Example #1
0
 def __enter__(self):
   from cPickle import PickleError
   try:
     crossValidInfo   = load( self._filePath )
   except PickleError:
     # It failed without renaming the module, retry renaming old module
     # structure to new one.
     import sys
     sys.modules['FastNetTool.CrossValid'] = sys.modules[__name__]
     crossValidInfo   = load( self._filePath )
   # Open crossValidFile:
   try: 
     if isinstance(crossValidInfo, dict):
       if crossValidInfo['type'] != 'CrossValidFile':
         self._logger.fatal(("Input crossValid file is not from PreProcFile " 
             "type."))
       if crossValidInfo['version'] == 2:
         crossValid = CrossValid.fromRawObj( crossValidInfo['crossValid'] )
       elif crossValidInfo['version'] == 1:
         crossValid = crossValidInfo['crossValid']
         from copy import copy
         crossValid = crossValid._cnvObj.treatObj( crossValid, copy( crossValid.__dict__ ) )
       else:
         self._logger.fatal("Unknown job configuration version.")
     elif type(crossValidInfo) == list: # Read legacy files
       crossValid = crossValidInfo[3]
     else:
       self._logger.fatal("Invalid CrossValidFile contents.")
   except RuntimeError, e:
     self._logger.fatal(("Couldn't read cross validation file file '%s': Reason:"
         "\n\t %s") % (self._filePath, e))
Example #2
0
 def __enter__(self):
     from cPickle import PickleError
     try:
         crossValidInfo = load(self._filePath)
     except PickleError:
         # It failed without renaming the module, retry renaming old module
         # structure to new one.
         import sys
         sys.modules['FastNetTool.CrossValid'] = sys.modules[__name__]
         crossValidInfo = load(self._filePath)
     # Open crossValidFile:
     try:
         if isinstance(crossValidInfo, dict):
             if crossValidInfo['type'] != 'CrossValidFile':
                 self._fatal(
                     ("Input crossValid file is not from PreProcFile "
                      "type."))
             if crossValidInfo['version'] == 2:
                 crossValid = CrossValid.fromRawObj(
                     crossValidInfo['crossValid'])
             elif crossValidInfo['version'] == 1:
                 crossValid = crossValidInfo['crossValid']
                 from copy import copy
                 crossValid = crossValid._cnvObj.treatObj(
                     crossValid, copy(crossValid.__dict__))
             else:
                 self._fatal("Unknown job configuration version.")
         elif type(crossValidInfo) == list:  # Read legacy files
             crossValid = crossValidInfo[3]
         else:
             self._fatal("Invalid CrossValidFile contents.")
     except RuntimeError, e:
         self._fatal(
             ("Couldn't read cross validation file file '%s': Reason:"
              "\n\t %s") % (self._filePath, e))
 def __enter__(self):
   # Open file:
   jobConfig = load(self._filePath)
   try:
     if type(jobConfig) is dict:
       if jobConfig['type'] != self._type:
         self._logger.fatal(("Input jobConfig file is not from jobConfig " 
             "type."))
       # Read configuration file to retrieve pre-processing, 
       if jobConfig['version'] == 1:
         neuronBounds = MatlabLoopingBounds( jobConfig['neuronBounds'] )
         sortBounds   = PythonLoopingBounds( jobConfig['sortBounds']   )
         initBounds   = PythonLoopingBounds( jobConfig['initBounds']   )
       else:
         self._logger.fatal("Unknown job configuration version")
     elif type(jobConfig) is list: # zero version file (without versioning 
       # control):
       neuronBounds  = MatlabLoopingBounds( [jobConfig[0], jobConfig[0]] )
       sortBounds    = MatlabLoopingBounds( jobConfig[1] )
       initBounds    = MatlabLoopingBounds( jobConfig[2] )
     else:
       self._logger.fatal("Unknown file type entered for config file.")
   except RuntimeError, e:
     self._logger.fatal(("Couldn't read configuration file '%s': Reason:"
         "\n\t %s" % (self._filePath, e)))
Example #4
0
 def __enter__(self):
   # Open file:
   jobConfig = load(self._filePath)
   try:
     if type(jobConfig) is dict:
       if jobConfig['type'] != self._type:
         self._fatal(("Input jobConfig file is not from jobConfig " 
             "type."))
       # Read configuration file to retrieve pre-processing, 
       if jobConfig['version'] == 1:
         neuronBounds = MatlabLoopingBounds( jobConfig['neuronBounds'] )
         sortBounds   = PythonLoopingBounds( jobConfig['sortBounds']   )
         initBounds   = PythonLoopingBounds( jobConfig['initBounds']   )
       else:
         self._fatal("Unknown job configuration version")
     elif type(jobConfig) is list: # zero version file (without versioning 
       # control):
       neuronBounds  = MatlabLoopingBounds( [jobConfig[0], jobConfig[0]] )
       sortBounds    = MatlabLoopingBounds( jobConfig[1] )
       initBounds    = MatlabLoopingBounds( jobConfig[2] )
     else:
       self._fatal("Unknown file type entered for config file.")
   except RuntimeError, e:
     self._fatal(("Couldn't read configuration file '%s': Reason:"
         "\n\t %s" % (self._filePath, e)))
  def __init__(self, crossvalFileName, monFileName, **kw):
    
    from ROOT import TFile, gROOT
    gROOT.ProcessLine("gErrorIgnoreLevel = kFatal;");
    #Set all global setting from ROOT style plot!
    SetTuningStyle()
    Logger.__init__(self, kw)
    #Hold all information abount the monitoring root file
    self._infoObjs = list()
    try:#Protection
      self._logger.info('Reading monRootFile (%s)',monFileName)
      self._rootObj = TFile(monFileName, 'read')
    except RuntimeError:
      self._logger.fatal('Could not open root monitoring file.')
    from RingerCore import load
    try:#Protection
      self._logger.info('Reading crossvalFile (%s)',crossvalFileName)
      crossvalObj = load(crossvalFileName)
    except RuntimeError:
      self._logger.fatal('Could not open pickle summary file.')
    #Loop over benchmarks


    for benchmarkName in crossvalObj.keys():
      #Must skip if ppchain collector
      if benchmarkName == 'infoPPChain':  continue
      #Add summary information into MonTuningInfo helper class
      self._infoObjs.append( TuningMonitoringInfo( benchmarkName, crossvalObj[benchmarkName] ) ) 
      self._logger.info('Creating MonTuningInfo for %s and the iterator object [et=%d, eta=%d]',
                         benchmarkName,self._infoObjs[-1].etbin(), self._infoObjs[-1].etabin())
    #Loop over all benchmarks

