_gauss13_right_SB.sumEntries()
print ""
print "nDataGauss_right_SB: ", nDataGauss_right_SB
print ""

# combined ext PDF  

# gauss 14
mean14 = RooRealVar("mean14","mean of gaussian",-1.5,-10,10)
sigma14 = RooRealVar("sigma14","width of gaussian",1.5,0.1,10)

gauss14 = RooGaussian("gauss14","gaussian PDF",x,mean14,sigma14)

# gauss 15
mean15 = RooRealVar("mean15","mean of gaussian",4,-10,10)
sigma15 = RooRealVar("sigma15","width of gaussian",1.3,0.1,10)
Example #11
0
def alpha(channel):

    nElec = channel.count('e')
    nMuon = channel.count('m')
    nLept = nElec + nMuon
    nBtag = channel.count('b')
    
    # Channel-dependent settings
    # Background function. Semi-working options are: EXP, EXP2, EXPN, EXPTAIL
    if nLept == 0:
        treeName = 'SR'
        signName = 'XZh'
        colorVjet = sample['DYJetsToNuNu']['linecolor']
        triName = "HLT_PFMET"
        leptCut = "0==0"
        topVeto = selection["TopVetocut"]
        massVar = "X_cmass"
        binFact = 1
        #fitFunc = "EXP"
        #fitFunc = "EXP2"
        #fitFunc = "EXPN"
        #fitFunc = "EXPTAIL"
        fitFunc = "EXPN" if nBtag < 2 else "EXP"
        fitAltFunc = "EXPTAIL" if nBtag < 2 else "EXPTAIL"
        fitFuncVjet = "ERFEXP" if nBtag < 2 else "ERFEXP"
        fitFuncVV   = "EXPGAUS"
        fitFuncTop  = "GAUS2"
    elif nLept == 1:
        treeName = 'WCR'
        signName = 'XWh'
        colorVjet = sample['WJetsToLNu']['linecolor']
        triName = "HLT_Ele" if nElec > 0 else "HLT_Mu"
        leptCut = "isWtoEN" if nElec > 0 else "isWtoMN"
        topVeto = selection["TopVetocut"]
        massVar = "X_mass"
        binFact = 2
        if nElec > 0:
            fitFunc = "EXP" if nBtag < 2 else "EXP"
            fitAltFunc  = "EXPTAIL" if nBtag < 2 else "EXPTAIL"
        else:
            fitFunc = "EXPTAIL" if nBtag < 2 else "EXP"
            fitAltFunc  = "EXPN" if nBtag < 2 else "EXPTAIL"
        fitFuncVjet = "ERFEXP" if nBtag < 2 else "ERFEXP"
        fitFuncVV   = "EXPGAUS"
        fitFuncTop  = "GAUS3" if nBtag < 2 else "GAUS2"
    else:
        treeName = 'XZh'
        signName = 'XZh'
        colorVjet = sample['DYJetsToLL']['linecolor']
        triName = "HLT_Ele" if nElec > 0 else "HLT_Mu"
        leptCut = "isZtoEE" if nElec > 0 else "isZtoMM"
        topVeto = "0==0"
        massVar = "X_mass"
        binFact = 5
        if nElec > 0:
            fitFunc = "EXP" if nBtag < 2 else "EXP"
            fitAltFunc = "POW" if nBtag < 2 else "POW"
        else:
            fitFunc = "EXP" if nBtag < 2 else "EXP"
            fitAltFunc = "POW" if nBtag < 2 else "POW"
        fitFuncVjet = "ERFEXP" if nBtag < 2 else "EXP"
        fitFuncVV   = "EXPGAUS2"
        fitFuncTop  = "GAUS"
    
    btagCut = selection["2Btag"] if nBtag == 2 else selection["1Btag"]
    
    print "--- Channel", channel, "---"
    print "  number of electrons:", nElec, " muons:", nMuon, " b-tags:", nBtag
    print "  read tree:", treeName, "and trigger:", triName
    if ALTERNATIVE: print "  using ALTERNATIVE fit functions"
    print "-"*11*2
    
    # Silent RooFit
    RooMsgService.instance().setGlobalKillBelow(RooFit.FATAL)
    
    #*******************************************************#
    #                                                       #
    #              Variables and selections                 #
    #                                                       #
    #*******************************************************#
    
    # Define all the variables from the trees that will be used in the cuts and fits
    # this steps actually perform a "projection" of the entire tree on the variables in thei ranges, so be careful once setting the limits
    X_mass = RooRealVar(  massVar, "m_{X}" if nLept > 0 else "m_{T}^{X}", XBINMIN, XBINMAX, "GeV")
    J_mass = RooRealVar( "fatjet1_prunedMassCorr",       "corrected pruned mass", HBINMIN, HBINMAX, "GeV")
    CSV1 = RooRealVar(   "fatjet1_CSVR1",                           "",        -1.e99,   1.e4     )
    CSV2 = RooRealVar(   "fatjet1_CSVR2",                           "",        -1.e99,   1.e4     )
    nBtag = RooRealVar(  "fatjet1_nBtag",                           "",            0.,   4        )
    CSVTop = RooRealVar( "bjet1_CSVR",                              "",        -1.e99,   1.e4     )
    isZtoEE = RooRealVar("isZtoEE",                                 "",            0.,   2        )
    isZtoMM = RooRealVar("isZtoMM",                                 "",            0.,   2        )
    isWtoEN = RooRealVar("isWtoEN",                                 "",            0.,   2        )
    isWtoMN = RooRealVar("isWtoMN",                                 "",            0.,   2        )
    weight = RooRealVar( "eventWeightLumi",                         "",         -1.e9,   1.       )
    
    # Define the RooArgSet which will include all the variables defined before
    # there is a maximum of 9 variables in the declaration, so the others need to be added with 'add'
    variables = RooArgSet(X_mass, J_mass, CSV1, CSV2, nBtag, CSVTop)
    variables.add(RooArgSet(isZtoEE, isZtoMM, isWtoEN, isWtoMN, weight))
    
    # Define the ranges in fatJetMass - these will be used to define SB and SR
    J_mass.setRange("LSBrange", LOWMIN, LOWMAX)
    J_mass.setRange("HSBrange", HIGMIN, HIGMAX)
    J_mass.setRange("VRrange",  LOWMAX, SIGMIN)
    J_mass.setRange("SRrange",  SIGMIN, SIGMAX)
    J_mass.setBins(54)
    
    # Define the selection for the various categories (base + SR / LSBcut / HSBcut )
    baseCut = leptCut + " && " + btagCut + "&&" + topVeto
    massCut = massVar + ">%d" % XBINMIN
    baseCut += " && " + massCut
    
    # Cuts
    SRcut  = baseCut + " && %s>%d && %s<%d" % (J_mass.GetName(), SIGMIN, J_mass.GetName(), SIGMAX)
    LSBcut = baseCut + " && %s>%d && %s<%d" % (J_mass.GetName(), LOWMIN, J_mass.GetName(), LOWMAX)
    HSBcut = baseCut + " && %s>%d && %s<%d" % (J_mass.GetName(), HIGMIN, J_mass.GetName(), HIGMAX)
    SBcut  = baseCut + " && ((%s>%d && %s<%d) || (%s>%d && %s<%d))" % (J_mass.GetName(), LOWMIN, J_mass.GetName(), LOWMAX, J_mass.GetName(), HIGMIN, J_mass.GetName(), HIGMAX)
    VRcut  = baseCut + " && %s>%d && %s<%d" % (J_mass.GetName(), LOWMAX, J_mass.GetName(), SIGMIN)
    
    # Binning
    binsJmass = RooBinning(HBINMIN, HBINMAX)
    binsJmass.addUniform(HBINS, HBINMIN, HBINMAX)
    binsXmass = RooBinning(XBINMIN, XBINMAX)
    binsXmass.addUniform(binFact*XBINS, XBINMIN, XBINMAX)
    
    #*******************************************************#
    #                                                       #
    #                      Input files                      #
    #                                                       #
    #*******************************************************#
    
    # Import the files using TChains (separately for the bkg "classes" that we want to describe: here DY and VV+ST+TT)
    treeData = TChain(treeName)
    treeMC   = TChain(treeName)
    treeVjet = TChain(treeName)
    treeVV   = TChain(treeName)
    treeTop  = TChain(treeName)
#    treeSign = {}
#    nevtSign = {}

    
    # Read data
    print "read data start"
    pd = getPrimaryDataset(triName)
    if len(pd)==0: raw_input("Warning: Primary Dataset not recognized, continue?")
    for i, s in enumerate(pd): treeData.Add(NTUPLEDIR + s + ".root")

    
    # Read V+jets backgrounds
    print "read V+jet start"
    for i, s in enumerate(["WJetsToLNu_HT", "DYJetsToNuNu_HT", "DYJetsToLL_HT"]):
        for j, ss in enumerate(sample[s]['files']): treeVjet.Add(NTUPLEDIR + ss + ".root")
    
    # Read VV backgrounds
    print "read VV start"
    for i, s in enumerate(["VV"]):
        for j, ss in enumerate(sample[s]['files']): treeVV.Add(NTUPLEDIR + ss + ".root")
    
    # Read Top backgrounds
    print "read Top start"
    for i, s in enumerate(["ST", "TTbar"]):
        for j, ss in enumerate(sample[s]['files']): treeTop.Add(NTUPLEDIR + ss + ".root")
        
