def mmi_model_Mood_LTA_gamma_wo_RT_p0_beta(subj_input_dir,subj_out_dir,sid):
    # import some useful libraries
    import numpy as np                # numerical analysis linear algebra
    import pandas as pd               # efficient tables
    #import matplotlib.pyplot as plt   # plotting
    from scipy import stats

    from RunDEMC.density import kdensity
    from RunDEMC import Model, Param, dists, calc_bpic, joint_plot

    from mmi_mood_LTA_gamma_wo_RT_p0_beta import MMIModel, load_mmi_data

    from joblib import Parallel, delayed

    import pickle
    from pathlib import Path

    try:
        import scoop
        from scoop import futures
    except ImportError:
        print("Error loading scoop, reverting to joblib.")
        scoop = None


    # ## Load and examine data


    subj_input_dir=Path(subj_input_dir)
    subj_out_dir=Path(subj_out_dir)
    
    
    pattern=f'*{sid}*.xlsx'
    input_file=list(subj_input_dir.glob(pattern))
    print(input_file[0])
    dat = load_mmi_data(input_file[0])


    # In[4]:


    #dat.at[2, 'Choice']=='Gamble'


    # In[5]:


    # find the minimum RT for the param range
    min_RT = dat.loc[dat.RT>0, 'RT'].min()
    print('Min RT:', min_RT)


    # ## Use RunDEMC to fit the model to a participant's data
    # define model evaluation functions for RunDEMC
    def eval_mod(params, param_names, bdat=None):
        # use global dat if none based in
        if bdat is None:
            bdat = dat

        # turn param list into dict
        mod_params = {x: params[n]
                      for n, x in enumerate(param_names)}
    #     try:
    #         print(mod_params['lambda'])
    #     except:
    #         print("Problems")
        if mod_params['lambda']<0 or mod_params['lambda']>=1 :
            return np.log(0), np.log(0)

        if mod_params['gamma']<0 or mod_params['gamma']>=np.inf :
            return np.log(0), np.log(0)

#         if mod_params['beta']<0 or mod_params['beta']>1 :
#             return np.log(0), np.log(0)

#         if mod_params['p0']<0 or mod_params['p0']>1 :
#             return np.log(0), np.log(0)

        if mod_params['w_LTA']<0 or mod_params['w_LTA']>=np.inf :
            return np.log(0), np.log(0)

        if mod_params['w_RPE']<0 or mod_params['w_RPE']>=np.inf :
            return np.log(0), np.log(0)

        if mod_params['b']<=-np.inf or mod_params['b']>=np.inf :
            return np.log(0), np.log(0)

        if mod_params['s_v']<=0 or mod_params['s_v']>=np.inf :
            return np.log(0), np.log(0)

        if mod_params['c']<0 or mod_params['c']>=np.inf :
            return np.log(0), np.log(0) 


        ## calculate the log_likes and mood_log_likes 
        mod_res = MMIModel(params=mod_params, 
                      ignore_non_resp=True).proc_trials(bdat.copy())
        ll = mod_res.log_like.sum()
        mood_ll = mod_res.mood_log_like.sum()

        return ll,mood_ll

    # this is the required def for RunDEMC
    def eval_fun(pop, *args):
        bdat = args[0]
        pnames = args[1]
        if scoop and scoop.IS_RUNNING:
            res_tups = list(futures.map(eval_mod, [indiv for indiv in pop],
                                     [pnames]*len(pop), [bdat]*len(pop)))
        else:
            res_tups= Parallel(n_jobs=-1)(delayed(eval_mod)(indiv,pnames, bdat)
                                      for indiv in pop)

            likes = np.array([rt[0] for rt in res_tups])
            mood_likes = np.array([rt[1] for rt in res_tups])


        return likes, mood_likes


    
    def get_best_fit(m, burnin=250, verbose=True):
        best_ind = m.weights[burnin:].argmax()
        if verbose:
            print("Weight:", m.weights[burnin:].ravel()[best_ind])
        indiv = [m.particles[burnin:,:,i].ravel()[best_ind] 
                 for i in range(m.particles.shape[-1])]
        pp = {}
        for p,v in zip(m.param_names,indiv):
            pp[p] = v
            if verbose:
                print('"%s": %f,'%(p,v))
        return pp