    #Always be the same bin for all infoObjs  
    etabin = self._infoObjs[0].etabin()
    etbin = self._infoObjs[0].etbin()
    #Reading the data rings from path or object
    refFile = kw.pop('refFile', None)
    if refFile:
      from TuningTools import TuningDataArchieve
      TDArchieve = TuningDataArchieve(refFile)
      self._logger.info(('Reading perf file with name %s')%(refFile))
      try:
        with TDArchieve as data:
          self._data = (data['signal_patterns'][etbin][etabin], data['background_patterns'][etbin][etabin])
      except RuntimeError:
        self._logger.fatal('Could not open the patterns data file.')
        raise RuntimeError('Could not open the patterns data file.')
    else:
      patterns = kw.pop('patterns', None)
      if patterns:
        self._data = (patterns['signal_patterns'][etbin][etabin], patterns['background_patterns'][etbin][etabin])
      else:
        raise RuntimeError('You must pass the ref file as parameter. abort!')
    def __init__(self, crossvalFileName, monFileName, **kw):

        from ROOT import TFile, gROOT
        gROOT.ProcessLine("gErrorIgnoreLevel = kFatal;")
        #Set all global setting from ROOT style plot!
        SetTuningStyle()
        Logger.__init__(self, kw)
        #Hold all information abount the monitoring root file
        self._infoObjs = list()
        try:  #Protection
            self._logger.info('Reading monRootFile (%s)', monFileName)
            self._rootObj = TFile(monFileName, 'read')
        except RuntimeError:
            self._logger.fatal('Could not open root monitoring file.')
        from RingerCore import load
        try:  #Protection
            self._logger.info('Reading crossvalFile (%s)', crossvalFileName)
            crossvalObj = load(crossvalFileName)
        except RuntimeError:
            self._logger.fatal('Could not open pickle summary file.')
        #Loop over benchmarks

        for benchmarkName in crossvalObj.keys():
            #Must skip if ppchain collector
            if benchmarkName == 'infoPPChain': continue
            #Add summary information into MonTuningInfo helper class
            self._infoObjs.append(
                TuningMonitoringInfo(benchmarkName,
                                     crossvalObj[benchmarkName]))
            self._logger.info(
                'Creating MonTuningInfo for %s and the iterator object [et=%d, eta=%d]',
                benchmarkName, self._infoObjs[-1].etbinidx(),
                self._infoObjs[-1].etabinidx())
        #Loop over all benchmarks

        #Always be the same bin for all infoObjs
        etabinidx = self._infoObjs[0].etabinidx()
        etbinidx = self._infoObjs[0].etbinidx()
        #Reading the data rings from path or object
        dataPath = kw.pop('dataPath', None)
        if dataPath:
            from TuningTools import TuningDataArchieve
            self._logger.info(
                ('Reading data tuning file with name %s') % (dataPath))
            TDArchieve = TuningDataArchieve.load(dataPath,
                                                 etBinIdx=etbinidx,
                                                 etaBinIdx=etabinidx,
                                                 loadEfficiencies=False)
            self._data = (TDArchieve.signalPatterns,
                          TDArchieve.backgroundPatterns)
        else:
            self._logger.fatal(
                'You must pass the ref file as parameter. abort!')
Example #7
0
 def __enter__(self):
   
   subsetColInfo   = load( self._filePath )
   # Open crossValidPreprocFile:
   try: 
     if isinstance(subsetColInfo, dict):
       if subsetColInfo['type'] != 'SubsetGeneratorCollectionFile':
         self._fatal(("Input subsetCol file is not from SubsetGeneratorCollectionFile type."))
       if subsetColInfo['version'] == 0:
         self._subsetCol = SubsetGeneratorCollection.fromRawObj( subsetColInfo['subsetCol'] )
       else:
         self._fatal("Unknown job configuration version.")
     else:
       self._fatal("Invalid SubsetGeneratorCollectionFile contents.")
   except RuntimeError, e:
     self._fatal(("Couldn't read cross preproc validation file file '%s': Reason:"
         "\n\t %s") % (self._filePath, e))
Example #8
0
    def __enter__(self):
        # Open file:
        jobConfig = load(self._filePath)
        try:
            if type(jobConfig) is dict:
                if jobConfig['type'] != self._type:
                    self._fatal(("Input jobConfig file is not from jobConfig "
                                 "type."))
                # Read configuration file to retrieve pre-processing,
                if jobConfig['version'] >= 1:

                    neuronBounds = MatlabLoopingBounds(
                        jobConfig['neuronBounds'])
                    sortBounds = PythonLoopingBounds(jobConfig['sortBounds'])
                    initBounds = PythonLoopingBounds(jobConfig['initBounds'])
                    modelBounds = [None for _ in neuronBounds()]
                    if jobConfig['version'] == 2:
                        modelBounds = jobConfig['modelBounds']

                        if modelBounds and coreConf() is TuningToolCores.keras:
                            from keras.models import model_from_json
                            import json
                            for idx, model in enumerate(modelBounds):
                                modelBounds[idx] = model_from_json(
                                    json.dumps(model, separators=(
                                        ',', ':'))) if model else None
                else:
                    self._fatal("Unknown job configuration version")
            elif type(jobConfig
                      ) is list:  # zero version file (without versioning
                # control):
                neuronBounds = MatlabLoopingBounds(
                    [jobConfig[0], jobConfig[0]])
                sortBounds = MatlabLoopingBounds(jobConfig[1])
                initBounds = MatlabLoopingBounds(jobConfig[2])
                modelBounds = None
            else:
                self._fatal("Unknown file type entered for config file.")
        except RuntimeError, e:
            self._fatal(("Couldn't read configuration file '%s': Reason:"
                         "\n\t %s" % (self._filePath, e)))
def changeOp(d, key, mat):
  def changePassed(key, mat):
    for lkey in d[key].item():
      for rowIdx, array1 in enumerate( d[key].item()[lkey]):
        for columnIdx, rawdict in enumerate(array1):
            rawdict['_passed'] = mat[rowIdx][columnIdx]
  def changeTotal(key, mat):
    for lkey in d[key].item():
      for rowIdx, array1 in enumerate( d[key].item()[lkey]):
        for columnIdx, rawdict in enumerate(array1):
            rawdict['_count'] = 100.
  changePassed( key, mat )
  changeTotal( key, mat )