    # Sum all background MC
    treeMC.Add(treeVjet)
    treeMC.Add(treeVV)
    treeMC.Add(treeTop)


#    print "prepare SB dataset"
    
    # create a dataset to host data in sideband (using this dataset we are automatically blind in the SR!)
#    setDataSB = RooDataSet("setDataSB", "setDataSB", variables, RooFit.Cut(SBcut), RooFit.WeightVar(weight), RooFit.Import(treeData))
#    setDataLSB = RooDataSet("setDataLSB", "setDataLSB", variables, RooFit.Import(setDataSB), RooFit.Cut(LSBcut), RooFit.WeightVar(weight))
#    setDataHSB = RooDataSet("setDataHSB", "setDataHSB", variables, RooFit.Import(setDataSB), RooFit.Cut(HSBcut), RooFit.WeightVar(weight))

#    print "prepare SR dataset"
    
    # Observed data (WARNING, BLIND!)
#    setDataSR = RooDataSet("setDataSR", "setDataSR", variables, RooFit.Cut(SRcut), RooFit.WeightVar(weight), RooFit.Import(treeData))
#    setDataVR = RooDataSet("setDataVR", "setDataVR", variables, RooFit.Cut(VRcut), RooFit.WeightVar(weight), RooFit.Import(treeData)) # Observed in the VV mass, just for plotting purposes
    

    print "prepare MC dataset"

    # same for the bkg datasets from MC, where we just apply the base selections (not blind)
    setVjet = RooDataSet("setVjet", "setVjet", variables, RooFit.Cut(baseCut), RooFit.WeightVar(weight), RooFit.Import(treeVjet))
    setVjetSB = RooDataSet("setVjetSB", "setVjetSB", variables, RooFit.Import(setVjet), RooFit.Cut(SBcut), RooFit.WeightVar(weight))
    setVjetSR = RooDataSet("setVjetSR", "setVjetSR", variables, RooFit.Import(setVjet), RooFit.Cut(SRcut), RooFit.WeightVar(weight))

    print "finish Vjet dataset"


#    setVV = RooDataSet("setVV", "setVV", variables, RooFit.Cut(baseCut), RooFit.WeightVar(weight), RooFit.Import(treeVV))
#    setVVSB = RooDataSet("setVVSB", "setVVSB", variables, RooFit.Import(setVV), RooFit.Cut(SBcut), RooFit.WeightVar(weight))
#    setVVSR = RooDataSet("setVVSR", "setVVSR", variables, RooFit.Import(setVV), RooFit.Cut(SRcut), RooFit.WeightVar(weight))

#    print "finish VV dataset"

#    setTop = RooDataSet("setTop", "setTop", variables, RooFit.Cut(baseCut), RooFit.WeightVar(weight), RooFit.Import(treeTop))
#    setTopSB = RooDataSet("setTopSB", "setTopSB", variables, RooFit.Import(setTop), RooFit.Cut(SBcut), RooFit.WeightVar(weight))
#    setTopSR = RooDataSet("setTopSR", "setTopSR", variables, RooFit.Import(setTop), RooFit.Cut(SRcut), RooFit.WeightVar(weight))

#    print "finish Top dataset"

    
#    print "  Data events SB: %.2f" % setDataSB.sumEntries()
    print "  V+jets entries: %.2f" % setVjet.sumEntries()
#    print "  VV, VH entries: %.2f" % setVV.sumEntries()
#    print "  Top,ST entries: %.2f" % setTop.sumEntries()
    
    
    # the relative normalization of the varius bkg is taken from MC by counting all the events in the full fatJetMass range
    #coef = RooRealVar("coef", "coef", setVV.sumEntries()/setVjet.sumEntries(),0.,1.)
#    coef_VV_Vjet = RooRealVar("coef2_1", "coef2_1", setVV.sumEntries()/setVjet.sumEntries(), 0., 1.)
#    coef_Top_VVVjet = RooRealVar("coef3_21", "coef3_21", setTop.sumEntries()/(setVjet.sumEntries()+setVV.sumEntries()),0.,1.);
#    coef_VV_Vjet.setConstant(True)
#    coef_Top_VVVjet.setConstant(True)
    
    # Define entries
    entryVjet = RooRealVar("entryVjets",  "V+jets normalization", setVjet.sumEntries(), 0., 1.e6)
#    entryVV = RooRealVar("entryVV",  "VV normalization", setVV.sumEntries(), 0., 1.e6)
#    entryTop = RooRealVar("entryTop",  "Top normalization", setTop.sumEntries(), 0., 1.e6)
    
#    entrySB = RooRealVar("entrySB",  "Data SB normalization", setDataSB.sumEntries(SBcut), 0., 1.e6)
#    entrySB.setError(math.sqrt(entrySB.getVal()))
    
#    entryLSB = RooRealVar("entryLSB",  "Data LSB normalization", setDataSB.sumEntries(LSBcut), 0., 1.e6)
#    entryLSB.setError(math.sqrt(entryLSB.getVal()))

#    entryHSB = RooRealVar("entryHSB",  "Data HSB normalization", setDataSB.sumEntries(HSBcut), 0., 1.e6)
#    entryHSB.setError(math.sqrt(entryHSB.getVal()))
    
    #*******************************************************#
    #                                                       #
    #                    NORMALIZATION                      #
    #                                                       #
    #*******************************************************#
    
    # set reasonable ranges for J_mass and X_mass
    # these are used in the fit in order to avoid ROOFIT to look in regions very far away from where we are fitting 
    J_mass.setRange("h_reasonable_range", LOWMIN, HIGMAX)
    X_mass.setRange("X_reasonable_range", XBINMIN, XBINMAX)
    
    # Set RooArgSets once for all, see https://root.cern.ch/phpBB3/viewtopic.php?t=11758
    jetMassArg = RooArgSet(J_mass)

    ##############################
    #                            #
    #    Yu-hsiang test region   #
    #                            #
    ##############################

    # test it in the channel "XZhnnb"
    print "the channel is", channel 
    if channel == "XZhnnb":

	# -------------------------------------------------------------------    
    	# draw the setVjet
    	Jmass_frame = J_mass.frame(RooFit.Title("test frame"))
    	setVjet.plotOn(Jmass_frame)    

        # ------------------------------------------------------------------- 
    	# use a PDF to fit the dataset
    	print "fitFuncVjet is", fitFuncVjet 

        constVjet_value_initial = -0.020
	offsetVjet_value_initial = 30.
	widthVjet_value_initial = 100.

    	constVjet_test   = RooRealVar("constVjet_test",   "slope of the exp", constVjet_value_initial , -1.,   0.)
    	offsetVjet_test  = RooRealVar("offsetVjet_test",  "offset of the erf", offsetVjet_value_initial,   -50., 200.)
    	widthVjet_test   = RooRealVar("widthVjet_test",   "width of the erf",  widthVjet_value_initial,     1., 200.)

        modelVjet_test = RooErfExpPdf("modelVjet_test", "error function for V+jets mass", J_mass, constVjet_test, offsetVjet_test, widthVjet_test)

#	constVjet_test.Print()
#	offsetVjet_test.Print()
#	widthVjet_test.Print()

#    	constVjet_test.setConstant(True)
#    	offsetVjet_test.setConstant(True)
#    	widthVjet_test.setConstant(True)

        frVjet_test = modelVjet_test.fitTo(setVjet, RooFit.SumW2Error(True), RooFit.Range("h_reasonable_range"), RooFit.Strategy(2), RooFit.Minimizer("Minuit2"), RooFit.Save(1), RooFit.PrintLevel(1 if VERBOSE else -1))

#        constVjet_test.Print()
#        offsetVjet_test.Print()
#        widthVjet_test.Print()

	constVjet_value_fit_MC = constVjet_test.getVal()
	offsetVjet_value_fit_MC = offsetVjet_test.getVal()
	widthVjet_value_fit_MC = widthVjet_test.getVal()

	print "constVjet_value_fit_MC:", constVjet_value_fit_MC, "offsetVjet_value_fit_MC:",offsetVjet_value_fit_MC,"widthVjet_value_fit_MC:",widthVjet_value_fit_MC


        modelVjet_test.plotOn(Jmass_frame,RooFit.LineColor(4))

        # ------------------------------------------------------------------- 
	# use the shape of fit to generate the psudo-data

	Entries_pseudo_data = setVjet.sumEntries()
#        Entries_pseudo_data = 502
#        Entries_pseudo_data = 5021


        pseudo_data = modelVjet_test.generate(RooArgSet(J_mass),Entries_pseudo_data )
#	pseudo_data = modelVjet_test.generate(RooArgSet(J_mass),setVjet.sumEntries()) 
#        pseudo_data = modelVjet_test.generate(RooArgSet(J_mass),502 )
#        pseudo_data = modelVjet_test.generate(RooArgSet(J_mass),5021 )
#	pseudo_data.Print("v")

	Jmass_frame2 = J_mass.frame(RooFit.Title("test frame2"))
	pseudo_data.plotOn(Jmass_frame2)
        modelVjet_test.plotOn(Jmass_frame2,RooFit.LineColor(4))

        # -------------------------------------------------------------------
	# make another dataset that remove the signal region 
        pseudo_data_SB = RooDataSet("pseudo_data_SB", "pseudo_data_SB", RooArgSet(J_mass), RooFit.Import(pseudo_data), RooFit.Cut("fatjet1_prunedMassCorr<65 || fatjet1_prunedMassCorr>135") )
	pseudo_data_SB.plotOn(Jmass_frame2,RooFit.LineColor(2))

        # -------------------------------------------------------------------
        # use another PDF to fit the pseudo-data in SB only

        constVjet_test2   = RooRealVar("constVjet_test2",   "slope of the exp", constVjet_value_fit_MC , -1.,   0.)
        offsetVjet_test2  = RooRealVar("offsetVjet_test2",  "offset of the erf", offsetVjet_value_fit_MC ,   -50., 200.)
        widthVjet_test2   = RooRealVar("widthVjet_test2",   "width of the erf", widthVjet_value_fit_MC ,     1., 200.)

