Example #1
0
 def fromArgs(args):
     secuml_conf = ExpConf.common_from_args(args)
     dataset_conf = DatasetConf.fromArgs(args, secuml_conf.logger)
     features_conf = FeaturesConf.fromArgs(args, secuml_conf.logger)
     annotations_conf = AnnotationsConf(args.annotations_file, None,
                                        secuml_conf.logger)
     return FeaturesAnalysisConf(secuml_conf, dataset_conf,
                                 features_conf, annotations_conf, None,
                                 experiment_name=args.exp_name)
Example #2
0
 def fromArgs(args):
     secuml_conf = ExpConf.common_from_args(args)
     dataset_conf = DatasetConf.fromArgs(args, secuml_conf.logger)
     features_conf = FeaturesConf.fromArgs(args, secuml_conf.logger)
     annotations_conf = AnnotationsConf(args.annotations_file, None,
                                        secuml_conf.logger)
     factory = ActiveLearningConfFactory.getFactory()
     core_conf = factory.fromArgs(args.strategy, args, secuml_conf.logger)
     return ActiveLearningConf(secuml_conf,
                               dataset_conf,
                               features_conf,
                               annotations_conf,
                               core_conf,
                               experiment_name=args.exp_name)
Example #3
0
 def fromArgs(args):
     secuml_conf = ExpConf.common_from_args(args)
     dataset_conf = DatasetConf.fromArgs(args, secuml_conf.logger)
     features_conf = FeaturesConf.fromArgs(args, secuml_conf.logger)
     annotations_conf = AnnotationsConf(args.annotations_file, None,
                                        secuml_conf.logger)
     factory = ClusteringConfFactory.getFactory()
     core_conf = factory.fromArgs(args.algo, args, secuml_conf.logger)
     conf = ClusteringConf(secuml_conf,
                           dataset_conf,
                           features_conf,
                           annotations_conf,
                           core_conf,
                           experiment_name=args.exp_name,
                           label=args.label)
     return conf
Example #4
0
 def from_json(conf_json, secuml_conf):
     dataset_conf = DatasetConf.from_json(conf_json['dataset_conf'],
                                          secuml_conf.logger)
     features_conf = FeaturesConf.from_json(conf_json['features_conf'],
                                            secuml_conf.logger)
     annotations_conf = AnnotationsConf.from_json(
                                               conf_json['annotations_conf'],
                                               secuml_conf.logger)
     exp_conf = ValidationConf(secuml_conf,
                               dataset_conf,
                               features_conf,
                               annotations_conf,
                               None,
                               experiment_name=conf_json['experiment_name'],
                               parent=conf_json['parent'])
     exp_conf.experiment_id = conf_json['experiment_id']
     return exp_conf
 def createTestExperiment(self):
     self.test_exp = None
     test_conf = self.exp_conf.core_conf.validation_conf
     if test_conf is not None:
         logger = self.exp_conf.secuml_conf.logger
         annotations_conf = AnnotationsConf('ground_truth.csv', None,
                                            logger)
         dataset_conf = DatasetConf(self.exp_conf.dataset_conf.project,
                                    test_conf.test_dataset, logger)
         features_conf = FeaturesConf(
             self.exp_conf.features_conf.input_features, logger)
         validation_conf = ValidationConf(self.exp_conf.secuml_conf,
                                          dataset_conf, features_conf,
                                          annotations_conf, None)
         self.test_exp = ValidationExperiment(validation_conf,
                                              session=self.session)
         self.test_exp.run()
         self.exp_conf.test_exp_conf = validation_conf
Example #6
0
 def from_json(conf_json, secuml_conf):
     dataset_conf = DatasetConf.from_json(conf_json['dataset_conf'],
                                          secuml_conf.logger)
     features_conf = FeaturesConf.from_json(conf_json['features_conf'],
                                            secuml_conf.logger)
     annotations_conf = AnnotationsConf.from_json(
         conf_json['annotations_conf'], secuml_conf.logger)
     factory = ActiveLearningConfFactory.getFactory()
     core_conf = factory.from_json(conf_json['core_conf'],
                                   secuml_conf.logger)
     conf = ActiveLearningConf(secuml_conf,
                               dataset_conf,
                               features_conf,
                               annotations_conf,
                               core_conf,
                               experiment_name=conf_json['experiment_name'],
                               parent=conf_json['parent'])
     conf.experiment_id = conf_json['experiment_id']
     return conf
Example #7
0
 def from_json(conf_json, secuml_conf):
     dataset_conf = DatasetConf.from_json(conf_json['dataset_conf'],
                                          secuml_conf.logger)
