Example #1
0
    def extract_proteins_from_selected_families(
            families_id_file,
            fam_file,
            pep_file,
            output_dir="./",
            pep_format="fasta",
            out_prefix=None,
            create_dir_for_each_family=False):
        from Routines import SequenceRoutines, FileRoutines
        fam_id_list = IdList()
        fam_dict = SynDict()
        #print(pep_file)
        FileRoutines.safe_mkdir(output_dir)
        out_dir = FileRoutines.check_path(output_dir)
        create_directory_for_each_family = True if out_prefix else create_dir_for_each_family
        if families_id_file:
            fam_id_list.read(families_id_file)
        fam_dict.read(fam_file, split_values=True, values_separator=",")
        protein_dict = SeqIO.index_db("tmp.idx", pep_file, format=pep_format)

        for fam_id in fam_id_list if families_id_file else fam_dict:
            if fam_id in fam_dict:
                if create_directory_for_each_family:
                    fam_dir = "%s%s/" % (out_dir, fam_id)
                    FileRoutines.safe_mkdir(fam_dir)
                    out_file = "%s%s.pep" % (fam_dir, out_prefix
                                             if out_prefix else fam_id)
                else:
                    out_file = "%s/%s.pep" % (out_dir, out_prefix
                                              if out_prefix else fam_id)

                SeqIO.write(SequenceRoutines.record_by_id_generator(
                    protein_dict, fam_dict[fam_id], verbose=True),
                            out_file,
                            format=pep_format)
            else:
                print("%s was not found" % fam_id)

        os.remove("tmp.idx")
Example #2
0
    def split_proteins_per_species(dir_with_proteins,
                                   output_dir,
                                   input_format="fasta",
                                   output_format="fasta"):
        input_files = FileRoutines.make_list_of_path_to_files(
            [dir_with_proteins] if isinstance(dir_with_proteins, str
                                              ) else dir_with_proteins)

        out_dir = FileRoutines.check_path(output_dir)
        FileRoutines.safe_mkdir(out_dir)

        protein_dict = SeqIO.index_db("temp.idx",
                                      input_files,
                                      format=input_format)

        syn_dict = SynDict()

        for protein_id in protein_dict:
            taxa_id = protein_id.split(".")[0]
            # pep_id = ".".join(tmp_list[1:])
            if taxa_id not in syn_dict:
                syn_dict[taxa_id] = []
            syn_dict[taxa_id].append(protein_id)

        def renamed_records_generator(record_dict, taxa_id):
            for record_id in syn_dict[taxa_id]:
                record = deepcopy(record_dict[record_id])
                #print(record)
                record.id = ".".join(record_id.split(".")[1:])
                yield record

        for taxa_id in syn_dict:
            out_file = "%s%s.pep" % (out_dir, taxa_id)
            SeqIO.write(renamed_records_generator(protein_dict, taxa_id),
                        out_file,
                        format=output_format)
Example #3
0
    def parallel_search_tandem_repeat(self,
                                      query_file,
                                      output_prefix,
                                      matching_weight=2,
                                      mismatching_penalty=7,
                                      indel_penalty=7,
                                      match_probability=80,
                                      indel_probability=10,
                                      min_alignment_score=50,
                                      max_period=500,
                                      report_flanking_sequences=False,
                                      splited_fasta_dir="splited_fasta_dir",
                                      splited_result_dir="splited_output",
                                      converted_output_dir="converted_output",
                                      max_len_per_file=100000,
                                      store_intermediate_files=False):
        work_dir = os.getcwd()
        splited_filename = FileRoutines.split_filename(query_file)
        self.split_fasta_by_seq_len(query_file,
                                    splited_fasta_dir,
                                    max_len_per_file=max_len_per_file,
                                    output_prefix=splited_filename[1])

        common_options = self.parse_common_options(
            matching_weight=matching_weight,
            mismatching_penalty=mismatching_penalty,
            indel_penalty=indel_penalty,
            match_probability=match_probability,
            indel_probability=indel_probability,
            min_alignment_score=min_alignment_score,
            max_period=max_period,
            report_flanking_sequences=report_flanking_sequences,
            make_dat_file=True)
        common_options += " -h"  # suppress html output
        options_list = []
        splited_files = os.listdir(splited_fasta_dir)