        modelVjet_test2 = RooErfExpPdf("modelVjet_test2", "error function for V+jets mass", J_mass, constVjet_test2, offsetVjet_test2, widthVjet_test2)

        frVjet_test2 = modelVjet_test2.fitTo(pseudo_data_SB, RooFit.SumW2Error(True), RooFit.Range("LSBrange,HSBrange"), RooFit.Strategy(2), RooFit.Minimizer("Minuit2"), RooFit.Save(1), RooFit.PrintLevel(1 if VERBOSE else -1))	
#        frVjet_test2 = modelVjet_test2.fitTo(pseudo_data_SB, RooFit.SumW2Error(True), RooFit.Range("h_reasonable_range"), RooFit.Strategy(2), RooFit.Minimizer("Minuit2"), RooFit.Save(1), RooFit.PrintLevel(1 if VERBOSE else -1))

        constVjet_value_fit_pseudo_data_SB = constVjet_test2.getVal()
        offsetVjet_value_fit_pseudo_data_SB = offsetVjet_test2.getVal()
        widthVjet_value_fit_pseudo_data_SB = widthVjet_test2.getVal()

        print "constVjet_value_fit_pseudo_data_SB:", constVjet_value_fit_pseudo_data_SB, "offsetVjet_value_fit_pseudo_data_SB:",offsetVjet_value_fit_pseudo_data_SB,"widthVjet_value_fit_pseudo_data_SB:",widthVjet_value_fit_pseudo_data_SB

        Jmass_frame3 = J_mass.frame(RooFit.Title("test frame3, fit the pseudo-data in SB only"))
        pseudo_data_SB.plotOn(Jmass_frame3)
        modelVjet_test2.plotOn(Jmass_frame3,RooFit.LineColor(4),RooFit.Range("h_reasonable_range"))

        # ------------------------------------------------------------------- 
        # calculate the Gen_value, the Fit_value and the Bias= ( Fit_value - Gen_value)/Gen_value 

        iGen_value = modelVjet_test.createIntegral(RooArgSet(J_mass), RooFit.Range("VRrange,SRrange"))
        print "iGen_value:", iGen_value.getVal()

        iFit_value = modelVjet_test2.createIntegral(RooArgSet(J_mass), RooFit.Range("VRrange,SRrange"))
        print "iFit_value:", iFit_value.getVal()

        Bias_value = ( iFit_value.getVal() - iGen_value.getVal() ) / iGen_value.getVal()
        print "Bias_value of VR+SR:", Bias_value

        # --------------

        iGen_value = modelVjet_test.createIntegral(RooArgSet(J_mass), RooFit.Range("SRrange"))
        print "iGen_value:", iGen_value.getVal()
        
        iFit_value = modelVjet_test2.createIntegral(RooArgSet(J_mass), RooFit.Range("SRrange"))
        print "iFit_value:", iFit_value.getVal()


	Bias_value = ( iFit_value.getVal() - iGen_value.getVal() ) / iGen_value.getVal()
        print "Bias_value of SR:", Bias_value

#        iGen_value = modelVjet_test.createIntegral(RooArgSet(J_mass),RooFit.NormSet(RooArgSet(J_mass)), RooFit.Range("VRrange,SRrange"))
#	print "iGen_value:", iGen_value.getVal()

#        iGen_value = modelVjet_test.createIntegral(RooArgSet(J_mass),RooFit.NormSet(RooArgSet(J_mass)), RooFit.Range("VRrange,SRrange"))
#        print "iGen_value:", iGen_value.getVal()

#        iGen_value = modelVjet_test.createIntegral(RooArgSet(J_mass), RooFit.Range("h_reasonable_range"))
#        print "iGen_value:", iGen_value.getVal()

#        iGen_value = modelVjet_test.createIntegral(RooArgSet(J_mass))
#        print "iGen_value:", iGen_value.getVal()


        # ------------------------------------------------------------------- 
        # repeat thousand times to see bias distribution

        h_Bias = TH1D("h_Bias","h_Bias",80,-1,1);

        Jmass_frame4 = J_mass.frame(RooFit.Title("test frame4"))

	times_max = 50000

        constVjet_test.setConstant(True)
        offsetVjet_test.setConstant(True)
        widthVjet_test.setConstant(True)

        constVjet_test3   = RooRealVar("constVjet_test3",   "slope of the exp", constVjet_value_fit_MC , -1.,   0.)
        offsetVjet_test3  = RooRealVar("offsetVjet_test3",  "offset of the erf", offsetVjet_value_fit_MC ,   -50., 200.)
        widthVjet_test3   = RooRealVar("widthVjet_test3",   "width of the erf", widthVjet_value_fit_MC ,     1., 200.)


	for times in range(0,times_max):  

    		# inside loop
#		print "times:", times
		if times % 10 == 0 :
			print "Processing times:", times+1 ,"of", times_max 


		# generate pseudo-data
#		n_1_prime = gRandom->Poisson(n_1);
		Entries_pseudo_data_fluc = gRandom.Poisson( Entries_pseudo_data )
#		print "Entries_pseudo_data:", Entries_pseudo_data
#		print "Entries_pseudo_data_fluc:", Entries_pseudo_data_fluc

#		pseudo_data2 = modelVjet_test.generate(RooArgSet(J_mass),Entries_pseudo_data )
                pseudo_data2 = modelVjet_test.generate(RooArgSet(J_mass),Entries_pseudo_data_fluc )

#        	pseudo_data2.plotOn(Jmass_frame3,RooFit.LineColor(4),RooFit.Range("h_reasonable_range"))

                # take out VR+SR		
	        pseudo_data_SB2 = RooDataSet("pseudo_data_SB2", "pseudo_data_SB2", RooArgSet(J_mass), RooFit.Import(pseudo_data2), RooFit.Cut("fatjet1_prunedMassCorr<65 || fatjet1_prunedMassCorr>135") )

		# use other PDF to fit
#		print "constVjet_value_fit_MC:",constVjet_value_fit_MC

		constVjet_test3.setVal(constVjet_value_fit_MC)
		offsetVjet_test3.setVal(offsetVjet_value_fit_MC)
		widthVjet_test3.setVal(widthVjet_value_fit_MC)

		modelVjet_test3 = RooErfExpPdf("modelVjet_test3", "error function for V+jets mass", J_mass, constVjet_test3, offsetVjet_test3, widthVjet_test3)


        	frVjet_test3 = modelVjet_test3.fitTo(pseudo_data_SB2, RooFit.SumW2Error(True), RooFit.Range("LSBrange,HSBrange"), RooFit.Strategy(2), RooFit.Minimizer("Minuit2"), RooFit.Save(1), RooFit.PrintLevel(1 if VERBOSE else -1))

		# calculate the bias
        	iGen_value2 = modelVjet_test.createIntegral(jetMassArg,RooFit.NormSet(jetMassArg), RooFit.Range("SRrange"))
#        	print "iGen_value2:", iGen_value2.getVal()

        	iFit_value2 = modelVjet_test3.createIntegral(jetMassArg,RooFit.NormSet(jetMassArg), RooFit.Range("SRrange"))
#        	print "iFit_value2:", iFit_value2.getVal()

        	Bias_value2 = ( iFit_value2.getVal() - iGen_value2.getVal() ) / iGen_value2.getVal()
#        	print "Bias_value2 of VR+SR:", Bias_value2
		
		h_Bias.Fill(Bias_value2)



        # ------------------------------------------------------------------- 
	# plot and save
        Save_Dir = "/afs/cern.ch/user/y/yuchang/www/jacopo_plotsAlpha/yu_hsiang_bias_study"

        c_test = TCanvas("test","test draw",800,600)
        c_test.cd()
        Jmass_frame.Draw()
        c_test.SaveAs(Save_Dir+"/"+"VJet_MC_fit_get_shape.pdf")

        c_test2 = TCanvas("test2","test draw 2",800,600)
        c_test2.cd()
        Jmass_frame2.Draw()
        c_test2.SaveAs(Save_Dir+"/"+"use_shape_to_generate_pseudo_data.pdf")
#        c_test2.SaveAs(Save_Dir+"/"+"use_shape_to_generate_pseudo_data_test.pdf")

        c_test3 = TCanvas("test3","test draw 3",800,600)
        c_test3.cd()
        Jmass_frame3.Draw()
        c_test3.SaveAs(Save_Dir+"/"+"fit_pseudo_data_in_SB_only.pdf")

        c_test4 = TCanvas("test4","test draw 4",800,600)
        c_test4.cd()
	h_Bias.Draw()
        c_test4.SaveAs(Save_Dir+"/"+"h_Bias.pdf")
                         "GeV")
mumuMass = RooRealVar("mumuMass", "mumuMass", 0, 6)
mumuMassE = RooRealVar("mumuMassE", "mumuMassE", 0, 10000)
tagB0 = RooRealVar("tagB0", "tagB0", 0, 2)

tagged_mass.setRange("full", 5.0, 5.6)
thevars = RooArgSet()
thevars.add(tagged_mass)
thevars.add(mumuMass)
thevars.add(mumuMassE)
thevars.add(tagB0)

fulldata = RooDataSet('fulldata', 'fulldataset', tData, RooArgSet(thevars))

## add to the data dataset a random variable, in order to scale it to desired stat
nDataEntries = fulldata.sumEntries()
randVar = RooRealVar("rand", "rand", 0, 1)
p0 = RooPolynomial("px", "px", randVar)
rDataset = p0.generate(RooArgSet(randVar), int(nDataEntries))
fulldata.merge(rDataset)

