Example #1
0
def data_average(Dist, source_loc, sensor_loc,
                 Ptx):  # ,alpha,Pl0,Ptx,expect,std_err,Nm
    PPrx = zeros((1, Dist.shape[0]))
    for ll in range(0, myglobals.Nm):
        dij = Dist
        N = dij.shape[0]

        sigmaij = myglobals.std_err**2 * exp(-abs(dij) / myglobals.dcor)
        # # free space model
        di = zeros((1, N))
        Mu = zeros((1, N))
        for i in range(0, N):
            # free space model

            di[0, i] = get_distance(source_loc, sensor_loc[i, :])
            if di[0, i] <= myglobals.d0:
                Mu[0, i] = Ptx + 20 * log10(
                    (myglobals.c) / (4 * pi * di[0, i] * myglobals.f))
            elif di[0, i] > myglobals.d0:
                Mu[0, i] = Ptx + 20 * log10(
                    (myglobals.c) /
                    (4 * pi * myglobals.f)) - 10 * myglobals.alpha * log10(
                        di[0, i])

        # correlated shadowing !!!!!
        Prx = random.multivariate_normal(Mu[0], sigmaij, 1)
        PPrx = PPrx + Prx

    PPrx = PPrx / myglobals.Nm
    return PPrx
def generate_matrices(p, Dist, Pos_vec, coord):
    N = Dist.shape[0]
    pad_col = np.ones((N + 1, 1))
    pad_col[-1] = 0
    pad_row = np.ones((1, N))
    B = pad_col
    B[-1] = 1
    d1 = Dist.reshape(1, N * N)
    #SEMI2 = [Spherical_modul(i, ps1, ps2, ps3) for i in dd]
    semi = Exponent_modul(d1[0], p[0], p[1], p[2])

    # #===to check fit curves
    # plt.figure(30)
    # plt.scatter(d1[0], semi)
    # plt.xlabel('distance[m]')
    # plt.ylabel('Semivariance')
    # plt.title('Sample Semivariogram')
    # #===

    semi = semi.reshape(N, N)
    #semi = semi + np.eye(semi.shape[1], dtype=int) * 0.000000000000001

    semi1 = np.vstack((semi, pad_row))
    A = np.hstack((semi1, pad_col))

    for tx in range(0, N):
        d2 = get_distance(coord, Pos_vec[tx, :])
        B[tx, 0] = Exponent_modul(d2, p[0], p[1], p[2])

    return A, B
Example #3
0
def data_for_true_cor(dist, source_loc, points_loc,
                      Ptx):  # correlated shadowing
    dij = dist
    N = dij.shape[0]

    sigmaij = myglobals.std_err**2 * exp(-abs(dij) / myglobals.dcor)
    # free space model
    di = zeros((1, N))
    Mu = zeros((1, N))
    for i in range(0, N):
        di[0, i] = get_distance(source_loc, points_loc[i, :])
        if di[0, i] == 0:
            Mu[0, i] = myglobals.Ptx
            #num=i

        elif di[0, i] <= myglobals.d0:
            Mu[0, i] = Ptx + 20 * log10(
                (myglobals.c) / (4 * pi * di[0, i] * myglobals.f))
        elif di[0, i] > myglobals.d0:
            Mu[0, i] = Ptx + 20 * log10(
                (myglobals.c) /
                (4 * pi * myglobals.f)) - 10 * myglobals.alpha * log10(di[0,
                                                                          i])

    # correlated shadowing !!!!!
    Prx = random.multivariate_normal(Mu[0], sigmaij, 1)

    return Prx
Example #4
0
def find_pairwise_distance(coord): # locations of sensors
    N=coord.shape[0]
    Dist = -1 * np.ones((N, N))
    Mean=0
    for tx in range(0,N):
        for ty in range(0,N):
            if Dist[ty,tx]<0:
                Dist[tx,ty]=get_distance(coord[tx,:],coord[ty,:])
            else:
                Dist[tx,ty]=Dist[ty,tx]
            Mean=Mean+Dist[tx,ty]
    Mean=Mean/(N**2)
    return Dist,Mean
Example #5
0
    def fit_variogram(self): # calculate semivariogram using bin_bound ##
        VarResolution = 1
        range = self.Clust.Range
        MaxDist = get_distance(np.array([range[0], range[2]]), np.array([range[1], range[3]]))
        bins=np.arange(0,MaxDist+VarResolution,VarResolution)+VarResolution

