def __retrieve_np_exmachina(): if not hasExmachina: raise RuntimeError("Requested npExmachina but ExMachina not compiled.") import numpy as np # Define the exmachina numpy constants return npConstants(useFortran=True, fp_dtype=np.float64, int_dtype=np.int64)
def __retrieve_np_fastnet(): if not hasFastnet: raise RuntimeError("Requested npFastnet but FastNet not compiled.") import numpy as np # Define the fastnet numpy constants return npConstants(useFortran=False, fp_dtype=np.float32, int_dtype=np.int32)
def numpy_wrapper(self): """ Returns the api instance which is to be used to read the data """ import numpy as np if self.core is TuningToolCores.ExMachina: # Define the exmachina numpy constants kwargs = { 'useFortran': True, 'fp_dtype': np.float64, 'int_dtype': np.int64 } elif self.core is TuningToolCores.FastNet: kwargs = { 'useFortran': False, 'fp_dtype': np.float32, 'int_dtype': np.int32 } elif self.core is TuningToolCores.keras: from keras.backend import backend if backend( ) == "theano": # Theano copies data if input is not c-contiguous kwargs = { 'useFortran': False, 'fp_dtype': np.float32, 'int_dtype': np.int32 } elif backend( ) == "tensorflow": # tensorflow copies data if input is not fortran-contiguous kwargs = { 'useFortran': False, 'fp_dtype': np.float32, 'int_dtype': np.int32 } return npConstants(**kwargs)