## add to the input tree the combination of the variables, to be used for the cuts on the dimuon mass
deltaB0Mfunc = RooFormulaVar("deltaB0M", "deltaB0M", "@0 - @1",
                             RooArgList(tagged_mass, B0Mass))
deltaJMfunc = RooFormulaVar("deltaJpsiM", "deltaJpsiM", "@0 - @1",
                            RooArgList(mumuMass, JPsiMass))
deltaPMfunc = RooFormulaVar("deltaPsiPM", "deltaPsiPM", "@0 - @1",
                            RooArgList(mumuMass, PsiPMass))
deltaB0M = fulldata.addColumn(deltaB0Mfunc)
deltaJpsiM = fulldata.addColumn(deltaJMfunc)
deltaPsiPM = fulldata.addColumn(deltaPMfunc)
Example #13
0
def readData( filePath, dataSetName, NTuple = False, observables = None, **kwargs ) :
    """reads data from file (RooDataSet or TTree(s))
    """
    from ROOT import RooFit
    noNAN = ( ' && '.join( '( %s==%s )' % ( obs, obs ) for obs in observables ) ) if hasattr( observables, '__iter__' ) else ''
    cuts = kwargs.pop( 'cuts', '' )
    tmp_file = None
    if observables :
        print 'P2VV - INFO: readData: reading data for observables [ %s ]' % ', '.join( obs.GetName() for obs in observables )

    dataSetArgs = { }
    if 'WeightVar' in kwargs : dataSetArgs['WeightVar'] = kwargs.pop('WeightVar')
    if NTuple :
      from ROOT import RooDataSet, TFile
      assert observables != None, 'P2VV - ERROR: readData: set of observables is required for reading an n-tuple'

      # create data set from NTuple file(s)
      print 'P2VV - INFO: readData: reading NTuple "%s" from file "%s"' % ( dataSetName, filePath )
      ntupleFile = TFile.Open(filePath)
      ntupleOrig = ntupleFile.Get(dataSetName)
      if not ntupleOrig : raise RuntimeError( 'P2VV - ERROR: could not locate tree "%s" in file "%s"' % ( dataSetName, filePath ) )

      if 'ntupleCuts' in kwargs :
          ntupleCuts = kwargs.pop( 'ntupleCuts', '' )
          print 'P2VV - INFO: readData: applying cuts on n-tuple: %s' % ntupleCuts
          import tempfile
          import os
          from ROOT import TFile, gFile
          orig_file = gFile
          d = None
          if 'TMP' in os.environ:
              d = os.environ['TMP']
          elif 'TMPDIR' in os.environ:
              d = os.environ['TMPDIR']
          elif os.access(os.path.dirname(filePath), os.W_OK):
              d = os.path.dirname(filePath)
          else:
              d = '/tmp'
          fd, temp_name = tempfile.mkstemp(suffix = '.root', dir = d)
          os.close(fd)
          os.remove(temp_name)
          tmp_file = TFile.Open(temp_name, 'recreate')
          ntuple = ntupleOrig.CopyTree(ntupleCuts)
      else :
          ntuple = ntupleOrig

      if cuts : print 'P2VV - INFO: readData: applying cuts on data set: %s' % cuts
      data = RooDataSet(  dataSetName, dataSetName
                       , [ obs._var for obs in observables ]
                       , Import = ntuple
                       , Cut = noNAN + ' && ' + cuts if cuts else noNAN
                       , **dataSetArgs
                       )

    else :
      from ROOT import TFile

      # get data set from file
      print 'P2VV - INFO: readData: reading RooDataset "%s" from file "%s"' % ( dataSetName, filePath )
      file = TFile.Open( filePath, 'READ' )
      assert file, 'P2VV - ERROR: readData: file "%s" could not be opened' % filePath
      if cuts : print 'P2VV - INFO: readData: applying cuts: %s' % cuts

      # loop over category states
      states = tuple( [ [ ( cat[0], ind ) for ind in cat[1] ] for cat in kwargs.pop( 'Categories', [ ( '', [ '' ] ) ] ) ] )
      from itertools import product
      for it, state in enumerate( product(*states) ) :
          # get data set
          dsName = '_'.join( str(catSt[0]) + str(catSt[1]) for catSt in state )
          dsName = dataSetName + ( ( '_' + dsName ) if dsName else '' )
          dataSet = file.Get(dsName)
          assert dataSet, 'P2VV - ERROR: data set "%s" not found' % dsName
          if it == 0 :
              if observables :
                  from ROOT import RooDataSet
                  data = RooDataSet( dataSetName, dataSetName
                                   , [ obs._var for obs in observables ]
                                   , Import = dataSet
                                   , Cut = noNAN + ' && ' + cuts if cuts else noNAN
                                   , **dataSetArgs
                                   )
              else :
                  data = dataSet
          else :
              data.append(dataSet)

      file.Close()

    print 'P2VV - INFO: read dataset with %s entries (%.1f weighted)' % ( data.numEntries(), data.sumEntries() )

    # import data set into current workspace
    from P2VV.RooFitWrappers import RooObject
    importIntoWS = kwargs.pop( 'ImportIntoWS', True )
    rData = None
    if importIntoWS :
        # import data set into current workspace
        from P2VV.RooFitWrappers import RooObject
        wsData = RooObject().ws().put( data, **kwargs )
        rData = wsData
    else :
        rData = data

    if tmp_file:
        tmp_file.Close()
        os.remove(tmp_file.GetName())
        if orig_file: orig_file.cd()
    return rData
Example #14
0
def alpha(channel):

    nElec = channel.count("e")
    nMuon = channel.count("m")
    nLept = nElec + nMuon
    nBtag = channel.count("b")

    # Channel-dependent settings
    # Background function. Semi-working options are: EXP, EXP2, EXPN, EXPTAIL
    if nLept == 0:
        treeName = "SR"
        signName = "XZh"
        colorVjet = sample["DYJetsToNuNu"]["linecolor"]
        triName = "HLT_PFMET"
        leptCut = "0==0"
        topVeto = selection["TopVetocut"]
        massVar = "X_cmass"
        binFact = 1
        fitFunc = "EXPN" if nBtag < 2 else "EXPN"
        fitAltFunc = "EXPTAIL" if nBtag < 2 else "EXPTAIL"
        fitFuncVjet = "ERFEXP" if nBtag < 2 else "EXP"
        fitAltFuncVjet = "POL" if nBtag < 2 else "POL"
        fitFuncVV = "EXPGAUS" if nBtag < 2 else "EXPGAUS"
        fitFuncTop = "GAUS2"
    elif nLept == 1:
        treeName = "WCR"
        signName = "XWh"
        colorVjet = sample["WJetsToLNu"]["linecolor"]
        triName = "HLT_Ele" if nElec > 0 else "HLT_Mu"
        leptCut = "isWtoEN" if nElec > 0 else "isWtoMN"
        topVeto = selection["TopVetocut"]
        massVar = "X_mass"
        binFact = 2
        if nElec > 0:
            fitFunc = "EXPTAIL" if nBtag < 2 else "EXPN"
            fitAltFunc = "EXPN" if nBtag < 2 else "POW"
        else:
            fitFunc = "EXPN" if nBtag < 2 else "EXPN"
            fitAltFunc = "EXPTAIL" if nBtag < 2 else "POW"
        fitFuncVjet = "ERFEXP" if nBtag < 2 else "EXP"
        fitAltFuncVjet = "POL" if nBtag < 2 else "POL"
        fitFuncVV = "EXPGAUS" if nBtag < 2 else "EXPGAUS"
        fitFuncTop = "GAUS3" if nBtag < 2 else "GAUS2"
    else:
        treeName = "XZh"
        signName = "XZh"
        colorVjet = sample["DYJetsToLL"]["linecolor"]
        triName = "HLT_Ele" if nElec > 0 else "HLT_Mu"
        leptCut = "isZtoEE" if nElec > 0 else "isZtoMM"
        topVeto = "X_dPhi>2.5"
        massVar = "X_mass"
        binFact = 2
        if nElec > 0:
            fitFunc = "EXPTAIL" if nBtag < 2 else "EXPTAIL"
            fitAltFunc = "POW" if nBtag < 2 else "POW"
        else:
            fitFunc = "EXPTAIL" if nBtag < 2 else "EXPTAIL"
            fitAltFunc = "POW" if nBtag < 2 else "POW"
        fitFuncVjet = "ERFEXP" if nBtag < 2 and nElec < 1 else "EXP"
        fitAltFuncVjet = "POL" if nBtag < 2 else "POL"
        fitFuncVV = "EXPGAUS2" if nBtag < 2 else "EXPGAUS2"
        fitFuncTop = "GAUS"

    btagCut = selection["2Btag"] if nBtag == 2 else selection["1Btag"]

    print "--- Channel", channel, "---"
    print "  number of electrons:", nElec, " muons:", nMuon, " b-tags:", nBtag
    print "  read tree:", treeName, "and trigger:", triName
    if ALTERNATIVE:
        print "  using ALTERNATIVE fit functions"
    print "-" * 11 * 2

    # Silent RooFit
    RooMsgService.instance().setGlobalKillBelow(RooFit.FATAL)

    # *******************************************************#
    #                                                       #
    #              Variables and selections                 #
    #                                                       #
    # *******************************************************#