from RingerCore import load, save
a = load('mc15_13TeV.361106.423300.sgn.trigegprobes.bkg.vetotruth.trig.l2calo.eg.std.grid.medium.npz')
d = dict(a)

changeOp( d, 'signal_efficiencies', mergeEffTable( veryloose20160701 ) )
changeOp( d, 'background_efficiencies', pfrefs_vloose )
save(d, 'mc15_13TeV.361106.423300.sgn.trigegprobes.bkg.vetotruth.trig.l2calo.eg.std.grid.veryloose', protocol = 'savez_compressed')

d = dict(a)
changeOp( d, 'signal_efficiencies', mergeEffTable( loose20160701 ) )
changeOp( d, 'background_efficiencies', pfrefs_loose )
save(d, 'mc15_13TeV.361106.423300.sgn.trigegprobes.bkg.vetotruth.trig.l2calo.eg.std.grid.loose', protocol = 'savez_compressed')

d = dict(a)
changeOp( d, 'signal_efficiencies', mergeEffTable( tight20160701 ) )
changeOp( d, 'background_efficiencies', pfrefs_tight )
save(d, 'mc15_13TeV.361106.423300.sgn.trigegprobes.bkg.vetotruth.trig.l2calo.eg.std.grid.tight', protocol = 'savez_compressed')
Example #10
0
parser.add_argument('-d',
                    '--data',
                    action='store',
                    dest='data',
                    required=True,
                    nargs='+',
                    help="The input tuning files.")

import sys, os
if len(sys.argv) == 1:
    parser.print_help()
    sys.exit(1)
args = parser.parse_args()

# Take all files
paths = csvStr2List(args.data)
paths = expandFolders(paths)

from RingerCore import load, save, appendToFileName
for f in paths:
    ff = load(f)
    for k in ff.keys():
        if 'SP' in k:
            etBin = ff[k]['etBinIdx']
            etaBin = ff[k]['etaBinIdx']
    print 'etBin = ', etBin, ', etaBin = ', etaBin
    outname = f.split('/')[len(f.split('/')) - 2]
    cOutputName = appendToFileName(outname, ('et%d_eta%d') % (etBin, etaBin))
    save(ff, cOutputName, compress=True)
Example #11
0
npCurrent, _ = retrieve_npConstants()
npCurrent.level = args.output_level
logger = Logger.getModuleLogger(__name__, args.output_level)

files = expandFolders(args.inputs)

from zipfile import BadZipfile
from copy import deepcopy

for f in files:
    logger.info("Turning numpy matrix file '%s' into pre-processing file...", f)
    fileparts = f.split("/")
    folder = "/".join(fileparts[0:-1]) + "/"
    fname = fileparts[-1]
    try:
        data = dict(load(f))
    except BadZipfile, e:
        logger.warning("Couldn't load file '%s'. Reason:\n%s", f, str(e))
        continue
    logger.debug("Finished loading file '%s'...", f)
    for key in data:
        if key == "W":
            ppCol = deepcopy(data["W"])
            from TuningTools.PreProc import *

            for obj, idx, parent, _, _ in traverse(ppCol, tree_types=(np.ndarray,), max_depth=3):
                parent[idx] = PreProcChain(RemoveMean(), Projection(matrix=obj), UnitaryRMS())
            # Turn arrays into mutable objects:
            ppCol = ppCol.tolist()
            ppCol = fixPPCol(ppCol, len(ppCol[0][0]), len(ppCol[0]), len(ppCol))
    if fname.endswith(".npz"):
Example #12
0
def makeSummaryMonSlides(outputs, nbins, choicesfile, grid=False):
    from scipy.io import loadmat
    import os
    f = loadmat(choicesfile)
    choices = dict()
    choices['Pd'] = f['choices']['Pd'][0][0]
    choices['Pf'] = f['choices']['Pf'][0][0]
    choices['SP'] = f['choices']['SP'][0][0]

    nbinchoices = 0
    for etchoices in choices['Pd']:
        nbinchoices += len(etchoices)
    if not nbins == nbinchoices:
        raise NameError('Choices Archieve Error')

    net = len(choices['Pd'])
    neta = len(choices['Pd'][0])
    unbinned = False
    if net == 1 and neta == 1:
        unbinned = True
    if grid:
        f = load([s for s in os.listdir('.') if '_et0_eta0' in s][0] +
                 '/perfBounds.pic.gz')
    else:
        f = load('{}/perfBounds.pic.gz'.format(outputs + '_et0_eta0'))
    benchmarkNames = f['perf'].keys()

    for benchmarkName in benchmarkNames:
        slideAnex = []
        for et in xrange(net):
            etlist = []
            for eta in xrange(neta):
                etaDict = dict()
                neuron = choices[benchmarkName.split('_')[-1]][et][eta]
                basepath = outputs
                basepath += ('_et%d_eta%d') % (et, eta)
                if grid:
                    basepath = ('_et%d_eta%d') % (et, eta)
                    basepath = [s for s in os.listdir('.') if basepath in s][0]
                    f = load(basepath + '/perfBounds.pic.gz')
                else:
                    f = load('{}/perfBounds.pic.gz'.format(basepath))
                etstr = f['bounds']['etbinstr']
                etastr = f['bounds']['etabinstr']
                perfs = f['perf'][benchmarkName]

                refBench = perfs['config_' + str(neuron).zfill(3)].getRef()
                detR = r'{:.2f}'.format(refBench['det'])
                spR = r'{:.2f}'.format(refBench['sp'])
                faR = r'{:.2f}'.format(refBench['fa'])
                refBench = [detR, spR, faR]

                perfBench = perfs['config_' + str(neuron).zfill(3)].getPerf()
                detP = r'{:.2f}$\pm${:.2f}'.format(perfBench['detMean'],
                                                   perfBench['detStd'])
                spP = r'{:.2f}$\pm${:.2f}'.format(perfBench['spMean'],
                                                  perfBench['spStd'])
                faP = r'{:.2f}$\pm${:.2f}'.format(perfBench['faMean'],
                                                  perfBench['faStd'])
                perfBench = [detP, spP, faP]

                bestNetBench = perfs['config_' + str(neuron).zfill(3)].rawOp()
                detB = r'{:.2f}'.format(bestNetBench['det'] * 100)
                spB = r'{:.2f}'.format(bestNetBench['sp'] * 100)
                faB = r'{:.2f}'.format(bestNetBench['fa'] * 100)
                bestNetBench = [detB, spB, faB]
                perfs = [refBench, perfBench, bestNetBench]

