'''
    #---------GLOBAL SETTINGS-------------------
    path = 'D:\\BITBUCKET_PROJECTS\\Forecasting 1.0\\'
    STRATEGY = '3'
    DEVIATION = MULTIPLIER = 2
    PERIOD = 20
    DATA_LIMIT = 400
    #--------RSI_SETTINGS------------------------
    LOWER_BOUND = 30
    UPPER_BOUND = 70
    #--------MACD SETTINGS-----------------------
    FAST = 12
    SLOW = 26
    SIGNAL = 9
    loc.set_path(path + 'DATASET')
    #-------get the data we need------------------
    STOK_list = ls_STOK()

    Signal_Gen = {}
    for ii in range(DATA_LIMIT):
        print('{}'.format(STOK_list[ii]))
        data = loc.read_csv('{}'.format(STOK_list[ii]) + str('.csv'))
        data.index = pd.to_datetime(data.index)
        #-----convert to the stock class--------------
        stock_data = stock(data)
        Fibo_SUP_RES_ = stock_data.fibonacci_pivot_point()
        df_RSI = RSI_signal(data,
                            PERIOD,
                            lw_bound=LOWER_BOUND,
                            up_bound=UPPER_BOUND)
Example #2
0
        'days',  #trading days
        'months',  #months
        'DayOfTheWeek',  #days of week
        'time_epoch',  #time epoch
        'wday_sin',  #sine of trading day
        'wday_cos',  #cosine of trading day
        'mday_sin',  #sine of days of the month
        'mday_cos',  #cosine of days of the month
        'yday_sin',  #sine of day of year
        'yday_cos',  #cosine of day of year
        'month_sin',  #sine of month
        'month_cos'
    ]  #cosine of month

    #set working directory
    loc.set_path('D:\\BITBUCKET_PROJECTS\\Forecasting 1.0\\DATASET')
    #stock list
    STOCK_list_ = ls_STOK()
    #window
    forecast = {}
    #//Extract Forecast window
    for pr in price:
        forecast_window, trad_days, dt_range = window(MIN_LAG, MAX_LAG, STEP,
                                                      STOCK_name, pr, next_day)
        #train test
        X_train, X_test, Y_train, Y_test = Scale_train_test(
            forecast_window, trad_days)
        #yhat for all models
        Avg_price = Modeller(X_train, X_test, Y_train, Y_test, dt_range,
                             params, EPOCHS)
Example #3
0
from sklearn.preprocessing import StandardScaler
from sklearn.pipeline import make_pipeline
from sklearn.decomposition import PCA
from sklearn.naive_bayes import GaussianNB
from sklearn.model_selection import train_test_split
from sklearn.ensemble import RandomForestRegressor

'''
Create date holder
start date: indicates the last date in the series
End date: indicates the numbers of days we want to project into
'''


#set directory to fetch data
loc.set_path('D:\\GIT PROJECT\\ERIC_PROJECT101\\FREELANCE_KENNETH\\DATASET')



def predict_OHLC(NXT_DAY):
  '''
  :Arguments:
    STOCKLIST: List of downloaded stock in the dataset folder
    NXTDAY: nextday to predict
    stock_data: stock class
    
  :Return:
    Next day Open, High, Low, Close for all stock
    
  '''
  #get ojects in the dataset folder and