        FileRoutines.safe_mkdir(splited_result_dir)
        FileRoutines.safe_mkdir(converted_output_dir)
        os.chdir(splited_result_dir)

        input_dir = splited_fasta_dir if (splited_fasta_dir[0] == "/") or (splited_fasta_dir[0] == "~") \
                    else "../%s" % splited_fasta_dir

        for filename in splited_files:
            file_options = "%s/%s" % (input_dir, filename)
            file_options += common_options
            options_list.append(file_options)

        self.parallel_execute(options_list)

        os.chdir(work_dir)
        trf_output_file_list = []
        for filename in splited_files:

            trf_output_file = "%s/%s.%i.%i.%i.%i.%i.%i.%i.dat" % (
                splited_result_dir, filename, matching_weight,
                mismatching_penalty, indel_penalty, match_probability,
                indel_probability, min_alignment_score, max_period)
            trf_output_file_list.append(trf_output_file)

        trf_report = self.convert_trf_report(trf_output_file_list,
                                             output_prefix)
        """
        for suffix in (".rep", ".gff", ".simple.gff", ".short.tab", ".wide.tab", ".with_rep_seqs.gff", ".fasta"):
            file_str = ""
            merged_file = "%s%s" % (output_prefix, suffix)
            for filename in splited_files:
                file_str += " %s/%s%s" % (converted_output_dir, filename, suffix)
            CGAS.cat(file_str, merged_file)
        """
        if not store_intermediate_files:
            shutil.rmtree(splited_fasta_dir)
            shutil.rmtree(splited_result_dir)
            shutil.rmtree(converted_output_dir)

        return trf_report
Example #4
0
                    action="store",
                    dest="max_memory_per_thread",
                    default="1G",
                    help="Maximum memory per thread. Default - 1G")
args = parser.parse_args()

if args.prepare_bam and ((not args.prepared_bam_prefix) or
                         (not args.temp_dir)):
    raise ValueError(
        "Options -e/--prepared_bam_prefix and -m/--temp_dir must be set if -p/--prepare_bam option is used"
    )

SamtoolsV1.threads = args.threads

if args.prepare_bam or args.mix_ends:
    FileRoutines.safe_mkdir(FileRoutines.check_path(args.temp_dir))
    prepared_pe_bam_file = "%s.bam" % args.prepared_bam_prefix
    prepared_unpaired_bam_file = (
        "%s.unpaired.bam" %
        args.prepared_bam_prefix) if args.mix_ends else None
    """
    SamtoolsV1.prepare_bam_for_read_extraction(args.input, args.prepared_bam, temp_file_prefix=args.temp_dir,
                                               max_memory_per_thread=args.max_memory_per_thread)
    """
    SamtoolsV1.prepare_bam_for_read_extraction(
        args.input,
        prepared_pe_bam_file,
        temp_file_prefix=args.temp_dir,
        max_memory_per_thread=args.max_memory_per_thread,
        bam_file_to_write_unpaired_reads=prepared_unpaired_bam_file)
if args.paired:
parser.add_argument("-i", "--input_file_list", action="store", dest="input", required=True,
                    type=FileRoutines.make_list_of_path_to_files_from_string,
                    help="Comma-separated list of input files/directories with sequences")
parser.add_argument("-o", "--output_directory", action="store", dest="output", type=FileRoutines.check_path,
                    help="Directory to output groups_of sequences")
parser.add_argument("-f", "--format", action="store", dest="format", default="fasta",
                    help="Format of input and output files. Allowed formats genbank, fasta(default)")
parser.add_argument("-e", "--extension", action="store", dest="extension",
                    help="Extension of output files. Default: equal to -f")
parser.add_argument("-d", "--id_file", action="store", dest="id_file",
                    help="File with groups of sequences to extract(.fam file).")

args = parser.parse_args()