    # Define all the variables from the trees that will be used in the cuts and fits
    # this steps actually perform a "projection" of the entire tree on the variables in thei ranges, so be careful once setting the limits
    X_mass = RooRealVar(massVar, "m_{X}" if nLept > 0 else "m_{T}^{X}", XBINMIN, XBINMAX, "GeV")
    J_mass = RooRealVar("fatjet1_prunedMassCorr", "jet corrected pruned mass", HBINMIN, HBINMAX, "GeV")
    CSV1 = RooRealVar("fatjet1_CSVR1", "", -1.0e99, 1.0e4)
    CSV2 = RooRealVar("fatjet1_CSVR2", "", -1.0e99, 1.0e4)
    nB = RooRealVar("fatjet1_nBtag", "", 0.0, 4)
    CSVTop = RooRealVar("bjet1_CSVR", "", -1.0e99, 1.0e4)
    X_dPhi = RooRealVar("X_dPhi", "", 0.0, 3.15)
    isZtoEE = RooRealVar("isZtoEE", "", 0.0, 2)
    isZtoMM = RooRealVar("isZtoMM", "", 0.0, 2)
    isWtoEN = RooRealVar("isWtoEN", "", 0.0, 2)
    isWtoMN = RooRealVar("isWtoMN", "", 0.0, 2)
    weight = RooRealVar("eventWeightLumi", "", -1.0e9, 1.0)

    # Define the RooArgSet which will include all the variables defined before
    # there is a maximum of 9 variables in the declaration, so the others need to be added with 'add'
    variables = RooArgSet(X_mass, J_mass, CSV1, CSV2, nB, CSVTop, X_dPhi)
    variables.add(RooArgSet(isZtoEE, isZtoMM, isWtoEN, isWtoMN, weight))

    # set reasonable ranges for J_mass and X_mass
    # these are used in the fit in order to avoid ROOFIT to look in regions very far away from where we are fitting
    # (honestly, it is not clear to me why it is necessary, but without them the fit often explodes)
    J_mass.setRange("h_reasonable_range", LOWMIN, HIGMAX)
    X_mass.setRange("X_reasonable_range", XBINMIN, XBINMAX)

    # Set RooArgSets once for all, see https://root.cern.ch/phpBB3/viewtopic.php?t=11758
    jetMassArg = RooArgSet(J_mass)
    # Define the ranges in fatJetMass - these will be used to define SB and SR
    J_mass.setRange("LSBrange", LOWMIN, LOWMAX)
    J_mass.setRange("HSBrange", HIGMIN, HIGMAX)
    J_mass.setRange("VRrange", LOWMAX, SIGMIN)
    J_mass.setRange("SRrange", SIGMIN, SIGMAX)

    # Set binning for plots
    J_mass.setBins(HBINS)
    X_mass.setBins(binFact * XBINS)

    # Define the selection for the various categories (base + SR / LSBcut / HSBcut )
    baseCut = leptCut + " && " + btagCut + "&&" + topVeto
    massCut = massVar + ">%d" % XBINMIN
    baseCut += " && " + massCut

    # Cuts
    SRcut = baseCut + " && %s>%d && %s<%d" % (J_mass.GetName(), SIGMIN, J_mass.GetName(), SIGMAX)
    LSBcut = baseCut + " && %s>%d && %s<%d" % (J_mass.GetName(), LOWMIN, J_mass.GetName(), LOWMAX)
    HSBcut = baseCut + " && %s>%d && %s<%d" % (J_mass.GetName(), HIGMIN, J_mass.GetName(), HIGMAX)
    SBcut = baseCut + " && ((%s>%d && %s<%d) || (%s>%d && %s<%d))" % (
        J_mass.GetName(),
        LOWMIN,
        J_mass.GetName(),
        LOWMAX,
        J_mass.GetName(),
        HIGMIN,
        J_mass.GetName(),
        HIGMAX,
    )
    VRcut = baseCut + " && %s>%d && %s<%d" % (J_mass.GetName(), LOWMAX, J_mass.GetName(), SIGMIN)

    # Binning
    binsJmass = RooBinning(HBINS, HBINMIN, HBINMAX)
    # binsJmass.addUniform(HBINS, HBINMIN, HBINMAX)
    binsXmass = RooBinning(binFact * XBINS, XBINMIN, XBINMAX)
    # binsXmass.addUniform(binFact*XBINS, XBINMIN, XBINMAX)

    # *******************************************************#
    #                                                       #
    #                      Input files                      #
    #                                                       #
    # *******************************************************#

    # Import the files using TChains (separately for the bkg "classes" that we want to describe: here DY and VV+ST+TT)
    treeData = TChain(treeName)
    treeMC = TChain(treeName)
    treeVjet = TChain(treeName)
    treeVV = TChain(treeName)
    treeTop = TChain(treeName)
    treeSign = {}
    nevtSign = {}
    for i, m in enumerate(massPoints):
        treeSign[m] = TChain(treeName)

    # Read data
    pd = getPrimaryDataset(triName)
    if len(pd) == 0:
        raw_input("Warning: Primary Dataset not recognized, continue?")
    for i, s in enumerate(pd):
        treeData.Add(NTUPLEDIR + s + ".root")

    # Read V+jets backgrounds
    for i, s in enumerate(["WJetsToLNu_HT", "DYJetsToNuNu_HT", "DYJetsToLL_HT"]):
        for j, ss in enumerate(sample[s]["files"]):
            treeVjet.Add(NTUPLEDIR + ss + ".root")

    # Read VV backgrounds
    for i, s in enumerate(["VV"]):
        for j, ss in enumerate(sample[s]["files"]):
            treeVV.Add(NTUPLEDIR + ss + ".root")

    # Read Top backgrounds
    for i, s in enumerate(["ST", "TTbar"]):
        for j, ss in enumerate(sample[s]["files"]):
            treeTop.Add(NTUPLEDIR + ss + ".root")

    # Read signals
    for i, m in enumerate(massPoints):
        for j, ss in enumerate(sample["%s_M%d" % (signName, m)]["files"]):
            treeSign[m].Add(NTUPLEDIR + ss + ".root")
            sfile = TFile(NTUPLEDIR + ss + ".root", "READ")
            shist = sfile.Get("Counters/Counter")
            nevtSign[m] = shist.GetBinContent(1)
            sfile.Close()

    # Sum all background MC
    treeMC.Add(treeVjet)
    treeMC.Add(treeVV)
    treeMC.Add(treeTop)

    # create a dataset to host data in sideband (using this dataset we are automatically blind in the SR!)
    setDataSB = RooDataSet(
        "setDataSB", "setDataSB", variables, RooFit.Cut(SBcut), RooFit.WeightVar(weight), RooFit.Import(treeData)
    )
    setDataLSB = RooDataSet(
        "setDataLSB", "setDataLSB", variables, RooFit.Import(setDataSB), RooFit.Cut(LSBcut), RooFit.WeightVar(weight)
    )
    setDataHSB = RooDataSet(
        "setDataHSB", "setDataHSB", variables, RooFit.Import(setDataSB), RooFit.Cut(HSBcut), RooFit.WeightVar(weight)
    )

    # Observed data (WARNING, BLIND!)
    setDataSR = RooDataSet(
        "setDataSR", "setDataSR", variables, RooFit.Cut(SRcut), RooFit.WeightVar(weight), RooFit.Import(treeData)
    )
    setDataVR = RooDataSet(
        "setDataVR", "setDataVR", variables, RooFit.Cut(VRcut), RooFit.WeightVar(weight), RooFit.Import(treeData)
    )  # Observed in the VV mass, just for plotting purposes

    setDataSRSB = RooDataSet(
        "setDataSRSB",
        "setDataSRSB",
        variables,
        RooFit.Cut("(" + SRcut + ") || (" + SBcut + ")"),
        RooFit.WeightVar(weight),
        RooFit.Import(treeData),
    )

    # same for the bkg datasets from MC, where we just apply the base selections (not blind)
    setVjet = RooDataSet(
        "setVjet", "setVjet", variables, RooFit.Cut(baseCut), RooFit.WeightVar(weight), RooFit.Import(treeVjet)
    )
    setVjetSB = RooDataSet(
        "setVjetSB", "setVjetSB", variables, RooFit.Import(setVjet), RooFit.Cut(SBcut), RooFit.WeightVar(weight)
    )
    setVjetSR = RooDataSet(
        "setVjetSR", "setVjetSR", variables, RooFit.Import(setVjet), RooFit.Cut(SRcut), RooFit.WeightVar(weight)
    )
    setVV = RooDataSet(
        "setVV", "setVV", variables, RooFit.Cut(baseCut), RooFit.WeightVar(weight), RooFit.Import(treeVV)
    )
    setVVSB = RooDataSet(
        "setVVSB", "setVVSB", variables, RooFit.Import(setVV), RooFit.Cut(SBcut), RooFit.WeightVar(weight)
    )
    setVVSR = RooDataSet(
        "setVVSR", "setVVSR", variables, RooFit.Import(setVV), RooFit.Cut(SRcut), RooFit.WeightVar(weight)
    )
    setTop = RooDataSet(
        "setTop", "setTop", variables, RooFit.Cut(baseCut), RooFit.WeightVar(weight), RooFit.Import(treeTop)
    )
    setTopSB = RooDataSet(
        "setTopSB", "setTopSB", variables, RooFit.Import(setTop), RooFit.Cut(SBcut), RooFit.WeightVar(weight)
    )
    setTopSR = RooDataSet(
        "setTopSR", "setTopSR", variables, RooFit.Import(setTop), RooFit.Cut(SRcut), RooFit.WeightVar(weight)
    )

    print "  Data events SB: %.2f" % setDataSB.sumEntries()
    print "  V+jets entries: %.2f" % setVjet.sumEntries()
    print "  VV, VH entries: %.2f" % setVV.sumEntries()
    print "  Top,ST entries: %.2f" % setTop.sumEntries()

    nVV = RooRealVar("nVV", "VV normalization", setVV.sumEntries(SBcut), 0.0, 2 * setVV.sumEntries(SBcut))
    nTop = RooRealVar("nTop", "Top normalization", setTop.sumEntries(SBcut), 0.0, 2 * setTop.sumEntries(SBcut))
    nVjet = RooRealVar("nVjet", "Vjet normalization", setDataSB.sumEntries(), 0.0, 2 * setDataSB.sumEntries(SBcut))
    nVjet2 = RooRealVar("nVjet2", "Vjet2 normalization", setDataSB.sumEntries(), 0.0, 2 * setDataSB.sumEntries(SBcut))

