Example #1
0
    def transform(self, test_data, mode=None):
        if self.norm == True:
            t_data = self.normalizer.norm(test_data)
        else:
            t_data = test_data

        if mode == None:
            mode = self.mode

        if mode == 'v1':
            SCCI_enhance.set_alpha(self.alpha)
            similarity_result = SCCI_enhance.get_MD(
                t_data, self.node_mean, self.node_sigma)
            pred_table = np.zeros([len(test_data), self.num_classes])
            for i, sim_result in enumerate(similarity_result):
                pred_cls = sim_result.argmax()
                pred = self.node_to_class_dict[pred_cls]
                pred_table[i][pred] = 1
        else:
            boundary = 0.0
            SCCI_enhance.set_alpha(self.alpha)
            node_output = SCCI_enhance.get_MD(
                t_data, self.node_mean, self.node_sigma)
            node_output = np.append(node_output, np.ones(
                (np.size(node_output, 0), 1)), axis=1)
            target_output = np.matmul(node_output, self.weights)
            pred_table = self.matrix2Binary(target_output, boundary)

        return pred_table
Example #2
0
    def train(self, train_data, train_label):
        self.data = self.preprocess_data(train_data, train_label)
        self.tar_matrix = self.target2matrix(train_label, self.num_classes)

        self.get_hidden_nodes(self.data, train_label)
        SCCI_enhance.set_alpha(self.alpha)
        node_output = SCCI_enhance.get_MD(
            self.data, self.node_mean, self.node_sigma)
        self.node_output = np.append(node_output, np.ones(
            (np.size(node_output, 0), 1), dtype=float), axis=1)

        if self.mode == 'v1':
            pass
        elif self.mode == 'v2':
            self.get_network_weights(self.node_output, self.tar_matrix)
            class_output = np.matmul(self.node_output, self.weights)
            self.error.append(self.error_estimate(
                class_output, self.tar_matrix))
        elif self.mode == 'v4':
            self.get_network_weights(self.node_output, self.tar_matrix)
            class_output = np.matmul(self.node_output, self.weights)
            self.error.append(self.error_estimate(
                class_output, self.tar_matrix))

            # Check train result
            pred_table = self.matrix2Binary(class_output)
            self.train_target = self.target2matrix(
                train_label, self.num_classes, neg_note=0)
            self.error_train.append(
                1 - accuracy_score(pred_table, self.train_target))
Example #3
0
    def update_once(self):
        class_output = np.matmul(self.node_output, self.weights)
        self.update(self.data, self.tar_matrix, self.node_output, class_output)
        node_output = SCCI_enhance.get_MD(
            self.data, self.node_mean, self.node_sigma)
        self.node_output = np.append(node_output, np.ones(
            (np.size(node_output, 0), 1), dtype=float), axis=1)
        self.get_network_weights(self.node_output, self.tar_matrix)
        class_output = np.matmul(self.node_output, self.weights)
        pred_table = self.matrix2Binary(class_output)

        self.error_train.append(
            1 - accuracy_score(pred_table, self.train_target))
        self.error.append(self.error_estimate(class_output, self.tar_matrix))
Example #4
0
    def train(self, train_data, train_label):
        data = self.preprocess_data(train_data, train_label)
        tar_matrix = self.target2matrix(train_label, self.num_classes)

        self.get_hidden_nodes(data, train_label)
        SCCI_enhance.set_alpha(self.alpha)
        node_output = SCCI_enhance.get_MD(
            data, self.node_mean, self.node_sigma)
        node_output = np.append(node_output, np.ones(
            (np.size(node_output, 0), 1), dtype=float), axis=1)

        if self.mode == 'v1':
            pass
        elif self.mode == 'v2':
            self.get_network_weights(node_output, tar_matrix)
            class_output = np.matmul(node_output, self.weights)
            self.error.append(self.error_estimate(class_output, tar_matrix))
        elif self.mode == 'v4':
            self.get_network_weights(node_output, tar_matrix)
            class_output = np.matmul(node_output, self.weights)
            self.error.append(self.error_estimate(class_output, tar_matrix))

            # Check train result
            boundary = 0.0
            pred_table = self.matrix2Binary(class_output, boundary)
            train_target = self.target2matrix(
                train_label, self.num_classes, neg_note=0)
            self.error_train.append(1-accuracy_score(pred_table, train_target))

            flag = 0
            end_flag = 1
            count = 0
            while flag < end_flag:
                self.update(data, tar_matrix, node_output, class_output)
                node_output = SCCI_enhance.get_MD(
                    data, self.node_mean, self.node_sigma)
                node_output = np.append(node_output, np.ones(
                    (np.size(node_output, 0), 1), dtype=float), axis=1)
                self.get_network_weights(node_output, tar_matrix)
                class_output = np.matmul(node_output, self.weights)
                pred_table = self.matrix2Binary(class_output, boundary)

                self.error_train.append(
                    1-accuracy_score(pred_table, train_target))
                self.error.append(self.error_estimate(
                    class_output, tar_matrix))