    # ### Base  model

    # In[20]:


        # set up model params
    params = [Param(name='gamma',
                    display_name=r'$\gamma$',
                    prior=dists.gamma(1.5, 0.5),
                    ),
              Param(name='c',
                    display_name=r'$c$',
                    prior=dists.gamma(1.5, 0.5),
                    ),
#               Param(name='beta',
#                     display_name=r'$\beta$',
#                     prior=dists.normal(0, 1.4),
#                     transform=dists.invlogit
#                     ),
    #           Param(name='w',
    #                 display_name=r'$w$',
    #                 prior=dists.normal(0, 1.4),
    #                 transform=dists.invlogit
    #                 ),
    #           Param(name='a',
    #                 display_name=r'$a$',
    #                 prior=dists.gamma(2.0, 0.5),
    #                 ),
    #           Param(name='t0',
    #                 display_name=r'$t_0$',
    #                 prior=dists.normal(0, 1.4),
    #                 transform=lambda x: dists.invlogit(x)*min_RT,
    #                 ),
#               Param(name='p0',
#                     display_name=r'$p_0$',
#                     prior=dists.normal(0, 1.4),
#                     transform=dists.invlogit
#                     ),
              Param(name='lambda',
                    display_name=r'$lambda',
                    prior=dists.normal(0, 1.4),
                    transform=dists.invlogit
                    ),
    #           Param(name='lambda',
    #                 display_name=r'$lambda',
    #                 prior=dists.beta(0.5, 0.5)
    #                 ),
              Param(name='w_LTA',
                    display_name=r'w_{LTA}',
                    prior=dists.normal(0, 1),
                    transform=np.exp,
                    inv_transform=np.log),
    #           Param(name='w_EG',
    #                 display_name=r'w_{EG}',
    #                 prior=dists.normal(0, 1),
    #                 transform=np.exp,
    #                 inv_transform=np.log),
              Param(name='w_RPE',
                    display_name=r'w_{RPE}',
                    prior=dists.normal(0, 1),
                    transform=np.exp,
                    inv_transform=np.log),
              Param(name='b',
                    display_name=r'b',
                    prior=dists.normal(0, 3)),
              Param(name='s_v',
                    display_name=r's_v',
                    prior=dists.exp(3))
            ]
    
    
    # grab the param names
    pnames = [p.name for p in params]
    m = Model('mmi', params=params,
              like_fun=eval_fun,
              like_args=(dat, pnames),
              init_multiplier=3,
              # num_chains=gsize,
              verbose=True)

    # do some burnin
    times = m.sample(150, burnin=True)

    # now map the posterior
    times = m.sample(650, burnin=False)
    
    
     # show the chains are mixing and converging
    #plt.plot(m.weights[30:], alpha=.3);
    pickle_name=subj_out_dir / f'mWgt_{sid}.pickle'
    print(pickle_name)
    pickle_out = open(pickle_name,"wb")
    pickle.dump(m.weights, pickle_out)
    pickle_out.close()

    #print("Best fitting params:")
    #pp = get_best_fit(m, burnin=250, verbose=True)
    print("Best fitting params:")
    pp = get_best_fit(m, burnin=250, verbose=True)
    pickle_name=subj_out_dir / f'mBFprm_{sid}.pickle'
    print(pickle_name)
    pickle_out = open(pickle_name,"wb")
    pickle.dump(pp, pickle_out)
    pickle_out.close()

    # In[42]:
    #### BPIC calculations
    burnin=250
    
    log_like_prior = m.weights - m.log_likes
    #print(log_like_prior)
    weight_mood = m.posts + log_like_prior #m.posts is log_like_Mood
    #print(weight_mood)
    print("Mood_BPIC :",calc_bpic(weight_mood[burnin:])['bpic'])
    Mood_BPIC=calc_bpic(weight_mood[burnin:])['bpic']
    pickle_name=subj_out_dir / f'Mood_BPIC_{sid}.pickle'
    print(pickle_name)
    pickle_out = open(pickle_name,"wb")
    pickle.dump(Mood_BPIC, pickle_out)
    pickle_out.close()

    log_like_RT = m.log_likes - m.posts
    weight_RT = log_like_RT + log_like_prior
    print("RT_BPIC :",calc_bpic(weight_RT[burnin:])['bpic'])
    RT_BPIC=calc_bpic(weight_RT[burnin:])['bpic']
    pickle_name=subj_out_dir / f'RT_BPIC_{sid}.pickle'
    print(pickle_name)
    pickle_out = open(pickle_name,"wb")
    pickle.dump(RT_BPIC, pickle_out)
    pickle_out.close()

   
    print(calc_bpic(m.weights[burnin:])['bpic'])  
    mBPIC=calc_bpic(m.weights[burnin:])['bpic']
    pickle_name=subj_out_dir / f'Total_BPIC_{sid}.pickle'
    print(pickle_name)
    pickle_out = open(pickle_name,"wb")
    pickle.dump(mBPIC, pickle_out)
    pickle_out.close()