    # Apply Top SF
    nTop.setVal(nTop.getVal() * topSF[nLept][nBtag])
    nTop.setError(nTop.getVal() * topSFErr[nLept][nBtag])

    # Define entries
    entryVjet = RooRealVar("entryVjets", "V+jets normalization", setVjet.sumEntries(), 0.0, 1.0e6)
    entryVV = RooRealVar("entryVV", "VV normalization", setVV.sumEntries(), 0.0, 1.0e6)
    entryTop = RooRealVar("entryTop", "Top normalization", setTop.sumEntries(), 0.0, 1.0e6)

    entrySB = RooRealVar("entrySB", "Data SB normalization", setDataSB.sumEntries(SBcut), 0.0, 1.0e6)
    entrySB.setError(math.sqrt(entrySB.getVal()))

    entryLSB = RooRealVar("entryLSB", "Data LSB normalization", setDataSB.sumEntries(LSBcut), 0.0, 1.0e6)
    entryLSB.setError(math.sqrt(entryLSB.getVal()))

    entryHSB = RooRealVar("entryHSB", "Data HSB normalization", setDataSB.sumEntries(HSBcut), 0.0, 1.0e6)
    entryHSB.setError(math.sqrt(entryHSB.getVal()))

    ###################################################################################
    #        _   _                                                                    #
    #       | \ | |                          | (_)         | | (_)                    #
    #       |  \| | ___  _ __ _ __ ___   __ _| |_ ___  __ _| |_ _  ___  _ __          #
    #       | . ` |/ _ \| '__| '_ ` _ \ / _` | | / __|/ _` | __| |/ _ \| '_ \         #
    #       | |\  | (_) | |  | | | | | | (_| | | \__ \ (_| | |_| | (_) | | | |        #
    #       |_| \_|\___/|_|  |_| |_| |_|\__,_|_|_|___/\__,_|\__|_|\___/|_| |_|        #
    #                                                                                 #
    ###################################################################################
    # fancy ASCII art thanks to, I guess, Jose

    # start by creating the fit models to get the normalization:
    # * MAIN and SECONDARY bkg are taken from MC by fitting the whole J_mass range
    # * The two PDFs are added together using the relative normalizations of the two bkg from MC
    # * DATA is then fit in the sidebands only using the combined bkg PDF
    # * The results of the fit are then estrapolated in the SR and the integral is evaluated.
    # * This defines the bkg normalization in the SR

    # *******************************************************#
    #                                                       #
    #                 V+jets normalization                  #
    #                                                       #
    # *******************************************************#

    # Variables for V+jets
    constVjet = RooRealVar("constVjet", "slope of the exp", -0.020, -1.0, 0.0)
    offsetVjet = RooRealVar("offsetVjet", "offset of the erf", 30.0, -50.0, 400.0)
    widthVjet = RooRealVar("widthVjet", "width of the erf", 100.0, 1.0, 200.0)  # 0, 400
    a0Vjet = RooRealVar("a0Vjet", "width of the erf", -0.1, -5, 0)
    a1Vjet = RooRealVar("a1Vjet", "width of the erf", 0.6, 0, 5)
    a2Vjet = RooRealVar("a2Vjet", "width of the erf", -0.1, -1, 1)

    if channel == "XZhnnb":
        offsetVjet = RooRealVar("offsetVjet", "offset of the erf", 500.0, 200.0, 1000.0)
    if channel == "XZhnnbb":
        offsetVjet = RooRealVar("offsetVjet", "offset of the erf", 350.0, 200.0, 500.0)
    #    if channel == "XWhenb" or channel == "XZheeb":
    #        offsetVjet.setVal(120.)
    #        offsetVjet.setConstant(True)
    if channel == "XWhenb":
        offsetVjet = RooRealVar("offsetVjet", "offset of the erf", 120.0, 80.0, 155.0)
    if channel == "XWhenbb" or channel == "XZhmmb":
        offsetVjet = RooRealVar("offsetVjet", "offset of the erf", 67.0, 50.0, 100.0)
    if channel == "XWhmnb":
        offsetVjet = RooRealVar("offsetVjet", "offset of the erf", 30.0, -50.0, 600.0)
    if channel == "XZheeb":
        offsetVjet.setMin(-400)
        offsetVjet.setVal(0.0)
        offsetVjet.setMax(1000)
        widthVjet.setVal(1.0)

    # Define V+jets model
    if fitFuncVjet == "ERFEXP":
        VjetMass = RooErfExpPdf("VjetMass", fitFuncVjet, J_mass, constVjet, offsetVjet, widthVjet)
    elif fitFuncVjet == "EXP":
        VjetMass = RooExponential("VjetMass", fitFuncVjet, J_mass, constVjet)
    elif fitFuncVjet == "GAUS":
        VjetMass = RooGaussian("VjetMass", fitFuncVjet, J_mass, offsetVjet, widthVjet)
    elif fitFuncVjet == "POL":
        VjetMass = RooChebychev("VjetMass", fitFuncVjet, J_mass, RooArgList(a0Vjet, a1Vjet, a2Vjet))
    elif fitFuncVjet == "POW":
        VjetMass = RooGenericPdf("VjetMass", fitFuncVjet, "@0^@1", RooArgList(J_mass, a0Vjet))
    else:
        print "  ERROR! Pdf", fitFuncVjet, "is not implemented for Vjets"
        exit()

    if fitAltFuncVjet == "POL":
        VjetMass2 = RooChebychev("VjetMass2", "polynomial for V+jets mass", J_mass, RooArgList(a0Vjet, a1Vjet, a2Vjet))
    else:
        print "  ERROR! Pdf", fitAltFuncVjet, "is not implemented for Vjets"
        exit()

    # fit to main bkg in MC (whole range)
    frVjet = VjetMass.fitTo(
        setVjet,
        RooFit.SumW2Error(True),
        RooFit.Range("h_reasonable_range"),
        RooFit.Strategy(2),
        RooFit.Minimizer("Minuit2"),
        RooFit.Save(1),
        RooFit.PrintLevel(1 if VERBOSE else -1),
    )
    frVjet2 = VjetMass2.fitTo(
        setVjet,
        RooFit.SumW2Error(True),
        RooFit.Range("h_reasonable_range"),
        RooFit.Strategy(2),
        RooFit.Minimizer("Minuit2"),
        RooFit.Save(1),
        RooFit.PrintLevel(1 if VERBOSE else -1),
    )

    if VERBOSE:
        print "********** Fit result [JET MASS Vjets] *" + "*" * 40, "\n", frVjet.Print(), "\n", "*" * 80

    # likelihoodScan(VjetMass, setVjet, [constVjet, offsetVjet, widthVjet])

    # *******************************************************#
    #                                                       #
    #                 VV, VH normalization                  #
    #                                                       #
    # *******************************************************#

    # Variables for VV
    # Error function and exponential to model the bulk
    constVV = RooRealVar("constVV", "slope of the exp", -0.030, -0.1, 0.0)
    offsetVV = RooRealVar("offsetVV", "offset of the erf", 90.0, 1.0, 300.0)
    widthVV = RooRealVar("widthVV", "width of the erf", 50.0, 1.0, 100.0)
    erfrVV = RooErfExpPdf("baseVV", "error function for VV jet mass", J_mass, constVV, offsetVV, widthVV)
    expoVV = RooExponential("baseVV", "error function for VV jet mass", J_mass, constVV)
    # gaussian for the V mass peak
    meanVV = RooRealVar("meanVV", "mean of the gaussian", 90.0, 60.0, 100.0)
    sigmaVV = RooRealVar("sigmaVV", "sigma of the gaussian", 10.0, 6.0, 30.0)
    fracVV = RooRealVar("fracVV", "fraction of gaussian wrt erfexp", 3.2e-1, 0.0, 1.0)
    gausVV = RooGaussian("gausVV", "gaus for VV jet mass", J_mass, meanVV, sigmaVV)
    # gaussian for the H mass peak
    meanVH = RooRealVar("meanVH", "mean of the gaussian", 125.0, 100.0, 150.0)
    sigmaVH = RooRealVar("sigmaVH", "sigma of the gaussian", 10.0, 5.0, 50.0)
    fracVH = RooRealVar("fracVH", "fraction of gaussian wrt erfexp", 1.5e-2, 0.0, 1.0)
    gausVH = RooGaussian("gausVH", "gaus for VH jet mass", J_mass, meanVH, sigmaVH)

    # Define VV model
    if fitFuncVV == "ERFEXPGAUS":
        VVMass = RooAddPdf("VVMass", fitFuncVV, RooArgList(gausVV, erfrVV), RooArgList(fracVV))
    elif fitFuncVV == "ERFEXPGAUS2":
        VVMass = RooAddPdf("VVMass", fitFuncVV, RooArgList(gausVH, gausVV, erfrVV), RooArgList(fracVH, fracVV))
    elif fitFuncVV == "EXPGAUS":
        VVMass = RooAddPdf("VVMass", fitFuncVV, RooArgList(gausVV, expoVV), RooArgList(fracVV))
    elif fitFuncVV == "EXPGAUS2":
        VVMass = RooAddPdf("VVMass", fitFuncVV, RooArgList(gausVH, gausVV, expoVV), RooArgList(fracVH, fracVV))
    else:
        print "  ERROR! Pdf", fitFuncVV, "is not implemented for VV"
        exit()