        Pow=self.SensorPowers
        self.update_pairwise_distance()
        Variogram, Bin_bound = find_variogram(self.PairwiseDist, Pow, bins)

        self.Variogram=Variogram
        pg1, pg2, pg3 = \
        opt.curve_fit(Exponent_modul, Bin_bound, Variogram, bounds=([0, 0, 0], [np.inf, np.inf, np.inf]), method='trf')[
            0]
        self.p=[pg1,pg2,pg3]
Example #6
0
    def estimate_map_nearst_method(self, N):  # for each point, use nearst N sensors
        self.update_sensor_powers()
        Pos = self.get_sensor_locations()
        Pow = self.SensorPowers
        rang = self.Clust.PixelRange
        img = np.zeros((int(rang[1]) - int(rang[0]) + 1, int(rang[3]) - int(rang[2]) + 1))
        for i in range(0, img.shape[0]):
            tx = rang[0] + i
            for j in range(0, img.shape[1]):
                ty = rang[2] + j
                pxcoord = np.array([tx, ty])
                coord = pixel2coord(pxcoord)
                sen_dis = []
                flag=0
                for ii in range(0, Pos.shape[0]):
                    dis = get_distance(coord, Pos[ii, :])
                    sen_dis.append(dis)
               
                sen_dis = np.array(sen_dis)
                num = np.argsort(sen_dis)

                pos = np.zeros((N, 2))
                pow = np.zeros((1, N))
                for kk in range(0, N):
                    pos[kk, :] = Pos[num[kk], :]
                    pow[0, kk] = Pow[0, num[kk]]

                dij, tmean = find_pairwise_distance(pos)
                rij = np.zeros((pow.shape[1], pow.shape[1]))
                for k in range(0, pow.shape[1]):
                    rij[k, :] = 0.5 * (pow[0, k] - pow) * (pow[0, k] - pow)

                # # calculate variogram directly
                dd = dij.reshape(1, pow.shape[1] * pow.shape[1])
                semi = rij.reshape(1, pow.shape[1] * pow.shape[1])
                Bin_bound = dd[0]
                Variogram = semi[0]

                pg1, pg2, pg3 = \
                opt.curve_fit(Exponent_modul, Bin_bound, Variogram, bounds=([0, 0, 0], [np.inf, np.inf, np.inf]),
                              method='trf')[0]
                #pg1, pg2, pg3 = opt.curve_fit(Spherical_modul, Bin_bound, Variogram)[0]
                p = [pg1, pg2, pg3]
                A, B = generate_matrices(p, dij, pos, coord)
                W = solve(A, B)
                W = W[0:pow.shape[1], 0].T
                img[i, j] = sum(sum(W * pow))
        self.Img = img
 def map_LS(PixelRange,esSource_loc, esPtx):
     rang = PixelRange
     img = np.zeros((int(rang[1]) - int(rang[0]) + 1, int(rang[3]) - int(rang[2]) + 1))
     for ix in range(0, img.shape[0]):
         txx = rang[0] + ix
         for jy in range(0, img.shape[1]):
             tyy = rang[2] + jy
             pxcoord = np.array([txx, tyy])
             coord = pixel2coord(pxcoord)
             dd=get_distance(coord,esSource_loc)
             if dd==0:
                 esPrx=esPtx
             else:
                 esPrx = esPtx - myglobals.Pl0 - 10 * myglobals.alpha * np.log10(dd)
             img[ix,jy]=esPrx
     return img
Example #8
0
    def estimate_map_nearst_method1(self, N):  # for each point, use nearst N sensors
        self.update_sensor_powers()
        Pos = self.get_sensor_locations()
        Pow = self.SensorPowers
        rang = self.Clust.PixelRange
        img = np.zeros((int(rang[1]) - int(rang[0]) + 1, int(rang[3]) - int(rang[2]) + 1))
        for i in range(0, img.shape[0]):
            tx = rang[0] + i
            for j in range(0, img.shape[1]):
                ty = rang[2] + j
                pxcoord = np.array([tx, ty])
                coord = pixel2coord(pxcoord)
                sen_dis = []
                flag=0
                for ii in range(0, Pos.shape[0]):
                    dis = get_distance(coord, Pos[ii, :])
                    sen_dis.append(dis)
               