FileRoutines.safe_mkdir(args.output)
args.extension = args.extension if args.extension else args.format
tmp_index_file = "temp.idx"

#id_list = read_ids(args.id_file)
id_list = IdSet(filename=args.id_file)

sequence_groups_id = SynDict()
sequence_groups_id.read(args.id_file, split_values=True)
#print("Parsing %s..." % args.input_file)
sequence_dict = SeqIO.index_db(tmp_index_file, args.input, format=args.format)
for group in sequence_groups_id:
    SeqIO.write(SequenceRoutines.record_by_id_generator(sequence_dict, sequence_groups_id[group],
                                                        verbose=True),
                "%s%s.%s" % (args.output, group, args.extension), format=args.format)
Example #6
0
    def align_samples(self,
                      samples_dir,
                      output_dir,
                      genome_dir,
                      genome_fasta=None,
                      samples=None,
                      annotation_gtf=None,
                      sjdboverhang=None,
                      genomeSAindexNbases=None,
                      genomeChrBinNbits=None,
                      genome_size=None,
                      feature_from_gtf_to_use_as_exon=None,
                      exon_tag_to_use_as_transcript_id=None,
                      exon_tag_to_use_as_gene_id=None,
                      length_of_sequences_flanking_junction=None,
                      junction_tab_file_list=None,
                      three_prime_trim=None,
                      five_prime_trim=None,
                      adapter_seq_for_three_prime_clip=None,
                      max_mismatch_percent_for_adapter_trimming=None,
                      three_prime_trim_after_adapter_clip=None,
                      output_type="BAM",
                      sort_bam=True,
                      max_memory_for_bam_sorting=8000000000,
                      include_unmapped_reads_in_bam=True,
                      output_unmapped_reads=True,
                      two_pass_mode=True,
                      max_intron_length=None):
        #STAR.threads = threads
        #STAR.path = star_dir

        if genome_fasta:
            STAR.index(genome_dir,
                       genome_fasta,
                       annotation_gtf=annotation_gtf,
                       junction_tab_file=junction_tab_file_list,
                       sjdboverhang=sjdboverhang,
                       genomeSAindexNbases=genomeSAindexNbases,
                       genomeChrBinNbits=genomeChrBinNbits,
                       genome_size=genome_size)

        sample_list = samples if samples else self.get_sample_list(samples_dir)

        FileRoutines.safe_mkdir(output_dir)

        for sample in sample_list:
            print("Handling %s" % sample)
            sample_dir = "%s/%s/" % (samples_dir, sample)
            alignment_sample_dir = "%s/%s/" % (output_dir, sample)
            FileRoutines.safe_mkdir(alignment_sample_dir)
            filetypes, forward_files, reverse_files = FileRoutines.make_lists_forward_and_reverse_files(
                sample_dir)

            print "\tAligning reads..."

            STAR.align(
                genome_dir,
                forward_files,
                reverse_read_list=reverse_files,
                annotation_gtf=annotation_gtf if not genome_fasta else None,
                feature_from_gtf_to_use_as_exon=feature_from_gtf_to_use_as_exon,
                exon_tag_to_use_as_transcript_id=
                exon_tag_to_use_as_transcript_id,
                exon_tag_to_use_as_gene_id=exon_tag_to_use_as_gene_id,
                length_of_sequences_flanking_junction=
                length_of_sequences_flanking_junction,
                junction_tab_file_list=junction_tab_file_list,
                three_prime_trim=three_prime_trim,
                five_prime_trim=five_prime_trim,
                adapter_seq_for_three_prime_clip=
                adapter_seq_for_three_prime_clip,
                max_mismatch_percent_for_adapter_trimming=
                max_mismatch_percent_for_adapter_trimming,
                three_prime_trim_after_adapter_clip=
                three_prime_trim_after_adapter_clip,
                output_type=output_type,
                sort_bam=sort_bam,
                max_memory_for_bam_sorting=max_memory_for_bam_sorting,
                include_unmapped_reads_in_bam=include_unmapped_reads_in_bam,
                output_unmapped_reads=output_unmapped_reads,
                output_dir=alignment_sample_dir,
                two_pass_mode=two_pass_mode,
                max_intron_length=max_intron_length)