#                if abs(self.error[-2] - self.error[-1])/self.error[-1] < 0.01:
#                    flag = end_flag
                if self.error_train[-1] == 0.0:
                    flag = end_flag
                    print("Error is equal to ZERO!")
                elif ((self.error_train[-2]-self.error_train[-1])/self.error_train[-1]) < 0.01:
                    if count > 3:
                        flag = end_flag
                    else:
                        count += 1
                elif self.epoch == self.epoch_max:
                    flag = end_flag
                    print("Epochs reach Maximun times.")
                else:
                    count = 0
                self.epoch += 1
Example #5
0
    def train(self, train_data, train_label):
        self.num_classes = len(train_label[0])
        data = train_data
        tar_matrix = np.zeros(train_label.shape)
        for i, row in enumerate(train_label):
            for j, col in enumerate(row):
                if col == 1:
                    tar_matrix[i][j] = 1.0
                else:
                    tar_matrix[i][j] = -1.0

        self.get_hidden_nodes(data, train_label)
        SCCI_enhance.set_alpha(self.alpha)
        node_output = SCCI_enhance.get_MD(
            data, self.node_mean, self.node_sigma)
        node_output = np.append(node_output, np.ones(
            (np.size(node_output, 0), 1), dtype=float), axis=1)

        if self.mode == 'v1':
            pass
        elif self.mode == 'v2':
            self.get_network_weights(node_output, tar_matrix)
            class_output = np.matmul(node_output, self.weights)
            self.error.append(self.error_estimate(class_output, tar_matrix))
        elif self.mode == 'v4':
            self.get_network_weights(node_output, tar_matrix)
            class_output = np.matmul(node_output, self.weights)
            self.error.append(self.error_estimate(class_output, tar_matrix))

            # Check train result
            boundary = 0.0
            pred_table = self.matrix2Binary(class_output, boundary)
            train_target = train_label
            self.error_train.append(1-accuracy_score(pred_table, train_target))

            flag = 0
            end_flag = 1
            count = 0
            while flag < end_flag:
                self.update(data, tar_matrix, node_output, class_output)
                node_output = SCCI_enhance.get_MD(
                    data, self.node_mean, self.node_sigma)
                node_output = np.append(node_output, np.ones(
                    (np.size(node_output, 0), 1), dtype=float), axis=1)
                self.get_network_weights(node_output, tar_matrix)
                class_output = np.matmul(node_output, self.weights)
                pred_table = self.matrix2Binary(class_output, boundary)

                self.error_train.append(
                    1-accuracy_score(pred_table, train_target))
                self.error.append(self.error_estimate(
                    class_output, tar_matrix))

                # Early stopping
                if self.error_train[-1] == 0.0:
                    flag = end_flag
                    print("Error is equal to ZERO!")
                elif ((self.error_train[-2]-self.error_train[-1])/self.error_train[-1]) < 0.005:
                    if count > 2:
                        flag = end_flag
                    else:
                        count += 1
                elif self.epoch == self.epoch_max:
                    flag = end_flag
                    print("Epochs reach Maximun times.")
                self.epoch += 1
Example #6
0
    sigma_init = 0.2
    alpha = math.sqrt(2)
    beta = 2
    learning_rate = 1
    lambda_i = 0

    tra_label = RBF_ISCC.target2matrix(Y_train, 2, neg_note=0)

    rbf_iscc = RBF_ISCC_update_once(threshold=threshold, sigma_init=sigma_init,
                                    alpha=alpha, beta=beta, lambda_i=lambda_i,
                                    learning_rate=learning_rate, mode='v4', norm=False)
    rbf_iscc.train(X_train, Y_train)

    w = rbf_iscc.weights
    SCCI_enhance.set_alpha(alpha)
    node_output = SCCI_enhance.get_MD(
        X_train, rbf_iscc.node_mean, rbf_iscc.node_sigma)
    node_output = np.append(node_output, np.ones(
        (np.size(node_output, 0), 1), dtype=float), axis=1)
    cls_output = np.matmul(node_output, rbf_iscc.weights)

    pred_label_tr = rbf_iscc.transform(X_train)
    score_tr = performance_measure(pred_label_tr, tra_label)
    error_tr = [1 - score_tr["AACC"]]

    flag = 0
    end_flag = 1
    if error_tr[-1] == 0:
        flag = end_flag
    while flag < end_flag:
        rbf_iscc.update_once()
        pred_label_tr = rbf_iscc.transform(X_train)