                sen_dis = np.array(sen_dis)
                num = np.argsort(sen_dis)

                pos = np.zeros((N, 2))
                pow = np.zeros((1, N))
                for kk in range(0, N):
                    pos[kk, :] = Pos[num[kk], :]
                    pow[0, kk] = Pow[0, num[kk]]

                data = np.hstack((pos, pow.T))
                gridx = [coord[0]]
                gridy = [coord[1]]
                #print(gridx)
                OK = OrdinaryKriging(data[:, 0], data[:, 1], data[:, 2], variogram_model='spherical', verbose=False, enable_plotting=False)
                z, ss = OK.execute('points', gridx, gridy)
                img[i,j]=z[0]
        
        self.Img = img
Example #9
0
    def estimate_map_nearst_method(self, N):  # for each point, use nearst N sensors
        self.update_sensor_powers()
        Pos = self.get_sensor_locations()
        Pow = self.SensorPowers
        rang = self.Clust.PixelRange
        img = np.zeros((int(rang[1]) - int(rang[0]) + 1, int(rang[3]) - int(rang[2]) + 1))
        for i in range(0, img.shape[0]):
            tx = rang[0] + i
            for j in range(0, img.shape[1]):
                ty = rang[2] + j
                pxcoord = np.array([tx, ty])
                coord = pixel2coord(pxcoord)
                sen_dis = []
                flag=0
                for ii in range(0, Pos.shape[0]):
                    dis = get_distance(coord, Pos[ii, :])
                    # if dis==0:
                    #     flag=1
                    #     img[i,j]=Pow[0,ii]
                    #     break
                    #if dis==0:
                    #    dis=0.00000000001
                    sen_dis.append(dis)
                # if flag==1:
                #     continue
                # sen_dis = np.array(sen_dis)
                # sen_dis1 = np.sort(sen_dis)
                # pos = np.zeros((N, 2))
                # pow = np.zeros((1, N))
                #
                # for jj in range(0, N):
                #     lo = np.argwhere(sen_dis == sen_dis1[jj])[0][0]
                #     #print(pos)
                #     pos[jj,:] = Pos[lo,:]
                #
                #     pow[0,jj] = Pow[0,lo]
                # tdist, tmean = find_pairwise_distance(pos)
                # dij = tdist
                sen_dis = np.array(sen_dis)
                num = np.argsort(sen_dis)

                pos = np.zeros((N, 2))
                pow = np.zeros((1, N))
                for kk in range(0, N):
                    pos[kk, :] = Pos[num[kk], :]
                    pow[0, kk] = Pow[0, num[kk]]

                dij, tmean = find_pairwise_distance(pos)
                rij = np.zeros((pow.shape[1], pow.shape[1]))
                for k in range(0, pow.shape[1]):
                    rij[k, :] = 0.5 * (pow[0, k] - pow) * (pow[0, k] - pow)
                # #
                # dd = []
                # semi = []
                # for n in range(0, dij.shape[0]):
                #     for m in range(0, dij.shape[1]):
                #         if n == m:
                #             continue
                #         else:
                #             lo = np.argwhere(dij == dij[n, m])
                #             dd.append(dij[n, m])
                #             se = []
                #             for l in range(0, lo.shape[0]):
                #                 se.append(rij[lo[l, 0], lo[l, 1]])
                #             semi.append(np.sum(se) / lo.shape[0])
                # Bin_bound = dd
                # Variogram = semi
                # # calculate variogram directly
                dd = dij.reshape(1, pow.shape[1] * pow.shape[1])
                semi = rij.reshape(1, pow.shape[1] * pow.shape[1])
                Bin_bound = dd[0]
                Variogram = semi[0]

