def showResults(self): #restore .m file from archive fileName = 'matlabua.m' self.restoreFromArchive(fileName) RawDataAnalyzer.plotUA(self.ensemble, self.outputs[0], fileName, self.moments)
def showResults(self): #restore .m file from archive fileName = SensitivityAnalysis.outFileNames[self.subType] self.restoreFromArchive(fileName) cmd = SensitivityAnalysis.psuadeNames[self.subType] RawDataAnalyzer.plotSA(self.ensemble, cmd, self.outputs[0], fileName)
def showResults(self): #restore .m file from archive fileName = ParameterScreening.outFileNames[self.subType] self.restoreFromArchive(fileName) cmd = ParameterScreening.getSubTypePsuadeName(self.subType) RawDataAnalyzer.plotScreenInputs(self.ensemble, cmd, self.outputs[0], fileName)
def analyze(self): data = self.ensemble.getValidSamples() Common.initFolder(RawDataAnalyzer.dname) fname = Common.getLocalFileName(RawDataAnalyzer.dname, data.getModelName().split()[0], '.dat') data.writeToPsuade(fname) #perform UA mfile = RawDataAnalyzer.performCA(fname, self.outputs[0]) #archive file if mfile is not None: self.archiveFile(mfile) return mfile
def analyze(self): data = self.ensemble.getValidSamples() Common.initFolder(RawDataAnalyzer.dname) fname = Common.getLocalFileName(RawDataAnalyzer.dname, data.getModelName().split()[0], '.dat') data.writeToPsuade(fname) #perform screening cmd = SensitivityAnalysis.psuadeNames[self.subType] mfile = RawDataAnalyzer.performSA(fname, self.outputs[0], cmd) #archive file if mfile is not None: self.archiveFile(mfile) return mfile
def analyze(self): data = self.ensemble.getValidSamples() Common.initFolder(RawDataAnalyzer.dname) fname = Common.getLocalFileName(RawDataAnalyzer.dname, data.getModelName().split()[0], '.dat') data.writeToPsuade(fname) #perform screening cmd = ParameterScreening.getSubTypePsuadeName(self.subType) mfile = RawDataAnalyzer.screenInputs(fname, self.outputs[0], cmd) if mfile is not None: #archive file self.archiveFile(mfile) return mfile