def normalizer(ver=2, plot=False):
    ts, num_req = read_data()

    print('-----------------------')

    if ver == 2:
        min1, max1, min2, max2, num_req_normalize, MaxAbsScalerObj = norm_v2(
            num_req)
    elif ver == 1:
        min1, max1, min2, max2, num_req_normalize, MaxAbsScalerObj = norm_v1(
            num_req)
    print('min = ', min2, ' max = ', max2)

    #num_req_normalize = perform_knn(num_req_normalize)
    print('min = ', min(num_req_normalize), ' max = ', max(num_req_normalize))

    if plot:
        fig = plt.figure(figsize=(8, 6))
        plt.subplot(211)
        plt.plot(ts, num_req, color='red', label='REQ-data original')
        plt.ylabel('Num of REQ original')
        plt.legend()
        plt.xlabel('Time symbol')
        plt.subplot(212)
        plt.plot(ts,
                 num_req_normalize,
                 color='green',
                 label='REQ-data normalized')
        plt.ylabel('Num of REQ normalized')
        plt.legend()
        plt.xlabel('Time symbol')
        plt.pause(3)
        plt.close()

    return ts, num_req_normalize, MaxAbsScalerObj
Example #2
0
def split_data(plot=False):
    ram_data, cpu_data = read_data()
    ts = ram_data[:, 0]
    ram_values = ram_data[:, 1]
    cpu_values = cpu_data[:, 1]
    l = len(ts)
    print('length of total data are ', len(ts), len(ram_values),
          len(cpu_values))



    return ts,cpu_values,\
           ram_values
Example #3
0
def split_data(imf_index, plot=False):
    ram_data, cpu_data = read_data(imf_index)
    ts = ram_data[:, 0]
    ram_values = ram_data[:, 1]
    cpu_values = cpu_data[:, 1]
    l = len(ts)
    print('length of total data are ', len(ts), len(ram_values),
          len(cpu_values))

    factor1 = 0.8  # train
    factor2 = 0.9  # valuation
    ts_train = ts[:int(factor1 * l)]
    ts_valid = ts[int(factor1 * l) - 1:int(factor2 * l)]
    ts_test = ts[int(factor2 * l) - 1:]
    cpu_train = cpu_values[:int(factor1 * l)]
    cpu_valid = cpu_values[int(factor1 * l) - 1:int(factor2 * l)]
    cpu_test = cpu_values[int(factor2 * l) - 1:]
    ram_train = ram_values[:int(factor1 * l)]
    ram_valid = ram_values[int(factor1 * l) - 1:int(factor2 * l)]
    ram_test = ram_values[int(factor2 * l) - 1:]

    if plot:
        plt.subplot(2, 1, 1)
        plt.plot(ts_train, cpu_train, color='red', label='cpu-train-data')
        plt.plot(ts_valid,
                 cpu_valid,
                 color='green',
                 label='cpu-validation-data')
        plt.plot(ts_test, cpu_test, color='blue', label='cpu-test-data')
        plt.ylabel('CPU Req')
        plt.xlabel('Time symbol')
        plt.legend()
        plt.subplot(2, 1, 2)
        plt.plot(ts_train, ram_train, color='red', label='RAM-train-data')
        plt.plot(ts_valid,
                 ram_valid,
                 color='green',
                 label='RAM-validation-data')
        plt.plot(ts_test, ram_test, color='blue', label='RAM-test-data')
        plt.ylabel('RAM Req')
        plt.legend()
        plt.xlabel('Time symbol')
        plt.show()

    return ts,ts_train,ts_valid,ts_test,cpu_values,cpu_train,cpu_valid,cpu_test,\
           ram_values,ram_train,ram_valid,ram_test
def normalizer(plot=False):
    data = read_data()
    ts = data[:, 0]
    num_req = data[:, 1]

    print('-----------------------')
    from sklearn import preprocessing
    # max_abs_scaler = preprocessing.StandardScaler()
    # num_req_normalize = max_abs_scaler.fit_transform(num_req.reshape(-1, 1))
    # print('-----------------------')
    minMaxScaler = preprocessing.MinMaxScaler()
    num_req_normalize = minMaxScaler.fit_transform(num_req.reshape(-1, 1))
    print('-----------------------', len(ts), len(num_req_normalize))
    print('min = ', min(num_req_normalize), ' max = ', max(num_req_normalize))
    print('-----------------------')
    # min1=min(num_req)
    # max1=max(num_req)
    # #num_req_normalize = num_req / (max1 - min1)
    # min2 = min(num_req_normalize)
    # max2 = max(num_req_normalize)
    # print('min = ', min2, ' max = ', max2)

    num_req_normalize = perform_knn(num_req_normalize)
    print('min = ', min(num_req_normalize), ' max = ', max(num_req_normalize))

    if plot:
        fig = plt.figure(figsize=(8, 6))
        plt.subplot(211)
        plt.plot(ts, num_req, color='red', label='REQ-data original')
        plt.ylabel('Num of REQ original')
        plt.legend()
        plt.xlabel('Time symbol')
        plt.subplot(212)
        plt.plot(ts,
                 num_req_normalize,
                 color='green',
                 label='REQ-data normalized')
        plt.ylabel('Num of REQ normalized')
        plt.legend()
        plt.xlabel('Time symbol')
        plt.pause(3)
        plt.close()

    return ts, num_req_normalize, minMaxScaler
Example #5
0
    if save:
        plt.savefig(date.strftime("%Y-%m-%d_") +
                    'COVID-19_Death_Recovered.svg',
                    transparent=True)


if __name__ == '__main__':
    # start_date = datetime.date(2020, 5, 5)
    # for i in range(1):
    #     data_date = start_date + datetime.timedelta(days=14*i)
    #     world_daily_data_pd = read_data(date=data_date, use_daily=True)
    #     sorted_world_daily_data_pd = world_daily_data_pd.sort_values(by='Confirmed', ascending=False)
    #     plot_rose_1(sorted_world_daily_data_pd, date=data_date)
    #     plot_death_recovered_rate(sorted_world_daily_data_pd, date=data_date)

    world_ts_confirmed_data_pd, world_ts_deaths_data_pd, world_ts_recovered_data_pd = read_data(
        use_daily=False)
    world_sorted_ts_confirmed_data_pd = \
        world_ts_confirmed_data_pd.sort_values(by=world_ts_confirmed_data_pd.columns[-1], ascending=False)
    world_sorted_ts_deaths_data_pd = \
        world_ts_deaths_data_pd.sort_values(by=world_ts_deaths_data_pd.columns[-1], ascending=False)
    world_sorted_ts_recovered_data_pd = \
        world_ts_recovered_data_pd.sort_values(by=world_ts_recovered_data_pd.columns[-1], ascending=False)

    world_sorted_week_confirmed_climb_rate_pd = calc_climb_rate(
        world_sorted_ts_confirmed_data_pd)
    world_sorted_week_deaths_climb_rate_pd = calc_climb_rate(
        world_sorted_ts_deaths_data_pd)
    world_sorted_week_recovered_climb_rate_pd = calc_climb_rate(
        world_sorted_ts_recovered_data_pd)

    plot_climb_rate(world_sorted_week_confirmed_climb_rate_pd,