                pg1, pg2, pg3 = \
                opt.curve_fit(Exponent_modul, Bin_bound, Variogram, bounds=([0, 0, 0], [np.inf, np.inf, np.inf]),
                              method='trf')[0]
                #pg1, pg2, pg3 = opt.curve_fit(Spherical_modul, Bin_bound, Variogram)[0]
                p = [pg1, pg2, pg3]
                A, B = generate_matrices(p, dij, pos, coord)
                W = solve(A, B)
                W = W[0:pow.shape[1], 0].T
                img[i, j] = sum(sum(W * pow))
        self.Img = img
Example #10
0
    def estimate_map(Prx, Dist, Locations, method,vari):
        Pow = Prx
        if vari=='pbp':
            rij = np.zeros((Pow.shape[1], Pow.shape[1]))
            for i in range(0, Pow.shape[1]):
                rij[i, :] = 0.5 * (Pow[0, i] - Pow) * (Pow[0, i] - Pow)

            dij = Dist
            dd = []
            semi = []

            for n in range(0, dij.shape[0]):
                for m in range(0, dij.shape[1]):
                    if n == m:
                        continue
                    else:
                        lo = np.argwhere(dij == dij[n, m])

                        dd.append(dij[n, m])
                        se = []
                        for l in range(0, lo.shape[0]):
                            se.append(rij[lo[l, 0], lo[l, 1]])

                        semi.append(np.sum(se) / lo.shape[0])
            # Bin_bound = np.sort(dd)
            # Variogram = np.sort(semi)
            Bin_bound = dd
            Variogram = semi

        elif vari=='bin':
            VarResolution = 1
            rang = Range
            MaxDist = get_distance(np.array([rang[0], rang[2]]), np.array([rang[1], rang[3]]))
            bins = np.arange(0, MaxDist + VarResolution, VarResolution) + VarResolution

            Pow = Pow
            Variogram, Bin_bound = find_variogram(Dist, Pow, bins)
            # plt.figure(30)
            # plt.plot(Bin_bound, Variogram, 'b.-')


        pg1, pg2, pg3 = opt.curve_fit(Gaussian_modul, Bin_bound, Variogram)[0]
        # pg1, pg2, pg3 = opt.curve_fit(Spherical_modul, Bin_bound, Variogram)[0]
        p = [pg1, pg2, pg3]
        rang = PixelRange
        img = np.zeros((int(rang[1]) - int(rang[0]) + 1, int(rang[3]) - int(rang[2]) + 1))


        for i in range(0, img.shape[0]):
            tx = rang[0] + i
            for j in range(0, img.shape[1]):
                ty = rang[2] + j
                pxcoord = np.array([tx, ty])
                coord = pixel2coord(pxcoord)

                if method == 'kriging':
                    # Kriging_method
                    # Pow = Prx
                    Pos = Locations
                    A, B = generate_matrices(p, Dist, Pos, coord)
                    W = solve(A, B)
                    W = W[0:Pow.shape[1], 0].T
                    Pow_est = sum(sum(W * Pow))
                    img[i, j] = Pow_est
                elif method == 'shepard':
                    Pos = Locations
                    PowerFactor = 2
                    flag = 1
                    n = Pow.shape[1]

                    W = np.zeros((1, n))
                    for nn in range(0, n):
                        td = get_distance(Pos[nn, :], coord)
                        if td == 0:
                            flag = 0
                            Pow_est = Pow[0, nn]
                            break
                        W[0, nn] = 1 / (td ** PowerFactor)
                    if flag == 1:
                        Pow_est = sum(sum(W * Pow)) / sum(sum(W))
                    img[i, j] = Pow_est
                elif method == 'neighbour':
                    Pos = Locations
                    Pow = Prx
                    grid_z0 = griddata(Pos, Pow.T, coord, method='nearest')
                    # grid_z0 = naturalneighbor.griddata(Pos, Pow.T, coord)
                    img[i, j] = grid_z0


