Example #1
0
def test():
    model.load_state_dict(torch.load('./autoencoder_model.pth'))
    model.eval()
    count = 0
    loss_list = []
    target_t = []
    train_loss = 0
    with torch.no_grad():
        for batch_idx, data in enumerate(train_loader):
            img = data

            img = Variable(img, requires_grad=False).cuda()

            recon_batch = model(img)

            loss = ssim(recon_batch, img)

            print(loss)
            loss_list.append(loss.item())
            train_loss += loss

            print('Loss/Train avg loss: {} / {}'.format(loss, train_loss))

            x = to_img(img.cpu().data)
            x_hat = to_img(recon_batch.cpu().data)
            #save_image(x, './test_vae/x_{}.png'.format(count))
            #save_image(x_hat, './test_vae/x_hat_{}.png'.format(count))
            count += 1

        torch.save(loss_list, './train_loader_loss.pt')
        torch.save(target_t, './test_target_t.pt')
Example #2
0
 def test_draw_text(self):
     chart_renderer = RenderChart(self.chart_cfg)
     text = self.chart_cfg['title_text']['text']
     chart_renderer._draw_text(text, self.chart_cfg['title_text'], 100, 50)
     truth = Image.open(path.join(settings.TEST_DIR, "charts/test_all_text_draw_text.png"))
     diff = ssim(chart_renderer.chart, truth)
     self.assertGreaterEqual(diff, 0.97)
Example #3
0
 def test_render(self):
     chart_renderer = RenderChart(self.chart_cfg)
     ret = chart_renderer.render_chart()
     # Compare to ground truth.
     truth = Image.open(path.join(settings.TEST_DIR, "charts/test_show_all_text.png"))
     diff = ssim(ret, truth)
     self.assertGreaterEqual(diff, 0.97)
Example #4
0
 def test_paste_tile_second_row(self):
     chart_renderer = RenderChart(self.chart_cfg)
     image = self.chart_cfg['images'][0][0]
     tile_width = self.chart_cfg['tile_sizes'][0][0]
     tile_height = self.chart_cfg['tile_sizes'][0][1]
     chart_renderer._paste_tile(11, image, 10, tile_width, tile_height)
     truth = Image.open(path.join(settings.TEST_DIR, "charts/test_all_text_tile_second_row.png"))
     diff = ssim(chart_renderer.chart, truth)
     self.assertGreaterEqual(diff, 0.97)
def compare_images(imageA, imageB):
    #finds the ssim value and returens it
    #converts images to greyscale to find the ssim value

    grayA = Image.open(imageA).convert('L')
    grayB = Image.open(imageB).convert('L')
    score = ssim(grayA, grayB)

    return score
Example #6
0
 def test_transform_image_default_crop(self):
     chart_renderer = RenderChart(self.chart_cfg)
     image = Image.open((path.join(settings.TEST_DIR, "images",
                                   self.chart_cfg['images'][0][0]['path'])))
     tile_width = self.chart_cfg['tile_sizes'][0][0]
     tile_height = self.chart_cfg['tile_sizes'][0][1]
     cropped = chart_renderer._transform_image(image, tile_width, tile_height)
     truth = Image.open(path.join(settings.TEST_DIR,
                                  "charts/test_transform_image_default_crop.png"))
     diff = ssim(cropped, truth)
     self.assertGreaterEqual(diff, 0.97)
Example #7
0
def show():
    decoded_imgs = torch.load('./recon_x.pt')
    x_train = torch.load('./img_orig.pt')

    # for batch_idx, data in enumerate(decoded_imgs):
    #     x_train.append(data)

    n = 8  #how many digits we will display
    plt.figure(figsize=(20, 5), dpi=100)
    for i in range(n):
        # display original
        ax = plt.subplot(2, n, i + 1)
        plt.imshow(x_train[i].reshape(128, 128))
        plt.gray()
        ax.get_xaxis().set_visible(True)
        ax.get_yaxis().set_visible(False)

        # SSIM Encode
        ax.set_title("Encode_Image")

        npImg = x_train[i]
        npImg = npImg.reshape((128, 128))
        formatted = (npImg * 255 / np.max(npImg)).astype('uint8')
        img = Image.fromarray(formatted)

        # display reconstruction
        ax = plt.subplot(2, n, i + 1 + n)
        plt.imshow(decoded_imgs[i].reshape(128, 128))
        plt.gray()
        ax.get_xaxis().set_visible(True)
        ax.get_yaxis().set_visible(False)