    # In[46]:


    # plot the param distributions (note, we did not get full posteriors, yet)
#     plt.figure(figsize=(12,10))
#     burnin=30
#     for i in range(len(m.param_names)):
#         plt.subplot(3,4,i+1)
#         plt.hist(m.particles[burnin:, :, i].flatten(), bins='auto', alpha=.5, density=True);
#         plt.title(m.param_names[i])


    # In[ ]:

    pickle_name=subj_out_dir / f'mParticles_{sid}.pickle'
    print(pickle_name)
    pickle_out = open(pickle_name,"wb")
    pickle.dump(m.particles, pickle_out)
    pickle_out.close()
                        
    pickle_name=subj_out_dir / f'mParams_{sid}.pickle'
    print(pickle_name)
    pickle_out = open(pickle_name,"wb")
    pickle.dump(m.param_names, pickle_out)
    pickle_out.close()                    
Example #2
0
    Param(name='a', prior=dists.uniform(-100, 100)),
    Param(name='b', prior=dists.uniform(-100, 100)),
    Param(name='c', prior=dists.uniform(-100, 100)),
    Param(
        name='delta',
        display_name=r'$\mathbf{\delta}$',
        prior=dists.exp(20),
        init_prior=dists.uniform(0, 10),
    ),
]

# set up mod
mod = Model(name='fun',
            params=params,
            like_fun=eval_fun,
            like_args=(xData, yData),
            initial_zeros_ok=False,
            use_priors=True,
            verbose=True)

# run for a burnin with the local_to_best
burnin = 400
mod(200, burnin=True)

# fix the delta error term based on the mean
ind = mod.param_names.index('delta')
fixed_delta = mod.particles[-1, :, ind].mean()
mod._particles[-1][:, ind] = fixed_delta
mod._params[ind].prior = fixed_delta
mod._log_likes[-1], temp_posts = mod._calc_log_likes(mod._particles[-1])
mod._weights[-1][:] = mod._log_likes[-1][:] + \
Example #3
0
        Param(name='alpha',
              display_name=r'$\alpha$',
              prior=dists.normal(-1.0, 1.2),
              transform=lambda x: dists.invlogit(x) * (30. - 0.0) + (0.0)),
        Param(name='t0',
              display_name=r'$t_0$',
              prior=dists.normal(-.2, 1.2),
              transform=lambda x: dists.invlogit(x) * (min_rt - 0.0) + (0.0)),
    ]

    # grab the param names
    pnames = [p.name for p in params]
    print pnames
    mod = Model('subjid',
                params=params,
                like_fun=eval_fun,
                like_args=('subjid', ddat, pnames),
                num_chains=90,
                init_multiplier=4,
                purify_every=5,
                verbose=True)

    out_file = 'flanker_' + s[:-4] + '.tgz'

    for mm in range(16):
        mod(25, burnin=True, migration_prob=0.0)
        save_results(out_file, mod)
    for mm in range(64):
        mod(25, burnin=False, migration_prob=0.0)
        save_results(out_file, mod)
Example #4
0
            Param(name='kappa',
                  prior=dists.normal(0.0, 1.4),
                  transform=dists.invlogit),
            Param(name='beta',
                  prior=dists.normal(0.0, 1.4),
                  transform=dists.invlogit),
            Param(name='alpha',
                  prior=dists.trunc_normal(2.5, 10.0, lower=0.0, upper=30.0)),
            Param(name='t0', prior=dists.uniform(0., min_rt))
        ]
        pnames = [p.name for p in params]
        # instantiate model object
        m = Model('urdm_lca',
                  params=params,
                  like_fun=eval_fun_lca,
                  like_args=(s, ),
                  init_multiplier=4,
                  verbose=True,
                  purify_every=5)

        # set up the run name
        output_name = 'rdm_lca_tcv_both_cb_afrl_mri_subj_' + str(
            int(s)) + '.tgz'

        # do some burnin
        for i in range(5):
            times = m(100, burnin=True)
            save_results(output_name, m)