            print "\tIndexing bam file..."
            resulting_bam_file = "%s/Aligned.sortedByCoord.out.bam" % alignment_sample_dir
            SamtoolsV1.index(resulting_bam_file)
Example #7
0
STAR.path = args.star_dir

if args.genome_fasta:
    STAR.index(args.genome_dir,
               args.genome_fasta,
               annotation_gtf=args.annotation_gtf,
               junction_tab_file=args.junction_tab_file,
               sjdboverhang=None,
               genomeSAindexNbases=None,
               genomeChrBinNbits=None,
               genome_size=args.genome_size)

sample_list = args.samples if args.samples else Pipeline.get_sample_list(
    args.samples_dir)

FileRoutines.safe_mkdir(args.output_dir)

for sample in sample_list:
    print("Handling %s" % sample)
    sample_dir = "%s/%s/" % (args.samples_dir, sample)
    alignment_sample_dir = "%s/%s/" % (args.output_dir, sample)
    FileRoutines.safe_mkdir(alignment_sample_dir)
    filetypes, forward_files, reverse_files = FileRoutines.make_lists_forward_and_reverse_files(
        sample_dir)

    print "\tAligning reads..."

    STAR.align(
        args.genome_dir,
        forward_files,
        reverse_read_list=reverse_files,
Example #8
0
    def parallel_align(self,
                       list_of_files,
                       output_directory,
                       output_suffix=None,
                       tree_file=None,
                       output_format=None,
                       show_xml=None,
                       show_tree=None,
                       show_ancestral_sequences=None,
                       show_evolutionary_events=None,
                       showall=None,
                       compute_posterior_support=None,
                       njtree=None,
                       skip_insertions=False,
                       codon_alignment=None,
                       translated_alignment=None,
                       cmd_log_file=None,
                       cpus_per_task=1,
                       handling_mode="local",
                       job_name=None,
                       log_prefix=None,
                       error_log_prefix=None,
                       max_jobs=None,
                       max_running_time=None,
                       max_memory_per_node=None,
                       max_memmory_per_cpu=None,
                       modules_list=None,
                       environment_variables_dict=None):

        common_options = self.parse_common_options(
            tree_file=tree_file,
            output_format=output_format,
            show_xml=show_xml,
            show_tree=show_tree,
            show_ancestral_sequences=show_ancestral_sequences,
            show_evolutionary_events=show_evolutionary_events,
            showall=showall,
            compute_posterior_support=compute_posterior_support,
            njtree=njtree,
            skip_insertions=skip_insertions,
            codon_alignment=codon_alignment,
            translated_alignment=translated_alignment)

        FileRoutines.safe_mkdir(output_directory)
        options_list = []
        for filename in list_of_files:
            basename = FileRoutines.split_filename(filename)[1]
            op = common_options
            op += " -d=%s" % filename
            op += " -o=%s/%s.fasta" % (output_directory,
                                       ("%s_%s" % (basename, output_suffix))
                                       if output_suffix else basename)
            options_list.append(op)
        if handling_mode == "local":
            self.parallel_execute(options_list)
        elif handling_mode == "slurm":

            cmd_list = [
                "%s%s %s" %
                ((self.path + "/") if self.path else "", self.cmd, options)
                for options in options_list
            ]
            self.slurm_run_multiple_jobs_in_wrap_mode(
                cmd_list,
                cmd_log_file,
                max_jobs=max_jobs,
                job_name=job_name,
                log_prefix=log_prefix,
                error_log_prefix=error_log_prefix,
                cpus_per_node=None,
                max_running_jobs=None,
                max_running_time=max_running_time,
                cpus_per_task=cpus_per_task,
                max_memory_per_node=max_memory_per_node,
                max_memmory_per_cpu=max_memmory_per_cpu,
                modules_list=modules_list,
                environment_variables_dict=environment_variables_dict)
Example #9
0
AUGUSTUS.extract_CDS_annotations_from_output(final_gff, final_CDS_gff)

for stat_file in output_evidence_stats, output_supported_stats, \
                 output_swissprot_pfam_or_hints_supported_transcripts_longest_pep_evidence, \
                 output_swissprot_pfam_and_hints_supported_transcripts_longest_pep_evidence, \
                 output_swissprot_pfam_or_hints_supported_transcripts_evidence, \
                 output_swissprot_pfam_and_hints_supported_transcripts_evidence:

    MatplotlibRoutines.percent_histogram_from_file(
        stat_file,
        stat_file,
        data_type=None,
        column_list=(2, ),
        comments="#",
        n_bins=20,
        title="Transcript support by hints",
        extensions=("png", "svg"),
        legend_location="upper center",
        stats_as_legend=True)

if args.pfam_db and args.swissprot_db:
    db_or_hints_dir = "supported_by_db_or_hints/"
    db_and_hints_dir = "supported_by_db_and_hints/"
    for directory in db_and_hints_dir, db_or_hints_dir:
        FileRoutines.safe_mkdir(directory)

    os.system("mv %s.supported.transcripts.swissprot_or_pfam_or_hints* %s" %
              (args.output, db_or_hints_dir))
    os.system("mv %s.supported.transcripts.swissprot_or_pfam_and_hints* %s" %
              (args.output, db_and_hints_dir))
Example #10
0
    def parallel_positive_selection_test(self,
                                         in_dir,
                                         tree_file,
                                         out_dir,
                                         results_file,
                                         seq_type="codons",
                                         codon_frequency="F3X4",
                                         noisy=3,
                                         verbose="concise",
                                         runmode=0,
                                         clock=0,
                                         aminoacid_distance=None,
                                         genetic_code=0,
                                         fix_kappa=False,
                                         kappa=5,
                                         getSE=0,
                                         RateAncestor=0,
                                         small_difference=0.000001,
                                         clean_data=True,
                                         method=0):
        """
        This function implements positive selection test (branch-site model)
        for branch labeled in tree file using model_A vs model_A_null(omega fixed to 1) comparison
        """

        FileRoutines.safe_mkdir(out_dir)
        alignment_files_list = FileRoutines.make_list_of_path_to_files(in_dir)
        tree_file_abs_path = os.path.abspath(tree_file)
        options_list = []
        dir_list = []
        basename_dir_list = []
        model_list = ["Model_A", "Model_A_null"]
        fix_omega_dict = {"Model_A": False, "Model_A_null": True}

        for filename in alignment_files_list:
            directory, basename, extension = FileRoutines.split_filename(
                filename)
            filename_out_dir = os.path.abspath("%s/%s/" % (out_dir, basename))
            basename_dir_list.append(basename)
            FileRoutines.safe_mkdir(filename_out_dir)

            for model in model_list:
                model_dir = "%s/%s/" % (filename_out_dir, model)
                FileRoutines.safe_mkdir(model_dir)
                out_file = "%s/%s/%s.out" % (filename_out_dir, model, basename)
                ctl_file = "%s/%s/%s.ctl" % (filename_out_dir, model, basename)

                options_list.append("%s.ctl" % basename)
                dir_list.append(model_dir)

                self.generate_ctl_file(os.path.abspath(filename),
                                       tree_file_abs_path,
                                       out_file,
                                       ctl_file,
                                       seq_type=seq_type,
                                       codon_frequency=codon_frequency,
                                       noisy=noisy,
                                       verbose=verbose,
                                       runmode=runmode,
                                       clock=clock,
                                       aminoacid_distance=aminoacid_distance,
                                       model=2,
                                       nssites=2,
                                       genetic_code=genetic_code,
                                       fix_kappa=fix_kappa,
                                       kappa=kappa,
                                       fix_omega=fix_omega_dict[model],
                                       omega=1,
                                       getSE=getSE,
                                       RateAncestor=RateAncestor,
                                       Mgene=0,
                                       small_difference=small_difference,
                                       clean_data=clean_data,
                                       method=method)

        self.parallel_execute(options_list, dir_list=dir_list)