        # SSIM Decoded
        npDecoded = decoded_imgs[i]
        npDecoded = npDecoded.reshape((128, 128))
        formatted2 = (npDecoded * 255 / np.max(npDecoded)).astype('uint8')
        decoded = Image.fromarray(formatted2)

        value = ssim(img, decoded)

        label = 'SSIM: {:.3f}'

        ax.set_title("Decoded_Image")
        ax.set_xlabel(label.format(value))

    plt.show()
Example #8
0
    def test_image_upload(self):
        image_path = construct_image_path(str(abs(hash(self.eva_base64))))
        response = self.client.post(self.url,
                                    self.eva_data,
                                    content_type="application/json",
                                    HTTP_X_REQUESTED_WITH='XMLHttpRequest')

        id = response['id']
        db_image = ImageModel.objects.get(pk=id)
        saved_path = db_image.image_path
        saved_title = db_image.image_title
        saved_tags = db_image.tags.all()

        pil_saved_image = Image.open(path.join(settings.IMAGE_DIR, saved_path))
        pil_original_image = Image.open(
            BytesIO(base64.b64decode(self.eva_base64)))

        correct_tags = [
            Tag(tag="anime"),
            Tag(tag="90s"),
            Tag(tag="classic"),
            Tag(tag="gainax"),
            Tag(tag="hideaki anno"),
            Tag(tag="evangelion"),
            Tag(tag="neon genesis evangelion"),
            Tag(tag="shinseiki evangelion")
        ]

        diff = ssim(pil_saved_image, pil_original_image)

        self.assertEqual(response.status_code, 200)
        self.assertEqual(saved_title, self.eva_data['title'])
        self.assertEqual(response['path'], image_path)
        self.assertEqual(response['path'], saved_path)
        self.assertEqual(set(correct_tags), set(saved_tags))
        self.assertEqual(diff, 1.0)
Example #9
0
    # display reconstruction
    ax = plt.subplot(2, n, i + 1 + n)
    plt.imshow(decoded_imgs[i].reshape(128, 128))
    plt.gray()
    ax.get_xaxis().set_visible(True)
    ax.get_yaxis().set_visible(False)

    # SSIM Decoded
    npDecoded = decoded_imgs[i]
    npDecoded = npDecoded.reshape((128, 128))
    formatted2 = (npDecoded * 255 / np.max(npDecoded)).astype('uint8')
    decoded = Image.fromarray(formatted2)



    value = ssim(img, decoded)

    label = 'SSIM: {:.3f}'

    ax.set_title("Decoded_Image")
    ax.set_xlabel(label.format(value))

plt.show()







Example #10
0
def get_output(x_test):
    width = 128
    height = 128
    pixels = width * height * 1
    x_test = x_test.astype('float32') / 255.
    x_test = np.reshape(
        x_test, (len(x_test), 128, 128,
                 1))  # adapt this if using `channels_first` image data format
    # print (x_train.shape)
    print(x_test.shape)
    input_shape = x_test.shape[1:]
    autoencoder = autoencoderModel(input_shape)
    # autoencoder.cuda()
    # TensorFlow wizardry
    import keras
    gpu_options = tf.GPUOptions(allow_growth=True)
    sess = tf.Session(config=tf.ConfigProto(gpu_options=gpu_options))
    keras.backend.tensorflow_backend.set_session(sess)
    # k.tensorflow_backend.set_session(tf.Session(config=config))
    autoencoder.load_weights(
        '/home/jbmai/try/modelServer/autoencoder_mayank/weights-improvement-39-0.18.hdf5'
    )
    autoencoder.compile(optimizer='adam',
                        loss=ssim_loss,
                        metrics=[ssim_loss, 'accuracy'])
    decoded_imgs = autoencoder.predict(x_test)
    # weights-improvement-112-0.24
    # cv2.imwrite("mayank.jpg",decoded_imgs)
    # n = 1 # how many digits we will display
    n = len(x_test)  # how many digits we will display
    # plt.figure(figsize=(20, 5), dpi=100)
    finalValue = 0
    second = 0
    for i in range(n):

        npImg = x_test[i]
        npImg = npImg.reshape((128, 128))
        formatted = (npImg * 255 / np.max(npImg)).astype('uint8')
        img = Image.fromarray(formatted)
        img1 = np.asarray(img)
        # cv2.imwrite("ResultNew/back/img_test"+name+"enc.jpg",img1)