        Img = img
        return Img
def estimate_map(Prx, Dist, Locations, method, vari):
    Pow = Prx
    if vari == 'pbp':
        rij = np.zeros((Pow.shape[1], Pow.shape[1]))
        for i in range(0, Pow.shape[1]):
            rij[i, :] = 0.5 * (Pow[0, i] - Pow) * (Pow[0, i] - Pow)

        dij = Dist
        # # # calculate mean-value of variogram that under same distance
        # dd = []
        # semi = []
        # for n in range(0, dij.shape[0]):
        #     for m in range(0, dij.shape[1]):
        #         if n == m:
        #             continue
        #         else:
        #             lo = np.argwhere(dij == dij[n, m])
        #
        #             dd.append(dij[n, m])
        #             se = []
        #             for l in range(0, lo.shape[0]):
        #                 se.append(rij[lo[l, 0], lo[l, 1]])
        #
        #             semi.append(np.sum(se) / lo.shape[0])
        # Bin_bound=dd
        # Variogram=semi

        # # calculate variogram directly
        dd = dij.reshape(1, Pow.shape[1] * Pow.shape[1])
        semi = rij.reshape(1, Pow.shape[1] * Pow.shape[1])
        Bin_bound = dd[0]
        Variogram = semi[0]

        plt.figure(30)
        plt.plot(Bin_bound, Variogram, 'b.-')
        plt.xlabel('distance/m')
        plt.ylabel('semivariogram')
        plt.title('equal space method')
        plt.show()

    elif vari == 'bin':
        VarResolution = 1
        rang = Range
        MaxDist = get_distance(np.array([rang[0], rang[2]]),
                               np.array([rang[1], rang[3]]))
        bins = np.arange(0, MaxDist + VarResolution,
                         VarResolution) + VarResolution

        Pow = Pow
        Variogram, Bin_bound = find_variogram(Dist, Pow, bins)
        plt.figure(30)
        plt.plot(Bin_bound, Variogram, 'b.-')
        plt.xlabel('distance/m')
        plt.ylabel('semivariogram')
        plt.title('equal space method')
        plt.show()

    # sometimes the last value of Variogram is smaller than the first one.
    # Then it can't fit'RuntimeError: Optimal parameters not found:
    # The maximum number of function evaluations is exceeded.'

    # if Variogram[len(Variogram)-1]<Variogram[0]:
    #     print(Variogram)
    #     print(Bin_bound)
    #     Variogram=Variogram[0:len(Variogram)-1]
    #     Bin_bound=Bin_bound[0:len(Bin_bound)-1]

    pg1, pg2, pg3 = opt.curve_fit(
        Exponent_modul,
        Bin_bound,
        Variogram,
        bounds=([0, 0, 0], [np.inf, np.inf, np.inf]),
        method='trf')[
            0]  #bounds=([-np.inf,0,-np.inf,], [np.inf,np.inf,np.inf])
    #pg1, pg2, pg3 = opt.curve_fit(Spherical_modul, Bin_bound, Variogram)[0]
    #pg1, pg2, pg3 = opt.curve_fit(Exponent_modul, Bin_bound, Variogram)[0]

    p = [pg1, pg2, pg3]
    #print(p)
    rang = PixelRange
    img = np.zeros(
        (int(rang[1]) - int(rang[0]) + 1, int(rang[3]) - int(rang[2]) + 1))
    for i in range(0, img.shape[0]):
        tx = rang[0] + i
        for j in range(0, img.shape[1]):
            ty = rang[2] + j
            pxcoord = np.array([tx, ty])
            coord = pixel2coord(pxcoord)

            if method == 'kriging':
                # Kriging_method
                # Pow = Prx
                Pos = Locations
                A, B = generate_matrices(p, Dist, Pos, coord)
                W = np.linalg.solve(A, B)
                W = W[0:Pow.shape[1], 0].T

                Pow_est = sum(sum(W * Pow))
                img[i, j] = Pow_est
            elif method == 'shepard':
                Pos = Locations
                PowerFactor = 2
                flag = 1
                n = Pow.shape[1]