        # sample the posterior
        for i in range(10):
Example #5
0
h_beta = HyperPrior(name='h_beta',
                    dist=dists.normal,
                    params=[
                        Param(name='mu', prior=dists.normal(1, .5)),
                        Param(name='sigma', prior=dists.invgamma(4, 10))
                    ])

# set up lower level (i.e., subject)


def subj_like(pop, *args):
    return np.log(dists.beta(pop[:, 0], pop[:, 1]).pdf(args[0]))


submods = [
    Model(name='subj_%s' % s,
          params=[
              Param(name='alpha', prior=h_alpha),
              Param(name='beta', prior=h_beta)
          ],
          like_fun=subj_like,
          like_args=(sdat[s], ),
          verbose=False) for s in subjs
]

hier = Hiearachy(submods)

hier(50, burnin=True)
hier(500)
Example #6
0
                name='t0',
                display_name=r'$t_0$',
                prior=dists.uniform(0, min_RT),
                #init_prior=dists.trunc_normal(mean=.1,std=.25,lower=0,upper=min_RT)
            ),
            # strength scale
            Param(name='scale',
                  display_name=r'$scale$',
                  prior=dists.uniform(0, 10)),
        ]

        #grab the param names
        pnames = [p.name for p in params]
        m = Model(s,
                  params=params,
                  like_fun=eval_fun,
                  like_args=(s, dat[s], pnames),
                  verbose=True)

        m(50, burnin=True)
        save_results(out_file, m)
        m(25, burnin=True)
        save_results(out_file, m)
        m(25, burnin=True)
        save_results(out_file, m)
        m(25, burnin=True)
        save_results(out_file, m)
        m(25, burnin=True)
        save_results(out_file, m)
        m(25, burnin=True)
        save_results(out_file, m)
Example #7
0
                                               lower=0.,
                                               upper=60.)),
                Param(name='n_2',
                      display_name=r'$\n_2$',
                      prior=dists.trunc_normal(mean=15.0,
                                               std=10.,
                                               lower=0.,
                                               upper=60.))
            ]

            pnames = [p.name for p in params]
            #RunDEMC TIME
            m = Model(subject,
                      params=params,
                      like_fun=eval_fun,
                      like_args=('subject', pnames, balloon_tensor,
                                 total_money_observed, starting_avg_ticker,
                                 False, bank, 3, targets, ranges),
                      verbose=True,
                      purify_every=5)
            #             file_name = 'fits/sequential_fits/eeg_'+subject+'_block' + str(block) + '.tgz'
            print(fits_storage, tag, subject, str(block))
            file_name = os.path.join(
                '{0}'.format(fits_storage),
                '{0}_{1}_block{2}.tgz'.format(tag, subject, str(block)))
            # run model
            m(400, burnin=True, migration_prob=0.0)  #Burnin
            m(1000, burnin=False, migration_prob=0.0)  #Poseteriors
            save_results(file_name, m)
    hdf.close()
Example #8
0
              prior=dists.normal(mean=0, std=1.4),
              transform=dists.invlogit),
        Param(
            name='t0',
            display_name=r'$t_0$',
            prior=dists.uniform(0, min_RT),
        ),
    ]

    # grab the param names
    pnames = [p.name for p in params]
    # initialize the model
    m = Model(s,
              params=params,
              like_fun=eval_fun,
              like_args=(s, data_sub, pnames),
              num_chains=80,
              init_multiplier=4,
              verbose=True)

    # set number of desired burn-in trials
    num_burnin = 400
    # interval of how often simulations should be saved
    interval = 25
    # total number of intervals
    num_intervals = int(num_burnin / interval)
    # how many simulations have been completed?
    done_sims = 0
    for i in range(num_intervals):
        print(done_sims, 'done in burn-in')
        # run this model simulation for the number of simulations in each interval
                        Param(name='mu', prior=dists.uniform(-50, 50)),
                        Param(name='sig', prior=dists.invgamma(1, 1))
                    ])

# set up the submodels for each participant
smods = []
for j in range(nsubj):
    # Append a new model, note the use of the hyperprior for setting
    # up the intercept param, and the fixed beta and sigma across
    # participants
    smods.append(
        Model(name=str(j),
              params=[
                  Param(name='alpha', display_name=r'$\alpha$', prior=halpha),
                  beta, sigma
              ],
              like_fun=subj_like,
              like_args=(data[j], ),
              num_chains=gsize,
              verbose=False))

# put together into a single model
hmod = Hierarchy(smods)

###################
# Run the inference
###################

# burnin
hmod(50, burnin=True)