                graphSections = [
                    'All Sorts(Validation)',
                    'All ROC Sorts(Validation)',
                    'All Sorts(Operation)',
                    'All ROC Sorts(Operation)',
                    'Best Network',
                    'Best Operation Output',
                ]

                figures = [
                    '{}/figures/{}/neuron_{}/plot_{}_neuron_{}_sorts_val.pdf'.
                    format(basepath, benchmarkName, neuron, benchmarkName,
                           neuron),
                    '{}/figures/{}/neuron_{}/plot_{}_neuron_{}_sorts_roc_tst.pdf'
                    .format(basepath, benchmarkName, neuron, benchmarkName,
                            neuron),
                    '{}/figures/{}/neuron_{}/plot_{}_neuron_{}_sorts_op.pdf'.
                    format(basepath, benchmarkName, neuron, benchmarkName,
                           neuron),
                    '{}/figures/{}/neuron_{}/plot_{}_neuron_{}_sorts_roc_op.pdf'
                    .format(basepath, benchmarkName, neuron, benchmarkName,
                            neuron),
                    '{}/figures/{}/neuron_{}/plot_{}_neuron_{}_best_op.pdf'.
                    format(basepath, benchmarkName, neuron, benchmarkName,
                           neuron),
                    '{}/figures/{}/neuron_{}/plot_{}_neuron_{}_best_op_output.pdf'
                    .format(basepath, benchmarkName, neuron, benchmarkName,
                            neuron),
                ]
                figuresDict = dict(zip(graphSections, figures))
                etaDict['neuron'] = neuron
                etaDict['figures'] = figuresDict
                etaDict['graphSections'] = graphSections
                etaDict['perfs'] = perfs
                etaDict['etastr'] = etastr
                etaDict['etstr'] = etstr

                etlist.append(etaDict)
                # for eta
            slideAnex.append(etlist)
            #for et
        with BeamerTexReportTemplate1(theme='Berlin',
                                      _toPDF=True,
                                      title=benchmarkName,
                                      outputFile=benchmarkName,
                                      font='structurebold'):
            with BeamerSection(name='Performance'):
                if not unbinned:
                    l1 = ['', '']
                    l2 = ['', '']
                    sideline = '{|c|c|'
                    for et in xrange(net):
                        sideline += 'ccc|'
                        l1.extend(['', slideAnex[et][0]['etstr'], ''])
                        l2.extend(['Pd', 'SP', 'PF'])
                    sideline += '}'
                    etlines = []
                    for eta in xrange(neta):
                        la = [
                            r'\hline' + slideAnex[0][eta]['etastr'],
                            'CrossValidation'
                        ]
                        lb = [r'', 'Reference']
                        lc = [r'', 'bestNetBench']
                        for et in xrange(net):
                            prfs = slideAnex[et][eta]['perfs']
                            refBench = prfs[0]
                            perfBench = prfs[1]
                            bestNetBench = prfs[2]

                            la.extend(perfBench)
                            lb.extend(refBench)
                            lc.extend(bestNetBench)
                        etlines.extend([la, lb, lc])
                    linhas = []
                    linhas.append(l1)
                    linhas.append(l2)
                    linhas.extend(etlines)
                    with BeamerSubSection(name='All Bins Performance'):
                        BeamerTableSlide(
                            title='All Bins Performance',
                            linhas=linhas,
                            sideline=sideline,
                            caption='Efficiences',
                        )

                for et in xrange(net):
                    l1 = ['', '']
                    l2 = ['', '']
                    sideline = '{|c|c|ccc|}'
                    l1.extend(['', slideAnex[et][0]['etstr'], ''])
                    l2.extend(['Pd', 'SP', 'PF'])
                    etlines = []
                    for eta in xrange(neta):
                        if unbinned:
                            la = [r'\hline', 'CrossValidation']
                        else:
                            la = [
                                r'\hline' + slideAnex[0][eta]['etastr'],
                                'CrossValidation'
                            ]
                        lb = [r'Neuron', 'Reference']
                        lc = [r'', 'bestNetBench']
                        neuron = slideAnex[et][eta]['neuron']
                        prfs = slideAnex[et][eta]['perfs']
                        lc[0] = '%d' % neuron
                        refBench = prfs[0]

                        perfBench = prfs[1]

                        bestNetBench = prfs[2]

                        la.extend(perfBench)
                        lb.extend(refBench)
                        lc.extend(bestNetBench)
                        etlines.extend([la, lb, lc])
                    linhas = []
                    if not unbinned:
                        linhas.append(l1)
                    linhas.append(l2)
                    linhas.extend(etlines)
                    if unbinned:
                        BeamerTableSlide(
                            title='Performance',
                            linhas=linhas,
                            sideline=sideline,
                            caption='Efficiences',
                        )
                    else:
                        with BeamerSubSection(name=slideAnex[et][0]['etstr']):
                            BeamerTableSlide(
                                title='Performance',
                                linhas=linhas,
                                sideline=sideline,
                                caption='Efficiences',
                            )

            with BeamerSection(name='Figures'):
                if unbinned:
                    neuron = slideAnex[0][0]['neuron']
                    graphSections = slideAnex[0][0]['graphSections']
                    figures = slideAnex[0][0]['figures']
                    for graph in graphSections:
                        BeamerFigureSlide(title=graph + ' Neuron: ' +
                                          str(neuron),
                                          path=figures[graph])
                else:
                    for et in xrange(net):
                        with BeamerSubSection(name=slideAnex[et][0]['etstr']):
                            for eta in xrange(neta):
                                neuron = slideAnex[et][eta]['neuron']
                                graphSections = slideAnex[et][eta][
                                    'graphSections']
                                figures = slideAnex[et][eta]['figures']