    # fit to secondary bkg in MC (whole range)
    frVV = VVMass.fitTo(
        setVV,
        RooFit.SumW2Error(True),
        RooFit.Range("h_reasonable_range"),
        RooFit.Strategy(2),
        RooFit.Minimizer("Minuit2"),
        RooFit.Save(1),
        RooFit.PrintLevel(1 if VERBOSE else -1),
    )

    if VERBOSE:
        print "********** Fit result [JET MASS VV] ****" + "*" * 40, "\n", frVV.Print(), "\n", "*" * 80

    # *******************************************************#
    #                                                       #
    #                 Top, ST normalization                 #
    #                                                       #
    # *******************************************************#

    # Variables for Top
    # Error Function * Exponential to model the bulk
    constTop = RooRealVar("constTop", "slope of the exp", -0.030, -1.0, 0.0)
    offsetTop = RooRealVar("offsetTop", "offset of the erf", 175.0, 50.0, 250.0)
    widthTop = RooRealVar("widthTop", "width of the erf", 100.0, 1.0, 300.0)
    gausTop = RooGaussian("baseTop", "gaus for Top jet mass", J_mass, offsetTop, widthTop)
    erfrTop = RooErfExpPdf("baseTop", "error function for Top jet mass", J_mass, constTop, offsetTop, widthTop)
    # gaussian for the W mass peak
    meanW = RooRealVar("meanW", "mean of the gaussian", 80.0, 70.0, 90.0)
    sigmaW = RooRealVar("sigmaW", "sigma of the gaussian", 10.0, 2.0, 20.0)
    fracW = RooRealVar("fracW", "fraction of gaussian wrt erfexp", 0.1, 0.0, 1.0)
    gausW = RooGaussian("gausW", "gaus for W jet mass", J_mass, meanW, sigmaW)
    # gaussian for the Top mass peak
    meanT = RooRealVar("meanT", "mean of the gaussian", 175.0, 150.0, 200.0)
    sigmaT = RooRealVar("sigmaT", "sigma of the gaussian", 12.0, 5.0, 30.0)
    fracT = RooRealVar("fracT", "fraction of gaussian wrt erfexp", 0.1, 0.0, 1.0)
    gausT = RooGaussian("gausT", "gaus for T jet mass", J_mass, meanT, sigmaT)

    if channel == "XZheeb" or channel == "XZheebb" or channel == "XZhmmb" or channel == "XZhmmbb":
        offsetTop = RooRealVar("offsetTop", "offset of the erf", 200.0, -50.0, 450.0)
        widthTop = RooRealVar("widthTop", "width of the erf", 100.0, 1.0, 1000.0)

    # Define Top model
    if fitFuncTop == "ERFEXPGAUS2":
        TopMass = RooAddPdf("TopMass", fitFuncTop, RooArgList(gausW, gausT, erfrTop), RooArgList(fracW, fracT))
    elif fitFuncTop == "ERFEXPGAUS":
        TopMass = RooAddPdf("TopMass", fitFuncTop, RooArgList(gausT, erfrTop), RooArgList(fracT))
    elif fitFuncTop == "GAUS3":
        TopMass = RooAddPdf("TopMass", fitFuncTop, RooArgList(gausW, gausT, gausTop), RooArgList(fracW, fracT))
    elif fitFuncTop == "GAUS2":
        TopMass = RooAddPdf("TopMass", fitFuncTop, RooArgList(gausT, gausTop), RooArgList(fracT))
    elif fitFuncTop == "GAUS":
        TopMass = RooGaussian("TopMass", fitFuncTop, J_mass, offsetTop, widthTop)
    else:
        print "  ERROR! Pdf", fitFuncTop, "is not implemented for Top"
        exit()

    # fit to secondary bkg in MC (whole range)
    frTop = TopMass.fitTo(
        setTop,
        RooFit.SumW2Error(True),
        RooFit.Range("h_reasonable_range"),
        RooFit.Strategy(2),
        RooFit.Minimizer("Minuit2"),
        RooFit.Save(1),
        RooFit.PrintLevel(1 if VERBOSE else -1),
    )

    if VERBOSE:
        print "********** Fit result [JET MASS TOP] ***" + "*" * 40, "\n", frTop.Print(), "\n", "*" * 80

    # likelihoodScan(TopMass, setTop, [offsetTop, widthTop])

    # *******************************************************#
    #                                                       #
    #                 All bkg normalization                 #
    #                                                       #
    # *******************************************************#

    #    nVjet.setConstant(False)
    #    nVjet2.setConstant(False)
    #
    #    constVjet.setConstant(False)
    #    offsetVjet.setConstant(False)
    #    widthVjet.setConstant(False)
    #    a0Vjet.setConstant(False)
    #    a1Vjet.setConstant(False)
    #    a2Vjet.setConstant(False)

    constVV.setConstant(True)
    offsetVV.setConstant(True)
    widthVV.setConstant(True)
    meanVV.setConstant(True)
    sigmaVV.setConstant(True)
    fracVV.setConstant(True)
    meanVH.setConstant(True)
    sigmaVH.setConstant(True)
    fracVH.setConstant(True)

    constTop.setConstant(True)
    offsetTop.setConstant(True)
    widthTop.setConstant(True)
    meanW.setConstant(True)
    sigmaW.setConstant(True)
    fracW.setConstant(True)
    meanT.setConstant(True)
    sigmaT.setConstant(True)
    fracT.setConstant(True)

    nVV.setConstant(True)
    nTop.setConstant(True)
    nVjet.setConstant(False)
    nVjet2.setConstant(False)

    # Final background model by adding the main+secondary pdfs (using 'coef': ratio of the secondary/main, from MC)
    TopMass_ext = RooExtendPdf("TopMass_ext", "extended p.d.f", TopMass, nTop)
    VVMass_ext = RooExtendPdf("VVMass_ext", "extended p.d.f", VVMass, nVV)
    VjetMass_ext = RooExtendPdf("VjetMass_ext", "extended p.d.f", VjetMass, nVjet)
    VjetMass2_ext = RooExtendPdf("VjetMass_ext", "extended p.d.f", VjetMass, nVjet2)
    BkgMass = RooAddPdf(
        "BkgMass", "BkgMass", RooArgList(TopMass_ext, VVMass_ext, VjetMass_ext), RooArgList(nTop, nVV, nVjet)
    )
    BkgMass2 = RooAddPdf(
        "BkgMass2", "BkgMass2", RooArgList(TopMass_ext, VVMass_ext, VjetMass2_ext), RooArgList(nTop, nVV, nVjet2)
    )
    BkgMass.fixAddCoefRange("h_reasonable_range")
    BkgMass2.fixAddCoefRange("h_reasonable_range")

    # Extended fit model to data in SB
    frMass = BkgMass.fitTo(
        setDataSB,
        RooFit.SumW2Error(True),
        RooFit.Extended(True),
        RooFit.Range("LSBrange,HSBrange"),
        RooFit.Strategy(2),
        RooFit.Minimizer("Minuit"),
        RooFit.Save(1),
        RooFit.PrintLevel(1 if VERBOSE else -1),
    )  # , RooFit.NumCPU(10)
    if VERBOSE:
        print "********** Fit result [JET MASS DATA] **" + "*" * 40, "\n", frMass.Print(), "\n", "*" * 80
    frMass2 = BkgMass2.fitTo(
        setDataSB,
        RooFit.SumW2Error(True),
        RooFit.Extended(True),
        RooFit.Range("LSBrange,HSBrange"),
        RooFit.Strategy(2),
        RooFit.Minimizer("Minuit"),
        RooFit.Save(1),
        RooFit.PrintLevel(1 if VERBOSE else -1),
    )
    if VERBOSE:
        print "********** Fit result [JET MASS DATA] **" + "*" * 40, "\n", frMass2.Print(), "\n", "*" * 80

    # if SCAN:
    #    likelihoodScan(VjetMass, setVjet, [constVjet, offsetVjet, widthVjet])

    # Fix normalization and parameters of V+jets after the fit to data
    nVjet.setConstant(True)
    nVjet2.setConstant(True)

    constVjet.setConstant(True)
    offsetVjet.setConstant(True)
    widthVjet.setConstant(True)
    a0Vjet.setConstant(True)
    a1Vjet.setConstant(True)
    a2Vjet.setConstant(True)

    # integrals for global normalization
    # do not integrate the composte model: results have no sense

    # integral for normalization in the SB
    iSBVjet = VjetMass.createIntegral(jetMassArg, RooFit.NormSet(jetMassArg), RooFit.Range("LSBrange,HSBrange"))
    iSBVV = VVMass.createIntegral(jetMassArg, RooFit.NormSet(jetMassArg), RooFit.Range("LSBrange,HSBrange"))
    iSBTop = TopMass.createIntegral(jetMassArg, RooFit.NormSet(jetMassArg), RooFit.Range("LSBrange,HSBrange"))

    # integral for normalization in the SR
    iSRVjet = VjetMass.createIntegral(jetMassArg, RooFit.NormSet(jetMassArg), RooFit.Range("SRrange"))
    iSRVV = VVMass.createIntegral(jetMassArg, RooFit.NormSet(jetMassArg), RooFit.Range("SRrange"))
    iSRTop = TopMass.createIntegral(jetMassArg, RooFit.NormSet(jetMassArg), RooFit.Range("SRrange"))

    # integral for normalization in the VR
    iVRVjet = VjetMass.createIntegral(jetMassArg, RooFit.NormSet(jetMassArg), RooFit.Range("VRrange"))
    iVRVV = VVMass.createIntegral(jetMassArg, RooFit.NormSet(jetMassArg), RooFit.Range("VRrange"))
    iVRTop = TopMass.createIntegral(jetMassArg, RooFit.NormSet(jetMassArg), RooFit.Range("VRrange"))