                W = np.zeros((1, n))
                for nn in range(0, n):
                    td = get_distance(Pos[nn, :], coord)
                    if td == 0:
                        flag = 0
                        Pow_est = Pow[0, nn]
                        break
                    W[0, nn] = 1 / (td**PowerFactor)
                if flag == 1:
                    Pow_est = sum(sum(W * Pow)) / sum(sum(W))
                img[i, j] = Pow_est
            elif method == 'neighbour':
                Pos = Locations
                Pow = Prx
                grid_z0 = griddata(Pos, Pow.T, coord, method='nearest')
                # grid_z0 = naturalneighbor.griddata(Pos, Pow.T, coord)
                img[i, j] = grid_z0

    Img = img
    return Img
Example #12
0
def estimate_map_nearst_method(
        N, Locations, Prx, PixelRange):  # for each point, use nearst N sensors

    Pos = Locations
    flag = 0
    Pow = Prx

    rang = PixelRange
    img = np.zeros(
        (int(rang[1]) - int(rang[0]) + 1, int(rang[3]) - int(rang[2]) + 1))
    for i in range(0, img.shape[0]):
        tx = rang[0] + i
        for j in range(0, img.shape[1]):
            ty = rang[2] + j
            pxcoord = np.array([tx, ty])
            coord = pixel2coord(pxcoord)
            sen_dis = []

            for ii in range(0, Pos.shape[0]):
                dis = get_distance(coord, Pos[ii, :])
                # if dis==0:
                #     flag=1
                #     img[i,j]=Pow[0,ii]
                #     break
                # if dis==0:
                #     dis=0.00000000001
                sen_dis.append(dis)
            # if flag==1:
            #     continue
            sen_dis = np.array(sen_dis)
            num = np.argsort(sen_dis)

            pos = np.zeros((N, 2))
            pow = np.zeros((1, N))
            for kk in range(0, N):
                pos[kk, :] = Pos[num[kk], :]
                pow[0, kk] = Pow[0, num[kk]]

            dij, tmean = find_pairwise_distance(pos)

            rij = np.zeros((pow.shape[1], pow.shape[1]))
            for k in range(0, pow.shape[1]):
                rij[k, :] = 0.5 * (pow[0, k] - pow) * (pow[0, k] - pow)
            # # # calculate mean-value of variogram that under same distance
            # dd = []
            # semi = []
            # for n in range(0, dij.shape[0]):
            #     for m in range(0, dij.shape[1]):
            #         if n == m:
            #             continue
            #         else:
            #             lo = np.argwhere(dij == dij[n, m])
            #             dd.append(dij[n, m])
            #             se = []
            #             for l in range(0, lo.shape[0]):
            #                 se.append(rij[lo[l, 0], lo[l, 1]])
            #             semi.append(np.sum(se) / lo.shape[0])
            # Bin_bound = dd
            # Variogram = semi

            # # calculate variogram directly
            dd = dij.reshape(1, pow.shape[1] * pow.shape[1])
            semi = rij.reshape(1, pow.shape[1] * pow.shape[1])
            Bin_bound = dd[0]
            Variogram = semi[0]

            ###########

            # if Variogram[len(Variogram) - 1] < Variogram[0]:
            #     Variogram = Variogram[0:len(Variogram) - 1]
            #     Bin_bound = Bin_bound[0:len(Bin_bound) - 1]
            ###########

            pg1, pg2, pg3 = opt.curve_fit(Exponent_modul,
                                          Bin_bound,
                                          Variogram,
                                          bounds=([0, 0, 0],
                                                  [np.inf, np.inf, np.inf]),
                                          method='trf')[0]
            # pg1, pg2, pg3 = opt.curve_fit(Spherical_modul, Bin_bound, Variogram)[0]
            p = [pg1, pg2, pg3]
            A, B = generate_matrices(p, dij, pos, coord)
            W = solve(A, B)
            W = W[0:pow.shape[1], 0].T
            img[i, j] = sum(sum(W * pow))
    return img