                                with BeamerSubSubSection(
                                        name=slideAnex[et][eta]['etastr'] +
                                        ', Neuron: {}'.format(neuron)):
                                    for graph in graphSections:
                                        BeamerFigureSlide(title=graph,
                                                          path=figures[graph])
    return
Example #13
0
npCurrent.level = args.output_level
logger = Logger.getModuleLogger(__name__, args.output_level)

files = expandFolders(args.inputs)

from zipfile import BadZipfile
from copy import deepcopy
for f in files:
    logger.info("Turning numpy matrix file '%s' into pre-processing file...",
                f)
    fileparts = f.split('/')
    folder = '/'.join(fileparts[0:-1]) + '/'
    fname = fileparts[-1]
    try:
        data = dict(load(f))
    except BadZipfile, e:
        logger.warning("Couldn't load file '%s'. Reason:\n%s", f, str(e))
        continue
    logger.debug("Finished loading file '%s'...", f)
    for key in data:
        if key == 'W':
            ppCol = deepcopy(data['W'])
            from TuningTools.PreProc import *
            for obj, idx, parent, _, _ in traverse(ppCol,
                                                   tree_types=(np.ndarray, ),
                                                   max_depth=3):
                parent[idx] = PreProcChain(RemoveMean(),
                                           Projection(matrix=obj),
                                           UnitaryRMS())
            # Turn arrays into mutable objects:
Example #14
0
args.inputFiles = expandFolders(args.inputFiles)
mainLogger.verbose("All input files are:")
if mainLogger.isEnabledFor(LoggingLevel.VERBOSE):
    pprint(args.inputFiles)

for inFile in progressbar(args.inputFiles,
                          len(args.inputFiles),
                          logger=mainLogger,
                          prefix="Processing files "):
    # Treat output file name:
    from RingerCore import checkExtension, changeExtension, load, save
    if checkExtension(inFile, "tgz|tar.gz|pic"):
        cOutputName = changeExtension(inFile, '.mat')
        if args.change_output_folder:
            import os.path
            cOutputName = os.path.join(
                os.path.abspath(args.change_output_folder),
                os.path.basename(cOutputName))
        data = load(inFile, useHighLevelObj=False)
        from scipy.io import savemat
        try:
            savemat(cOutputName, data)
        except ImportError:
            self._logger.fatal(
                ("Cannot save matlab file, it seems that scipy is not "
                 "available."), ImportError)
        mainLogger.info("Successfully created matlab file: %s", cOutputName)
    else:
        mainLogger.error("Cannot transform files '%s' to matlab." % inFile)
# end of (for fileCollection)
Example #15
0
  def getModels(self, summaryInfoList,  **kw):
        
    refBenchCol         = kw.pop( 'refBenchCol',       None              )
    configCol           = kw.pop( 'configCol',         []                )
    muBin               = kw.pop( 'muBin',             [-999,9999]       )
    checkForUnusedVars( kw, self._logger.warning )

    # Treat the summaryInfoList
    if not isinstance( summaryInfoList, (list,tuple)):
      summaryInfoList = [ summaryInfoList ]
    summaryInfoList = list(traverse(summaryInfoList,simple_ret=True))
    nSummaries = len(summaryInfoList)
    if not nSummaries:
      logger.fatal("Summary dictionaries must be specified!")

    if refBenchCol is None:
      refBenchCol = summaryInfoList[0].keys()

    # Treat the reference benchmark list
    if not isinstance( refBenchCol, (list,tuple)):
      refBenchCol = [ refBenchCol ] * nSummaries

    if len(refBenchCol) == 1:
      refBenchCol = refBenchCol * nSummaries

    nRefs = len(list(traverse(refBenchCol,simple_ret=True)))

    # Make sure that the lists are the same size as the reference benchmark:
    nConfigs = len(list(traverse(configCol,simple_ret=True)))
    if nConfigs == 0:
      configCol = [None for i in range(nRefs)]
    elif nConfigs == 1:
      configCol = configCol * nSummaries
    nConfigs = len(list(traverse(configCol,simple_ret=True)))

    if nConfigs != nRefs:
      logger.fatal("Summary size is not equal to the configuration list.", ValueError)
    
    if nRefs == nConfigs == nSummaries:
      # If user input data without using list on the configuration, put it as a list:
      for o, idx, parent, _, _ in traverse(configCol):
        parent[idx] = [o]
      for o, idx, parent, _, _ in traverse(refBenchCol):
        parent[idx] = [o]

    configCol   = list(traverse(configCol,max_depth_dist=1,simple_ret=True))
    refBenchCol = list(traverse(refBenchCol,max_depth_dist=1,simple_ret=True))
    nConfigs = len(configCol)
    nSummary = len(refBenchCol)

    if nRefs != nConfigs != nSummary:
      logger.fatal("Number of references, configurations and summaries do not match!", ValueError)

    discrList = []

    from itertools import izip, count
    for summaryInfo, refBenchmarkList, configList in zip(summaryInfoList,refBenchCol,configCol):

      if type(summaryInfo) is str:
        self._logger.info('Loading file "%s"...', summaryInfo)
        summaryInfo = load(summaryInfo)
      elif type(summaryInfo) is dict:
        pass
      else:
        logger.fatal("Cross-valid summary info is not string and not a dictionary.", ValueError)
    

      for idx, refBenchmarkName, config in izip(count(), refBenchmarkList, configList):
        
        try:
          key = filter(lambda x: refBenchmarkName in x, summaryInfo)[0]
          refDict = summaryInfo[ key ]
        except IndexError :
          self._logger.fatal("Could not find reference %s in summaryInfo. Available options are: %r", refBenchmarkName, summaryInfo.keys())
        
        self._logger.info("Using Reference key: %s", key )
        

        ppInfo = summaryInfo['infoPPChain']
        etBinIdx = refDict['etBinIdx']
        etaBinIdx = refDict['etaBinIdx']
        etBin = refDict['etBin']

        etaBin = refDict['etaBin']
        info   = refDict['infoOpBest'] if config is None else refDict['config_' + str(config).zfill(3)]['infoOpBest']
            
        # Check if user specified parameters for exporting discriminator
        # operation information:
        sort =  info['sort']
        init =  info['init']
        pyThres = info['cut']
        
        from RingerCore import retrieveRawDict
        if isinstance( pyThres, float ):
          pyThres = RawThreshold( thres = pyThres
                                , etBinIdx = etBinIdx, etaBinIdx = etaBinIdx
                                , etBin = etBin, etaBin =  etaBin)

        else:
          # Get the object from the raw dict
          pyThres = retrieveRawDict( pyThres )

        if pyThres.etBin is None:
          pyThres.etBin = etBin
        elif pyThres.etBin is '':
          pyThres.etBin = etBin
        elif isinstance( pyThres.etBin, (list,tuple)):
          pyThres.etBin = np.array( pyThres.etBin)

        if not(np.array_equal( pyThres.etBin, etBin )):
          self._logger.fatal("etBin does not match for threshold! Should be %r, is %r", pyThres.etBin, etBin )
        if pyThres.etaBin is None:
          pyThres.etaBin = etaBin
        elif pyThres.etaBin is '':
          pyThres.etaBin = etaBin
        elif isinstance( pyThres.etaBin, (list,tuple)):
          pyThres.etaBin = np.array( pyThres.etaBin)
        if not(np.array_equal( pyThres.etaBin, etaBin )):
          self._logger.fatal("etaBin does not match for threshold! Should be %r, is %r", pyThres.etaBin, etaBin )