        results_dict = OrderedDict()
        double_delta_dict = OrderedDict()
        raw_pvalues_dict = OrderedDict()
        raw_pvalues_list = []

        for basename in basename_dir_list:
            results_dict[basename] = OrderedDict()
            for model in model_list:
                output_file = "%s/%s/%s/%s.out" % (out_dir, basename, model,
                                                   basename)
                codeml_report = CodeMLReport(output_file)
                results_dict[basename][model] = codeml_report.LnL

        skipped_genes_set = set()
        for basename in basename_dir_list:
            for model in model_list:
                if results_dict[basename][model] is None:
                    print("LnL was not calculated for %s" % basename)
                    skipped_genes_set.add(basename)
                    break
            else:
                doubled_delta = 2 * (results_dict[basename]["Model_A"] -
                                     results_dict[basename]["Model_A_null"])
                p_value = chisqprob(doubled_delta, 1)  # degrees of freedom = 1

                double_delta_dict[basename] = doubled_delta
                raw_pvalues_dict[basename] = p_value
                raw_pvalues_list.append(p_value)

        adjusted_pvalues_list = fdrcorrection0(raw_pvalues_list)[1]
        #print adjusted_pvalues_list
        i = 0
        with open(results_file, "w") as out_fd:
            out_fd.write(
                "id\tmodel_a_null,LnL\tmodel_a,LnL\t2*delta\traw p-value\tadjusted p-value\n"
            )
            for basename in basename_dir_list:
                for model in model_list:
                    if results_dict[basename][model] is None:
                        print("LnL was not calculated for %s" % basename)
                        break
                else:
                    #doubled_delta = 2 * (results_dict[basename]["Model_A"] - results_dict[basename]["Model_A_null"])
                    #p_value = chisqprob(doubled_delta, 1) # degrees of freedom = 1

                    #print basename, results_dict[basename]["Model_A_null"],results_dict[basename]["Model_A"], double_delta_dict[basename], raw_pvalues_dict[basename], adjusted_pvalues_list[i]

                    out_fd.write(
                        "%s\t%f\t%f\t%f\t%f\t%f\n" %
                        (basename, results_dict[basename]["Model_A_null"],
                         results_dict[basename]["Model_A"],
                         double_delta_dict[basename],
                         raw_pvalues_dict[basename], adjusted_pvalues_list[i]))
                    i += 1
Example #11
0
    def parallel_codeml(self,
                        in_dir,
                        tree_file,
                        out_dir,
                        seq_type="codons",
                        codon_frequency="F3X4",
                        noisy=0,
                        verbose="concise",
                        runmode=0,
                        clock=0,
                        aminoacid_distance=None,
                        model=1,
                        nssites=0,
                        genetic_code=0,
                        fix_kappa=False,
                        kappa=5,
                        fix_omega=False,
                        omega=0.2,
                        getSE=0,
                        RateAncestor=0,
                        small_difference=0.000001,
                        clean_data=True,
                        method=0,
                        Mgene=None):

        FileRoutines.safe_mkdir(out_dir)
        alignment_files_list = FileRoutines.make_list_of_path_to_files(in_dir)
        tree_file_abs_path = os.path.abspath(tree_file)
        options_list = []
        dir_list = []
        for filename in alignment_files_list:
            directory, basename, extension = FileRoutines.split_filename(
                filename)
            filename_out_dir = os.path.abspath("%s/%s/" % (out_dir, basename))
            out_file = "%s/%s.out" % (filename_out_dir, basename)
            ctl_file = "%s/%s.ctl" % (filename_out_dir, basename)