        # display reconstruction
        # ax = plt.subplot(2, n, i + 1 + n)
        # plt.imshow(decoded_imgs[i].reshape(128, 128))
        # plt.gray()
        # ax.get_xaxis().set_visible(True)
        # ax.get_yaxis().set_visible(False)

        # SSIM Decoded
        npDecoded = decoded_imgs[i]
        npDecoded = npDecoded.reshape((128, 128))
        formatted2 = (npDecoded * 255 / np.max(npDecoded)).astype('uint8')
        decoded = Image.fromarray(formatted2)
        decoded1 = np.asarray(decoded)
        # cv2.imwrite("ResultNew/back/img_test"+name+"dec.jpg",decoded1)

        value = ssim(img, decoded)
        value2 = mse(img1, decoded1)

        finalValue = finalValue + value
        second = second + value2
    return finalValue, second
Example #11
0
def get_output(x_test, filename):
    width = 128
    height = 128
    pixels = width * height * 1
    x_test = x_test.astype('float32') / 255.
    x_test = np.reshape(
        x_test, (len(x_test), 128, 128,
                 1))  # adapt this if using `channels_first` image data format
    # print (x_train.shape)
    print(x_test.shape)
    input_shape = x_test.shape[1:]
    autoencoder = autoencoderModel(input_shape)
    # autoencoder.cuda()
    # TensorFlow wizardry
    import keras
    gpu_options = tf.GPUOptions(allow_growth=True)
    sess = tf.Session(config=tf.ConfigProto(gpu_options=gpu_options))
    keras.backend.tensorflow_backend.set_session(sess)
    # k.tensorflow_backend.set_session(tf.Session(config=config))
    autoencoder.load_weights('../finalweights/we.hdf5')
    autoencoder.compile(optimizer='adam',
                        loss=ssim_loss,
                        metrics=[ssim_loss, 'accuracy'])
    decoded_imgs = autoencoder.predict(x_test)
    # weights-improvement-112-0.24
    # cv2.imwrite("mayank.jpg",decoded_imgs)
    # n = 1 # how many digits we will display
    n = len(x_test)  # how many digits we will display
    plt.figure(figsize=(20, 5), dpi=100)
    ssimValue = 0
    mseValue = 0
    m = 1
    for i in range(n):
        # display original
        ax = plt.subplot(2, n, i + 1)
        plt.imshow(x_test[i].reshape(128, 128))
        plt.gray()
        ax.get_xaxis().set_visible(True)
        ax.get_yaxis().set_visible(False)

        # SSIM Encode
        ax.set_title("Encode_Image")
        # name = n_test[i+1].split('/')[-1]
        npImg = x_test[i]
        npImg = npImg.reshape((128, 128))
        formatted = (npImg * 255 / np.max(npImg)).astype('uint8')
        img = Image.fromarray(formatted)
        img1 = np.asarray(img)
        # cv2.imwrite("ResultNew/back/img_test"+name+"enc.jpg",img1)

        # display reconstruction
        ax = plt.subplot(2, n, i + 1 + n)
        plt.imshow(decoded_imgs[i].reshape(128, 128))
        plt.gray()
        ax.get_xaxis().set_visible(True)
        ax.get_yaxis().set_visible(False)

        # SSIM Decoded
        npDecoded = decoded_imgs[i]
        npDecoded = npDecoded.reshape((128, 128))
        formatted2 = (npDecoded * 255 / np.max(npDecoded)).astype('uint8')
        decoded = Image.fromarray(formatted2)
        decoded1 = np.asarray(decoded)

        value = ssim(img, decoded)
        # mse = np.square(np.subtract(img1,decoded1)).mean()
        mse2 = mse(img1, decoded1)
        ssimValue = ssimValue + value
        mseValue = mseValue + mse2

        label = 'SSIM: {:.3f}'
        label1 = 'MSE: {:.3f}'

        ax.set_title("Decoded_Image")
        ax.set_xlabel(label.format(value) + "\n" + label1.format(mse2))
        # ax.set_ylabel(label.format(value))
        if i == n - 1:

            plt.savefig(filename.split(".jpg")[0] + "1.jpg")
            # m+=1

    plt.show()

    return ssimValue