        if type(pyThres) is RawThreshold:
          thresValues = [pyThres.thres]
        else:
          thresValues = [pyThres.slope, pyThres.intercept, pyThres.rawThres]

        pyPreProc = ppInfo['sort_'+str(sort).zfill(3)]['items'][0]
        pyPreProc = retrieveRawDict( pyPreProc )

        useCaloRings=False; useTrack=False; useShowerShape=False

        if type(pyPreProc) is Norm1:
          useCaloRings=True
        elif type(pyPreProc) is TrackSimpleNorm:
          useTrack=True
        elif type(pyPreProc) is ShowerShapesSimpleNorm:
          useShowerShape=True
        elif type(pyPreProc) is ExpertNetworksSimpleNorm:
          useCaloRings=True; useTrack=True
        elif type(pyPreProc) is ExpertNetworksShowerShapeSimpleNorm:
          useCaloRings=True; useShowerShape=True
        elif type(pyPreProc) is ExpertNetworksShowerShapeAndTrackSimpleNorm:
          useCaloRings=True; useTrack=True; useShowerShape=True
        elif type(pyPreProc) is PreProcMerge:
          for slot in pyPreProc.slots:
            if type(pyPreProc) is Norm1:
              useCaloRings=True
            elif type(pyPreProc) is TrackSimpleNorm:
              useTrack=True
            elif type(pyPreProc) is ShowerShapesSimpleNorm:
              useShowerShape=True
            elif type(pyPreProc) is ExpertNetworksSimpleNorm:
              useCaloRings=True; useTrack=True
            elif type(pyPreProc) is ExpertNetworksShowerShapeSimpleNorm:
              useCaloRings=True; useShowerShape=True
            elif type(pyPreProc) is ExpertNetworksShowerShapeAndTrackSimpleNorm:
              useCaloRings=True; useTrack=True; useShowerShape=True
        else:
          self._logger.fatal('PrepProc strategy not found...') 


        discrDict = info['discriminator']
        model   = { 
                  'discriminator' : discrDict,
                  'threshold'     : thresValues,
                  'etBin'         : etBin,
                  'etaBin'        : etaBin,
                  'muBin'         : muBin,
                  'etBinIdx'      : etBinIdx,
                  'etaBinIdx'     : etaBinIdx,
 
                  }
      
        removeOutputTansigTF = refDict.get('removeOutputTansigTF', None )
        
        model['removeOutputTansigTF'] = removeOutputTansigTF
        model['useCaloRings']         = useCaloRings
        model['useShowerShape']       = useShowerShape
        model['useTrack']             = useTrack

                 
        discrList.append( model )
  
        self._logger.info('neuron = %d, sort = %d, init = %d',
                     info['neuron'],
                     info['sort'],
                     info['init'])
        
      # for benchmark
    # for summay in list

    return discrList
              RingerLayer.EM1,
              RingerLayer.EM2,
              RingerLayer.EM3,
              RingerLayer.HAD1,
              RingerLayer.HAD2,
              RingerLayer.HAD3,]


from RingerCore import load,save
from RingerCore import changeExtension, ensureExtension, appendToFileName, progressbar, mkdir_p
from itertools import product
import numpy as np
if args.outputPath is None:
  args.outputPath = os.path.dirname(args.inputFile)
  if not os.path.isdir( args.outputPath ): mkdir_p( args.outputPath )
f = load(args.inputFile)
# Copy all metada information
baseDict = { k : f[k] for k in f.keys() if not '_etBin_' in k and not '_etaBin_' in k }
nEtBins = f['nEtBins'].item()
nEtaBins = f['nEtaBins'].item()
for etIdx, etaIdx in progressbar( product(xrange(nEtBins), xrange(nEtaBins))
                                , nEtBins*nEtaBins
                                , logger = mainLogger 
                                , prefix = 'Juicing file '):

  binDict= {k:f[k] for k in f.keys()  if 'etBin_%d_etaBin_%d'%(etIdx,etaIdx) in k}
  binDict.update(baseDict)
  from copy import deepcopy
  for layer in caloLayers:
    pp=PreProcChain([RingerLayerSegmentation(layer=layer)])
    tmpBinDict = deepcopy(binDict)
Example #17
0
  pprint(args.inputFiles)
## Treat special arguments
if len( args.inputFiles ) == 1:
  args.inputFiles = csvStr2List( args.inputFiles[0] )
args.inputFiles = expandFolders( args.inputFiles )
mainLogger.verbose("All input files are:")
if mainLogger.isEnabledFor( LoggingLevel.VERBOSE ):
  pprint(args.inputFiles)

for inFile in progressbar(args.inputFiles, len(args.inputFiles),
                          logger = mainLogger, prefix = "Processing files "):
  # Treat output file name:
  from RingerCore import checkExtension, changeExtension, load, save
  if checkExtension( inFile, "tgz|tar.gz|pic" ):
    cOutputName = changeExtension( inFile, '.mat' )
    if args.change_output_folder:
      import os.path
      cOutputName = os.path.join( os.path.abspath(args.change_output_folder) , os.path.basename(cOutputName) )
    data = load( inFile, useHighLevelObj = False )
    from scipy.io import savemat
    try:
      savemat( cOutputName, data )
    except ImportError:
      self._logger.fatal(("Cannot save matlab file, it seems that scipy is not "
          "available."), ImportError)
    mainLogger.info("Successfully created matlab file: %s", cOutputName)
  else:
    mainLogger.error("Cannot transform files '%s' to matlab." % inFile)
# end of (for fileCollection)

