if len(df) > 0 and 'ticker' in df.columns: proc_all_tickers = list(df['ticker'].unique()) + all_tickers proc_all_tickers = set(proc_all_tickers) print('Processing: %s' % len(proc_all_tickers)) iticker = 0 for ticker in proc_all_tickers: if debug: print(ticker, iticker) iticker += 1 sys.stdout.flush() # if really high up on the list, then reprocess # if not loaded, then let's compute stuff if len(df_store_data[(df_store_data['ticker'] == ticker)]) == 0: # checking if it is shortable and tradeable: try: aapl_asset = api.get_asset(ticker) #pass #print(aapl_asset) # this is info about it being tradeable #print(aapl_asset.shortable) except (alpaca_trade_api.rest.APIError, requests.exceptions.HTTPError, ValueError, urllib3.exceptions.ProtocolError, ConnectionResetError, urllib3.exceptions.ProtocolError, ConnectionResetError, requests.exceptions.ConnectionError, requests.exceptions.ReadTimeout) as e: print("Testing multiple exceptions for alpaca api. {}". format(e.args[-1])) continue hour_prices_thirty = [] minute_prices_thirty = []
today = datetime.datetime.now(tz=est) my_days = [] for i in range(0, 10): new_date = today + datetime.timedelta(-1 * i) if new_date.weekday() < 5: my_days += [new_date] st.write('The current ticker is %s and number of days checked: %i' % (today, len(my_days))) #st.table(pd.DataFrame(list(api.get_asset(title)._raw.items()))) doRelativeToSpyAll = st.checkbox('Show relative to SPY', key='relTitleSpy') doEarnings = st.checkbox('Show earnings', key='do earnings') if title != 'Select': # Print a table of stock information on Alpaca st.json(api.get_asset(title)._raw) # Collect figures fig_table, figs_minute_price = generateFigure(api, title) # Plot! for fig_minute_price in figs_minute_price: st.plotly_chart(fig_minute_price) mean_figs = generateMeanRevFigure(api, sqlcursor, ts, title, doRelativeToSpyAll) st.markdown('Number of entries: %s' % len(mean_figs)) for mean_fig in mean_figs: st.plotly_chart(mean_fig) if st.button("Show table"):