     features_conf = FeaturesConf.from_json(conf_json['features_conf'],
                                            secuml_conf.logger)
     annotations_conf = AnnotationsConf.from_json(
         conf_json['annotations_conf'], secuml_conf.logger)
     core_conf = CoreClassificationConf.from_json(conf_json['core_conf'],
                                                  secuml_conf.logger)
     exp_conf = ClassificationConf(
         secuml_conf,
         dataset_conf,
         features_conf,
         annotations_conf,
         core_conf,
         experiment_name=conf_json['experiment_name'],
         parent=conf_json['parent'],
         already_trained=conf_json['already_trained'])
     exp_conf.experiment_id = conf_json['experiment_id']
     return exp_conf
Example #8
0
 def createClusteringExp(self, core_clustering_conf):
     exp_conf = self.diadem_exp.exp_conf
     features_conf = FeaturesConf(exp_conf.features_conf.input_features,
                                  exp_conf.secuml_conf.logger)
     if self.diadem_exp.test_exp is not None:
         dataset_conf = exp_conf.test_exp_conf.dataset_conf
         annotations_conf = exp_conf.test_exp_conf.annotations_conf
     else:
         dataset_conf = exp_conf.dataset_conf
         annotations_conf = exp_conf.annotations_conf
     clustering_exp_conf = ClusteringConf(
         exp_conf.secuml_conf,
         dataset_conf,
         features_conf,
         annotations_conf,
         core_clustering_conf,
         experiment_name=None,
         parent=self.diadem_exp.experiment_id)
     return ClusteringExperiment(clustering_exp_conf,
                                 create=True,
                                 session=self.diadem_exp.session)
Example #9
0
 def from_json(conf_json, secuml_conf):
     dataset_conf = DatasetConf.from_json(conf_json['dataset_conf'],
                                          secuml_conf.logger)
     features_conf = FeaturesConf.from_json(conf_json['features_conf'],
                                            secuml_conf.logger)
     annotations_conf = AnnotationsConf.from_json(
         conf_json['annotations_conf'], secuml_conf.logger)
     factory = ClusteringConfFactory.getFactory()
     core_conf = None
     if conf_json['core_conf'] is not None:
         core_conf = factory.from_json(conf_json['core_conf'],
                                       secuml_conf.logger)
     exp_conf = ClusteringConf(secuml_conf,
                               dataset_conf,
                               features_conf,
                               annotations_conf,
                               core_conf,
                               experiment_name=conf_json['experiment_name'],
                               parent=conf_json['parent'],
                               label=conf_json['label'])
     exp_conf.experiment_id = conf_json['experiment_id']
     return exp_conf
Example #10
0
 def fromArgs(args):
     secuml_conf = ExpConf.common_from_args(args)
     already_trained = None
     if args.model_class != 'AlreadyTrained':
         core_conf = CoreClassificationConf.fromArgs(
             args, True, secuml_conf.logger)
         annotations_conf = AnnotationsConf(args.annotations_file, None,
                                            secuml_conf.logger)
     else:
         already_trained = args.model_exp_id
         core_conf = CoreClassificationConf.fromArgs(
             args, False, secuml_conf.logger)
         annotations_conf = AnnotationsConf(None, None, secuml_conf.logger)
     dataset_conf = DatasetConf.fromArgs(args, secuml_conf.logger)
     features_conf = FeaturesConf.fromArgs(args, secuml_conf.logger)
     return ClassificationConf(secuml_conf,
                               dataset_conf,
                               features_conf,
                               annotations_conf,
                               core_conf,
                               experiment_name=args.exp_name,
                               already_trained=already_trained)
Example #11
0
 def create_exp(self):
     Experiment.create_exp(self)
     # create projection experiment
     self.projection_exp = None
     if self.exp_conf.core_conf is None:
         return
     projection_core_conf = self.exp_conf.core_conf.projection_conf
     if projection_core_conf is not None:
         features_conf = FeaturesConf(
             self.exp_conf.features_conf.input_features,
             self.exp_conf.secuml_conf.logger)
         projection_conf = ProjectionConf(self.exp_conf.secuml_conf,
                                          self.exp_conf.dataset_conf,
                                          features_conf,
                                          self.exp_conf.annotations_conf,
                                          projection_core_conf,
                                          experiment_name='-'.join([
                                              self.exp_conf.experiment_name,
                                              'projection'
                                          ]),
                                          parent=self.experiment_id)
         self.projection_exp = ProjectionExperiment(projection_conf,
                                                    session=self.session)