    # formual vars
    SByield = RooFormulaVar(
        "SByield", "extrapolation to SR", "@0*@1 + @2*@3 + @4*@5", RooArgList(iSBVjet, nVjet, iSBVV, nVV, iSBTop, nTop)
    )
    VRyield = RooFormulaVar(
        "VRyield", "extrapolation to VR", "@0*@1 + @2*@3 + @4*@5", RooArgList(iVRVjet, nVjet, iVRVV, nVV, iVRTop, nTop)
    )
    SRyield = RooFormulaVar(
        "SRyield", "extrapolation to SR", "@0*@1 + @2*@3 + @4*@5", RooArgList(iSRVjet, nVjet, iSRVV, nVV, iSRTop, nTop)
    )

    # fractions
    fSBVjet = RooRealVar(
        "fVjet", "Fraction of Vjet events in SB", iSBVjet.getVal() * nVjet.getVal() / SByield.getVal(), 0.0, 1.0
    )
    fSBVV = RooRealVar(
        "fSBVV", "Fraction of VV events in SB", iSBVV.getVal() * nVV.getVal() / SByield.getVal(), 0.0, 1.0
    )
    fSBTop = RooRealVar(
        "fSBTop", "Fraction of Top events in SB", iSBTop.getVal() * nTop.getVal() / SByield.getVal(), 0.0, 1.0
    )

    fSRVjet = RooRealVar(
        "fSRVjet", "Fraction of Vjet events in SR", iSRVjet.getVal() * nVjet.getVal() / SRyield.getVal(), 0.0, 1.0
    )
    fSRVV = RooRealVar(
        "fSRVV", "Fraction of VV events in SR", iSRVV.getVal() * nVV.getVal() / SRyield.getVal(), 0.0, 1.0
    )
    fSRTop = RooRealVar(
        "fSRTop", "Fraction of Top events in SR", iSRTop.getVal() * nTop.getVal() / SRyield.getVal(), 0.0, 1.0
    )

    # final normalization values
    bkgYield = SRyield.getVal()
    bkgYield2 = (
        (VjetMass2.createIntegral(jetMassArg, RooFit.NormSet(jetMassArg), RooFit.Range("SRrange"))).getVal()
        * nVjet2.getVal()
        + iSRVV.getVal() * nVV.getVal()
        + iSRTop.getVal() * nTop.getVal()
    )
    bkgYield_syst = math.sqrt(SRyield.getPropagatedError(frVV) ** 2 + SRyield.getPropagatedError(frTop) ** 2)
    bkgYield_stat = math.sqrt(SRyield.getPropagatedError(frMass) ** 2)
    bkgYield_alte = abs(bkgYield - bkgYield2)  # /bkgYield
    bkgYield_eig_norm = RooRealVar("predSR_eig_norm", "expected yield in SR", bkgYield, 0.0, 1.0e6)

    print "Events in channel", channel, ": V+jets %.3f (%.1f%%),   VV %.3f (%.1f%%),   Top %.3f (%.1f%%)" % (
        iSRVjet.getVal() * nVjet.getVal(),
        fSRVjet.getVal() * 100,
        iSRVV.getVal() * nVV.getVal(),
        fSRVV.getVal() * 100,
        iSRTop.getVal() * nTop.getVal(),
        fSRTop.getVal() * 100,
    )
    print "Events in channel", channel, ": Integral = $%.3f$ & $\pm %.3f$ & $\pm %.3f$ & $\pm %.3f$, observed = %.0f" % (
        bkgYield,
        bkgYield_stat,
        bkgYield_syst,
        bkgYield_alte,
        setDataSR.sumEntries() if not False else -1,
    )
                rdataset4fit_mlvj.add(RooArgSet(rrv_mass_lvj),tmp_event_weight/tmp_scale_to_lumi);

           ### signal over convolution plot
           mplot_sig = rrv_mass_lvj.frame(RooFit.Title(""),RooFit.Bins(rrv_mass_lvj.getBins()));

           rdataset4fit_mlvj.plotOn(mplot_sig,RooFit.Name("data_invisible"),RooFit.MarkerSize(1.5),RooFit.DataError(RooAbsData.SumW2), RooFit.XErrorSize(0));


           doubleCB_sig = ROOT.RooDoubleCrystalBall("DoubleCB_BulkG_WW_mlvj","DoubleCB_BulkG_WW_mlvj",rrv_mass_lvj,rrv_mean_CB,rrv_total_sigma_CB,rrv_alpha1_CB,rrv_n1_CB,rrv_alpha2_CB,rrv_n2_CB); 
           bw_sig = RooBreitWigner("bw_"+options.channel,"bw_"+options.channel,rrv_mass_lvj,rrv_total_mean_CB,rrv_width_BW);
           original_bin = rrv_mass_lvj.getBins();
           rrv_mass_lvj.setBins(1000,"cache");
           model_pdf_sig = RooFFTConvPdf("sig_xww_%s_%s"%(options.channel,options.category),"sigxww_%s_%s"%(options.channel,options.category),rrv_mass_lvj,bw_sig,doubleCB_sig);
           model_pdf_sig.setBufferFraction(1.0);
           rrv_mass_lvj.setBins(int(original_bin));


           model_pdf_sig.plotOn(mplot_sig,RooFit.Name("total_MC"),RooFit.Normalization((rrv_number_signal.getVal()/tmp_scale_to_lumi)/(6.25*rdataset4fit_mlvj.sumEntries())),RooFit.DrawOption("L"), RooFit.LineColor(kBlue), RooFit.VLines(),RooFit.LineWidth(2),RooFit.LineStyle(1));

           mplot_pull = get_pull(rrv_mass_lvj,mplot_sig);
           mplot_sig.GetYaxis().SetRangeUser(0.,mplot_sig.GetMaximum()*1.2);

           draw_canvas_with_pull(mplot_sig,mplot_pull,"plots_signal_width/","signal_width_plot_%d_W%d"%(mass[iMass],mass[iMass]*gammaVal),"",0);
                   
        new_file.Close();
                          
    iMass = iMass +1 ;                              

  os.system("rm %s/%s/temp_datacard_list.txt"%(options.inPath,options.datacardPath));
  os.system("rm %s/%s/temp_workspace_list.txt"%(options.inPath,options.datacardPath));
    dataset.plotOn(myFrame, RooFit.Name('data'))
    myPDF.plotOn(myFrame,RooFit.LineColor(2),RooFit.LineWidth(1), RooFit.Name('totModel'))

    myFrame.Draw()
    canv.SaveAs('tmpLbL0.pdf')

    SaveResult(
            origPlot=myFrame,
            origVar=mass,
            data={'content':dataset},
            totPDF={'content':myPDF},
            fitres=fitres,
            label=fitLabel,
            fitDir=fitDir,
            figDir=figDir,
            absNumNormalize=dataset.sumEntries()
            )
    # fit lbl0Mass in Lb MC end }}}

# fit lbloMass in LbLo MC {{{
if fitToLbMass_LbLoMC:
    fitLabel='lbloDist_lbloMC'
    mass=space.var('lbl0Mass')
    mass.setRange(fitLabel,5.5,5.75)
    mass.setBins(50)


    inN=inF.Get('nLbL0/LbLo')
    dataset=RooDataSet('dataset','dataset',inN,RooArgSet(mass))

Example #17
-1
def getData(workspace,
            mean1 = 1., sigma1 = 0.01,
            mean2 = 1., sigma2 = 0.01, nevents = 5000):

    ## Make a local workspace to use as a factory.
    w = RooWorkspace('w', 'w')

    ## Define the PDF's for m, f1 and f2 in m*sqrt(f1*f2)
    mPdf = w.factory("BreitWigner::mPdf(m[50,130], MZ[91.12], GammaZ[2.5])")
    f1Pdf = w.factory("Gaussian::f1Pdf(f1[0.5, 2], mean1[%f], sigma1[%f])" %
                      (mean1, sigma1))
    f2Pdf = w.factory("Gaussian::f2Pdf(f2[0.5, 2], mean2[%f], sigma2[%f])" %
                      (mean2, sigma2))

    ## Import the PDF's in the given workspace.
    workspace.Import(mPdf, RenameAllVariables("True"))
    workspace.Import(f1Pdf, RenameAllVariables("True"))
    workspace.Import(f2Pdf, RenameAllVariables("True"))

    ## Generate samples of M, F1 and F2 with a 10% margin for boundaries.
    moreEvents = int(2*nevents)
    mData = mPdf.generate(RooArgSet(w.var("m")), moreEvents, NumCPU(3))
    f1Data = f1Pdf.generate(RooArgSet(w.var("f1")), moreEvents, NumCPU(3))
    f2Data = f2Pdf.generate(RooArgSet(w.var("f2")), moreEvents, NumCPU(3))

    ## Create the new data with toy reco mass
    data = RooDataSet('data', 'toy reco Z->ll mass data',
                      RooArgSet(w.factory('mass[40,140]')))
    entry = data.get()

    ## Loop over the generated values and fill the new reco mass data.
    for i in range(moreEvents):
        ## Do we have enough entries already?
        if data.sumEntries() >= nevents:
            break
        ## Get the values of the random variables m, f1, f2.
        m  = mData.get(i).first().getVal()
        f1 = f1Data.get(i).first().getVal()
        f2 = f2Data.get(i).first().getVal()
        ## Here comes the formula!!
        mass = m * sqrt(f1*f2)
        ## Is the reco mass within its range?
        if 60. < mass and mass < 120.:
            ## Add the reco mass to the data
            entry.first().setVal(mass)
            data.addFast(entry)
    ## End of loop over the generated values
            
    workspace.Import(data)
    return data