Example #18
0
def makeSummaryMonSlides(outputs, nbins, choicesfile):
    from scipy.io import loadmat

    f = loadmat(choicesfile)
    choices = dict()
    choices['Pd'] = f['choices']['Pd'][0][0]
    choices['Pf'] = f['choices']['Pf'][0][0]
    choices['SP'] = f['choices']['SP'][0][0]

    nbinchoices = 0
    for etchoices in choices['Pd']:
        nbinchoices += len(etchoices)
    if not nbins == nbinchoices:
        raise NameError('Choices Archieve Error')

    net = len(choices['Pd'])
    neta = len(choices['Pd'][0])
    unbinned = False
    if net == 1 and neta == 1:
        unbinned = True
    f = load('{}/anex.pic.gz'.format(outputs + '_et0_eta0'))
    benchmarkNames = f['perf'].keys()

    for benchmarkName in benchmarkNames:
        slideAnex = []
        for et in xrange(net):
            etlist = []
            for eta in xrange(neta):
                etaDict = dict()
                neuron = choices[benchmarkName.split('_')[-1]][et][eta]
                basepath = outputs
                basepath += ('_et%d_eta%d') % (et, eta)
                f = load('{}/anex.pic.gz'.format(basepath))
                etaDict['nsignal'] = f['nsignal']
                etaDict['nbackground'] = f['nbackground']

                etstr = f['bounds']['etbinstr']
                etastr = f['bounds']['etabinstr']
                perfs = f['perf'][benchmarkName]

                refBench = perfs['config_' + str(neuron).zfill(3)].getRef()
                perfBench = perfs['config_' + str(neuron).zfill(3)].getPerf()
                bestNetBench = perfs['config_' + str(neuron).zfill(3)].rawOp()
                etaDict['sortMaximuns'] = perfs[
                    'config_' + str(neuron).zfill(3)].getSortPerfs()

                detR = (refBench['det'])
                spR = (refBench['sp'])
                faR = (refBench['fa'])

                detRstr = r'{:.2f}'.format(detR)
                spRstr = r'{:.2f}'.format(spR)
                faRstr = r'{:.2f}'.format(faR)

                perf = dict()

                perf['refBench'] = dict()
                perf['refBench']['det'] = detR
                perf['refBench']['sp'] = spR
                perf['refBench']['fa'] = faR

                refBench = [detRstr, spRstr, faRstr]

                detP = (perfBench['detMean'], perfBench['detStd'])
                spP = (perfBench['spMean'], perfBench['spStd'])
                faP = (perfBench['faMean'], perfBench['faStd'])
                detPstr = r'%.2f$\pm$%.2f' % (detP)
                spPstr = r'%.2f$\pm$%.2f' % (spP)
                faPstr = r'%.2f$\pm$%.2f' % (faP)
                perf['perfBench'] = dict()
                perf['perfBench']['det'] = detP
                perf['perfBench']['sp'] = spP
                perf['perfBench']['fa'] = faP

                perfBench = [detPstr, spPstr, faPstr]

                detB = (bestNetBench['det'] * 100)
                spB = (bestNetBench['sp'] * 100)
                faB = (bestNetBench['fa'] * 100)

                detBstr = r'{:.2f}'.format(detB)
                spBstr = r'{:.2f}'.format(spB)
                faBstr = r'{:.2f}'.format(faB)

                perf['bestNetBench'] = dict()
                perf['bestNetBench']['det'] = detB
                perf['bestNetBench']['sp'] = spB
                perf['bestNetBench']['fa'] = faB

                bestNetBench = [detBstr, spBstr, faBstr]
                perfs = [refBench, perfBench, bestNetBench]

                graphSections = [
                    'All Sorts(Validation)',
                    'All ROC Sorts(Validation)',
                    'All Sorts(Operation)',
                    'All ROC Sorts(Operation)',
                    'Best Network',
                    'Best Operation Output',
                ]

                figures = [
                    '{}/figures/{}/neuron_{}/plot_{}_neuron_{}_sorts_val.pdf'.
                    format(basepath, benchmarkName, neuron, benchmarkName,
                           neuron),
                    '{}/figures/{}/neuron_{}/plot_{}_neuron_{}_sorts_roc_tst.pdf'
                    .format(basepath, benchmarkName, neuron, benchmarkName,
                            neuron),
                    '{}/figures/{}/neuron_{}/plot_{}_neuron_{}_sorts_op.pdf'.
                    format(basepath, benchmarkName, neuron, benchmarkName,
                           neuron),
                    '{}/figures/{}/neuron_{}/plot_{}_neuron_{}_sorts_roc_op.pdf'
                    .format(basepath, benchmarkName, neuron, benchmarkName,
                            neuron),
                    '{}/figures/{}/neuron_{}/plot_{}_neuron_{}_best_op.pdf'.
                    format(basepath, benchmarkName, neuron, benchmarkName,
                           neuron),
                    '{}/figures/{}/neuron_{}/plot_{}_neuron_{}_best_op_output.pdf'
                    .format(basepath, benchmarkName, neuron, benchmarkName,
                            neuron),
                ]
                figuresDict = dict(zip(graphSections, figures))
                etaDict['neuron'] = neuron
                etaDict['figures'] = figuresDict
                etaDict['graphSections'] = graphSections
                etaDict['perfs'] = perfs
                etaDict['perf'] = perf
                etaDict['etastr'] = etastr
                etaDict['etstr'] = etstr

                etlist.append(etaDict)
                # for eta
            slideAnex.append(etlist)
            #for et
        totalPerfs = calcPerformance(slideAnex, net, neta)

        with BeamerTexReportTemplate1(theme='Berlin',
                                      _toPDF=True,
                                      title=benchmarkName,
                                      outputFile=benchmarkName,
                                      font='structurebold'):
            with BeamerSection(name='Performance'):
                if not unbinned:
                    l1 = ['']

                    sideline = '{|c|ccc|}'

                    l1.extend([r'Pd(\%)', r'SP(\%)', r'PF(\%)'])
                    bodylines = []
                    la = [r'\hline' + '\n' + r'\text{CrossValidation}']
                    lb = ['Reference']
                    lc = ['bestNetBench']
                    refBench = [
                        totalPerfs['pdRef'], totalPerfs['spRef'],
                        totalPerfs['pfRef']
                    ]
                    bestNetBench = [
                        totalPerfs['pdBest'], totalPerfs['spBest'],
                        totalPerfs['pfBest']
                    ]

                    detP = (totalPerfs['pdTuning'], totalPerfs['pdStdTuning'])
                    spP = (totalPerfs['spTuning'], totalPerfs['spStdTuning'])
                    pfP = (totalPerfs['pfTuning'], totalPerfs['pfStdTuning'])

                    detPstr = r'%.2f$\pm$%.2f' % (detP)
                    spPstr = r'%.2f$\pm$%.2f' % (spP)
                    pfPstr = r'%.2f$\pm$%.2f' % (pfP)

                    perfBench = [detPstr, spPstr, pfPstr]

                    la.extend(perfBench)
                    lb.extend(refBench)
                    lc.extend(bestNetBench)
                    bodylines.extend([la, lb, lc])
                    linhas = []
                    linhas.append(l1)
                    linhas.extend(bodylines)
                    with BeamerSubSection(name='General Performance'):
                        BeamerTableSlide(
                            title='General Performance',
                            linhas=linhas,
                            sideline=sideline,
                            caption='Efficiences',
                        )

                    l1 = ['', '']
                    l2 = ['', '']
                    sideline = '{|c|c|'
                    for et in xrange(net):
                        sideline += 'ccc|'
                        l1.extend(['', slideAnex[et][0]['etstr'], ''])
                        l2.extend([r'Pd(\%)', r'SP(\%)', r'PF(\%)'])
                    sideline += '}'
                    etlines = []
                    for eta in xrange(neta):
                        la = [
                            r'\hline' + slideAnex[0][eta]['etastr'],
                            'CrossValidation'
                        ]
                        lb = [r'', 'Reference']
                        lc = [r'', 'bestNetBench']
                        for et in xrange(net):
                            prfs = slideAnex[et][eta]['perfs']
                            refBench = prfs[0]
                            perfBench = prfs[1]
                            bestNetBench = prfs[2]

