def checkPrime(self, number): #Anython under or equal to one is not prime. if(number<=1): return False #Get the sqaure root of the number to be checked. limit = math.sqrt(number) #Sieve of up the limit. sieve = sieve_e(int(limit)) #Generate the numbers up to the limit. sieve.genNumbers() #Get the list of the sieved numbers. divisions = sieve.sieve() #For each of the prime numbers in the list(if any) for num in divisions: #If the number divides then it is not prime. if(number % num == 0): return False #If nothing divides then return true. return True
#Print the set limits to the user. print "Lowest: " + str(LOW_LIMIT) print "Highest: " + str(UP_LIMIT) print " " print "[+] Generating ..." #Create empty lists to hold values. time_x = [] limit_y = [] #While there are still values to generate.. while(CURRENT<=UP_LIMIT): #Create a new instance of the sieve class and set the numbers to be generated to the current interation. test = sieve_e(CURRENT) #Generate the numbers. test.genNumbers() #Get the current system time. (GET TIME BEFORE SIEVE) current_time = int(round(time.time() * 1000)) #Sieve the composite numbers. #primes = test.sieve_recursion(0) primes = test.sieve() print primes #Get the current system time. (GET TIME AFTER SIEVE) after_time = int(round(time.time() * 1000)) #Add the time it took to execute to the time list.
from SOE import sieve_e import sys if(len(sys.argv)>1): limit = int(sys.argv[1]) else: limit = 100 print "[+] No Parameter given, Default limit of 100." test = sieve_e(limit) test.genNumbers() L = test.sieve() print L print str(len(L)) + " Prime Numbers Found." raw_input()