            options_list.append(ctl_file)
            dir_list.append(filename_out_dir)
            FileRoutines.safe_mkdir(filename_out_dir)
            self.generate_ctl_file(os.path.abspath(filename),
                                   tree_file_abs_path,
                                   out_file,
                                   ctl_file,
                                   seq_type=seq_type,
                                   codon_frequency=codon_frequency,
                                   noisy=noisy,
                                   verbose=verbose,
                                   runmode=runmode,
                                   clock=clock,
                                   aminoacid_distance=aminoacid_distance,
                                   model=model,
                                   nssites=nssites,
                                   genetic_code=genetic_code,
                                   fix_kappa=fix_kappa,
                                   kappa=kappa,
                                   fix_omega=fix_omega,
                                   omega=omega,
                                   getSE=getSE,
                                   RateAncestor=RateAncestor,
                                   Mgene=Mgene,
                                   small_difference=small_difference,
                                   clean_data=clean_data,
                                   method=method)
        self.parallel_execute(options_list, dir_list=dir_list)
Example #12
0
                    dest="output",
                    type=FileRoutines.check_path,
                    help="Output directory")
#parser.add_argument("-p", "--convert_options", action="store", dest="convert_options",
#                    help="Options for convert")
parser.add_argument("-d",
                    "--dont_make_negative",
                    action="store_true",
                    dest="dont_negative",
                    help="Dont make negative")

args = parser.parse_args()

temp_dir = "temp/"

FileRoutines.safe_mkdir(temp_dir)

BioConvert.threads = args.threads
Convert.threads = args.threads

BioConvert.parallel_convert(args.input, temp_dir)

if args.dont_negative:
    os.rename(temp_dir, args.output)

else:
    converted_files = os.listdir(temp_dir)
    converted_files = list(
        map(lambda s: "%s%s" % (temp_dir, s), converted_files))
    Convert.parallel_convert(
        converted_files, args.output,
Example #13
0
                    type=FileRoutines.check_path,
                    help="Directory to write fam files named by species names")
parser.add_argument("-d", "--syn_file", action="store", dest="syn_file", required=True,
                    help="File with taxa ids and species names")
parser.add_argument("-k", "--key_index", action="store", dest="key_index", type=int, default=0,
                    help="Key column in file with synonyms(0-based)")
parser.add_argument("-v", "--value_index", action="store", dest="value_index", type=int, default=1,
                    help="Value column in file with synonyms(0-based)")
parser.add_argument("-c", "--comments_prefix", action="store", dest="comments_prefix", default="#",
                    help="Prefix of comments in synonyms file")
parser.add_argument("-m", "--columns_separator", action="store", dest="separator", default="\t",
                    help="Column separator in file with synonyms")
parser.add_argument("-e", "--header", action="store_true", dest="header", default=False,
                    help="Header is present in synonyms file. Default - False")

args = parser.parse_args()

syn_dict = SynDict()
syn_dict.read(args.syn_file, header=args.header, separator=args.separator, key_index=args.key_index,
              value_index=args.value_index, comments_prefix=args.comments_prefix)

FileRoutines.safe_mkdir(args.output_files_dir)
input_files = os.listdir(args.input_files_dir)
for filename in input_files:
    directory, taxon_id, extension = FileRoutines.split_filename(filename)
    if taxon_id not in syn_dict:
        print("Species name was not found for taxon %s" % taxon_id)
        continue
    shutil.copy("%s%s" % (args.input_files_dir, filename),
                "%s%s%s" % (args.output_files_dir, syn_dict[taxon_id], extension))
Example #14
0
parser.add_argument("-n",
                    "--check_file_contains_gene_counts",
                    action="store_true",
                    dest="check_with_counts",
                    default=False,
                    help="File to check contains gene counts")
parser.add_argument("-o",
                    "--out_dir",
                    action="store",
                    dest="out_dir",
                    default="compare_dir",
                    help="Output directory")

args = parser.parse_args()

FileRoutines.safe_mkdir(args.out_dir)

ref_clusters_dict = read_cluster_file(args.ref_file,
                                      with_counts=args.ref_with_counts)
check_clusters_dict = read_cluster_file(args.file_to_check,
                                        with_counts=args.check_with_counts)
totally_in_ref = len(ref_clusters_dict)
totally = len(check_clusters_dict)

synonym_file = "synonym.t"
contained_fully_in_file = "contained_fully_in.t"
contained_in_file = "contained_in.t"
include_file = "include.t"
all_file = "all.t"

synonym_dict = OrderedDict()