                            la.extend(perfBench)
                            lb.extend(refBench)
                            lc.extend(bestNetBench)
                        etlines.extend([la, lb, lc])
                    linhas = []
                    linhas.append(l1)
                    linhas.append(l2)
                    linhas.extend(etlines)
                    with BeamerSubSection(name='All Bins Performance'):
                        BeamerTableSlide(
                            title='All Bins Performance',
                            linhas=linhas,
                            sideline=sideline,
                            caption='Efficiences',
                        )

                for et in xrange(net):
                    l1 = ['', '']
                    l2 = ['', '']
                    sideline = '{|c|c|ccc|}'
                    l1.extend(['', slideAnex[et][0]['etstr'], ''])
                    l2.extend([r'Pd(\%)', r'SP(\%)', r'PF(\%)'])
                    etlines = []
                    for eta in xrange(neta):
                        if unbinned:
                            la = [r'\hline', 'CrossValidation']
                        else:
                            la = [
                                r'\hline' + slideAnex[0][eta]['etastr'],
                                'CrossValidation'
                            ]
                        lb = [r'Neuron', 'Reference']
                        lc = [r'', 'bestNetBench']
                        neuron = slideAnex[et][eta]['neuron']
                        prfs = slideAnex[et][eta]['perfs']
                        lc[0] = '%d' % neuron
                        refBench = prfs[0]

                        perfBench = prfs[1]

                        bestNetBench = prfs[2]

                        la.extend(perfBench)
                        lb.extend(refBench)
                        lc.extend(bestNetBench)
                        etlines.extend([la, lb, lc])
                    linhas = []
                    if not unbinned:
                        linhas.append(l1)
                    linhas.append(l2)
                    linhas.extend(etlines)
                    if unbinned:
                        BeamerTableSlide(
                            title='Performance',
                            linhas=linhas,
                            sideline=sideline,
                            caption='Efficiences',
                        )
                    else:
                        with BeamerSubSection(name=slideAnex[et][0]['etstr']):
                            BeamerTableSlide(
                                title='Performance',
                                linhas=linhas,
                                sideline=sideline,
                                caption='Efficiences',
                            )

            with BeamerSection(name='Figures'):
                if unbinned:
                    neuron = slideAnex[0][0]['neuron']
                    graphSections = slideAnex[0][0]['graphSections']
                    figures = slideAnex[0][0]['figures']
                    for graph in graphSections:
                        BeamerFigureSlide(title=graph + ' Neuron: ' +
                                          str(neuron),
                                          path=figures[graph])
                else:
                    for et in xrange(net):
                        with BeamerSubSection(name=slideAnex[et][0]['etstr']):
                            for eta in xrange(neta):
                                neuron = slideAnex[et][eta]['neuron']
                                graphSections = slideAnex[et][eta][
                                    'graphSections']
                                figures = slideAnex[et][eta]['figures']

                                with BeamerSubSubSection(
                                        name=slideAnex[et][eta]['etastr'] +
                                        ', Neuron: {}'.format(neuron)):
                                    for graph in graphSections:
                                        BeamerFigureSlide(title=graph,
                                                          path=figures[graph])
    return
Example #19
0
# from TuningTools.dataframe import RingerOperation
args.operation = RingerOperation.tostring(args.operation)

nnList_calo = {}
nnList_track = {}

## Retrieving Calorimeter Networks
logger.info("Retrieving Calorimeter Networks...")
filelist = args.network_calo
if isinstance(filelist, (str)): filelist = [filelist]
elif isinstance(filelist, (tuple)): filelist = list(filelist)

for et in MatlabLoopingBounds(args.et_bins):
    nnList_calo[et] = {}
    for eta in MatlabLoopingBounds(args.eta_bins):
        tmp = load(filelist.pop(0))
        nnList_calo[et][eta] = {}
        for x in ['Pd', 'Pf', 'SP']:
            nnList_calo[et][eta][x] = {}
            hn = tmp['OperationPoint_%s_%s' %
                     (opName, x)]['infoTstBest']['neuron']
            logger.debug("Reference %s: %i neurons in the hidden layer" %
                         (x, hn))
            for sort in tmp['infoPPChain'].keys():
                # TODO: Add a progressbar to the loop
                nnList_calo[et][eta][x][sort] = tmp[
                    'OperationPoint_%s_%s' %
                    (opName, x)]['config_%1.3i' %
                                 (hn)][sort]['infoOpBest']['discriminator']

## Retrieving Tracking Networks
Example #20
0
                    rawdict['_passed'] = mat[rowIdx][columnIdx]

    def changeTotal(key, mat):
        for lkey in d[key].item():
            for rowIdx, array1 in enumerate(d[key].item()[lkey]):
                for columnIdx, rawdict in enumerate(array1):
                    rawdict['_count'] = 100.

    changePassed(key, mat)
    changeTotal(key, mat)


from RingerCore import load, save

a = load(
    'mc15_13TeV.361106.423300.sgn.trigegprobes.bkg.vetotruth.trig.l2calo.eg.std.grid.medium.npz'
)
d = dict(a)

changeOp(d, 'signal_efficiencies', mergeEffTable(veryloose20160701))
changeOp(d, 'background_efficiencies', pfrefs_vloose)
save(
    d,
    'mc15_13TeV.361106.423300.sgn.trigegprobes.bkg.vetotruth.trig.l2calo.eg.std.grid.veryloose',
    protocol='savez_compressed')

d = dict(a)
changeOp(d, 'signal_efficiencies', mergeEffTable(loose20160701))
changeOp(d, 'background_efficiencies', pfrefs_loose)
save(
    d,