def test_ana_forward(self): # Compute 3-component mag data self.survey.pair(self.prob_xyz) d = self.prob_xyz.fields(self.model) ndata = self.locXyz.shape[0] dbx = d[0:ndata] dby = d[ndata:2*ndata] dbz = d[2*ndata:] # Compute tmi mag data self.survey.pair(self.prob_tmi) dtmi = self.prob_tmi.fields(self.model) # Compute analytical response from a magnetized sphere bxa, bya, bza = PF.MagAnalytics.MagSphereFreeSpace(self.locXyz[:, 0], self.locXyz[:, 1], self.locXyz[:, 2], self.rad, 0, 0, 0, self.chi, self.b0) # Projection matrix Ptmi = mkvc(self.b0)/np.sqrt(np.sum(self.b0**2.)) btmi = mkvc(Ptmi.dot(np.vstack((bxa, bya, bza)))) err_xyz = (np.linalg.norm(d-np.r_[bxa, bya, bza]) / np.linalg.norm(np.r_[bxa, bya, bza])) err_tmi = np.linalg.norm(dtmi-btmi)/np.linalg.norm(btmi) self.assertTrue(err_xyz < 0.005 and err_tmi < 0.005)
def test_ana_forward(self): # Compute 3-component mag data self.survey.pair(self.prob_xyz) d = self.prob_xyz.fields(self.model) ndata = self.locXyz.shape[0] dbx = d[0:ndata] dby = d[ndata:2 * ndata] dbz = d[2 * ndata:] # Compute tmi mag data self.survey.pair(self.prob_tmi) dtmi = self.prob_tmi.fields(self.model) # Compute analytical response from a magnetized sphere bxa, bya, bza = PF.MagAnalytics.MagSphereFreeSpace( self.locXyz[:, 0], self.locXyz[:, 1], self.locXyz[:, 2], self.rad, 0, 0, 0, self.chi, self.b0) # Projection matrix Ptmi = mkvc(self.b0) / np.sqrt(np.sum(self.b0**2.)) btmi = mkvc(Ptmi.dot(np.vstack((bxa, bya, bza)))) err_xyz = (np.linalg.norm(d - np.r_[bxa, bya, bza]) / np.linalg.norm(np.r_[bxa, bya, bza])) err_tmi = np.linalg.norm(dtmi - btmi) / np.linalg.norm(btmi) self.assertTrue(err_xyz < 0.005 and err_tmi < 0.005)
def _fastInnerProduct(self, projType, prop=None, invProp=False, invMat=False): """ Fast version of getFaceInnerProduct. This does not handle the case of a full tensor prop. :param numpy.array prop: material property (tensor properties are possible) at each cell center (nC, (1, 3, or 6)) :param str projType: 'E' or 'F' :param bool returnP: returns the projection matrices :param bool invProp: inverts the material property :param bool invMat: inverts the matrix :rtype: scipy.sparse.csr_matrix :return: M, the inner product matrix (nF, nF) """ assert projType in ['F', 'E'], ("projType must be 'F' for faces or 'E'" " for edges") if prop is None: prop = np.ones(self.nC) if invProp: prop = 1./prop if Utils.isScalar(prop): prop = prop*np.ones(self.nC) # number of elements we are averaging (equals dim for regular # meshes, but for cyl, where we use symmetry, it is 1 for edge # variables and 2 for face variables) if self._meshType == 'CYL': n_elements = np.sum(getattr(self, 'vn'+projType).nonzero()) else: n_elements = self.dim # Isotropic? or anisotropic? if prop.size == self.nC: Av = getattr(self, 'ave'+projType+'2CC') Vprop = self.vol * Utils.mkvc(prop) M = n_elements * Utils.sdiag(Av.T * Vprop) elif prop.size == self.nC*self.dim: Av = getattr(self, 'ave'+projType+'2CCV') # if cyl, then only certain components are relevant due to symmetry # for faces, x, z matters, for edges, y (which is theta) matters if self._meshType == 'CYL': if projType == 'E': prop = prop[:, 1] # this is the action of a projection mat elif projType == 'F': prop = prop[:, [0, 2]] V = sp.kron(sp.identity(n_elements), Utils.sdiag(self.vol)) M = Utils.sdiag(Av.T * V * Utils.mkvc(prop)) else: return None if invMat: return Utils.sdInv(M) else: return M
def _fastInnerProduct(self, projType, prop=None, invProp=False, invMat=False): """ Fast version of getFaceInnerProduct. This does not handle the case of a full tensor prop. :param numpy.array prop: material property (tensor properties are possible) at each cell center (nC, (1, 3, or 6)) :param str projType: 'E' or 'F' :param bool returnP: returns the projection matrices :param bool invProp: inverts the material property :param bool invMat: inverts the matrix :rtype: scipy.sparse.csr_matrix :return: M, the inner product matrix (nF, nF) """ assert projType in ["F", "E"], "projType must be 'F' for faces or 'E'" " for edges" if prop is None: prop = np.ones(self.nC) if invProp: prop = 1.0 / prop if Utils.isScalar(prop): prop = prop * np.ones(self.nC) # number of elements we are averaging (equals dim for regular # meshes, but for cyl, where we use symmetry, it is 1 for edge # variables and 2 for face variables) if self._meshType == "CYL": n_elements = np.sum(getattr(self, "vn" + projType).nonzero()) else: n_elements = self.dim # Isotropic? or anisotropic? if prop.size == self.nC: Av = getattr(self, "ave" + projType + "2CC") Vprop = self.vol * Utils.mkvc(prop) M = n_elements * Utils.sdiag(Av.T * Vprop) elif prop.size == self.nC * self.dim: Av = getattr(self, "ave" + projType + "2CCV") # if cyl, then only certain components are relevant due to symmetry # for faces, x, z matters, for edges, y (which is theta) matters if self._meshType == "CYL": if projType == "E": prop = prop[:, 1] # this is the action of a projection mat elif projType == "F": prop = prop[:, [0, 2]] V = sp.kron(sp.identity(n_elements), Utils.sdiag(self.vol)) M = Utils.sdiag(Av.T * V * Utils.mkvc(prop)) else: return None if invMat: return Utils.sdInv(M) else: return M
def convertObs_DC3D_to_2D(Tx,Rx): from SimPEG import np import numpy.matlib as npm """ Read list of 3D Tx Rx location and change coordinate system to distance along line assuming all data is acquired along line First transmitter pole is assumed to be at the origin Assumes flat topo for now... Input: :param Tx, Rx Output: :figure Tx2d, Rx2d Created on Mon December 7th, 2015 @author: dominiquef """ Tx2d = [] Rx2d = [] for ii in range(len(Tx)): if ii == 0: endp = Tx[0][0:2,0] nrx = Rx[ii].shape[0] rP1 = np.sqrt( np.sum( ( endp - Tx[ii][0:2,0] )**2 , axis=0)) rP2 = np.sqrt( np.sum( ( endp - Tx[ii][0:2,1] )**2 , axis=0)) rC1 = np.sqrt( np.sum( ( npm.repmat(endp.T,nrx,1) - Rx[ii][:,0:2] )**2 , axis=1)) rC2 = np.sqrt( np.sum( ( npm.repmat(endp.T,nrx,1) - Rx[ii][:,3:5] )**2 , axis=1)) Tx2d.append( np.r_[rP1, rP2] ) Rx2d.append( np.c_[rC1, rC2] ) #np.savetxt(fid, data, fmt='%e',delimiter=' ',newline='\n') return Tx2d, Rx2d
def setUp(self): # Define inducing field and sphere parameters H0 = (50000., 60., 270.) self.b0 = PF.MagAnalytics.IDTtoxyz(-H0[1], H0[2], H0[0]) self.rad = 2. self.chi = 0.01 # Define a mesh cs = 0.2 hxind = [(cs, 21)] hyind = [(cs, 21)] hzind = [(cs, 21)] mesh = Mesh.TensorMesh([hxind, hyind, hzind], 'CCC') # Get cells inside the sphere sph_ind = PF.MagAnalytics.spheremodel(mesh, 0., 0., 0., self.rad) # Adjust susceptibility for volume difference Vratio = (4. / 3. * np.pi * self.rad**3.) / (np.sum(sph_ind) * cs**3.) model = np.ones(mesh.nC) * self.chi * Vratio self.model = model[sph_ind] # Creat reduced identity map for Linear Pproblem idenMap = Maps.IdentityMap(nP=int(sum(sph_ind))) # Create plane of observations xr = np.linspace(-20, 20, 21) yr = np.linspace(-20, 20, 21) X, Y = np.meshgrid(xr, yr) # Move obs plane 2 radius away from sphere Z = np.ones((xr.size, yr.size)) * 2. * self.rad self.locXyz = np.c_[Utils.mkvc(X), Utils.mkvc(Y), Utils.mkvc(Z)] rxLoc = PF.BaseMag.RxObs(self.locXyz) srcField = PF.BaseMag.SrcField([rxLoc], param=H0) self.survey = PF.BaseMag.LinearSurvey(srcField) self.prob_xyz = PF.Magnetics.MagneticIntegral(mesh, mapping=idenMap, actInd=sph_ind, forwardOnly=True, rtype='xyz') self.prob_tmi = PF.Magnetics.MagneticIntegral(mesh, mapping=idenMap, actInd=sph_ind, forwardOnly=True, rtype='tmi')
def setUp(self): # Define sphere parameters self.rad = 2. self.rho = 0.1 # Define a mesh cs = 0.2 hxind = [(cs, 21)] hyind = [(cs, 21)] hzind = [(cs, 21)] mesh = Mesh.TensorMesh([hxind, hyind, hzind], 'CCC') # Get cells inside the sphere sph_ind = PF.MagAnalytics.spheremodel(mesh, 0., 0., 0., self.rad) # Adjust density for volume difference Vratio = (4. / 3. * np.pi * self.rad**3.) / (np.sum(sph_ind) * cs**3.) model = np.ones(mesh.nC) * self.rho * Vratio self.model = model[sph_ind] # Create reduced identity map for Linear Pproblem idenMap = Maps.IdentityMap(nP=int(sum(sph_ind))) # Create plane of observations xr = np.linspace(-20, 20, 21) yr = np.linspace(-20, 20, 21) X, Y = np.meshgrid(xr, yr) # Move obs plane 2 radius away from sphere Z = np.ones((xr.size, yr.size)) * 2. * self.rad self.locXyz = np.c_[Utils.mkvc(X), Utils.mkvc(Y), Utils.mkvc(Z)] rxLoc = PF.BaseGrav.RxObs(self.locXyz) srcField = PF.BaseGrav.SrcField([rxLoc]) self.survey = PF.BaseGrav.LinearSurvey(srcField) self.prob_xyz = PF.Gravity.GravityIntegral(mesh, mapping=idenMap, actInd=sph_ind, forwardOnly=True, rtype='xyz') self.prob_z = PF.Gravity.GravityIntegral(mesh, mapping=idenMap, actInd=sph_ind, forwardOnly=True, rtype='z')
def setUp(self): # Define inducing field and sphere parameters H0 = (50000., 60., 270.) self.b0 = PF.MagAnalytics.IDTtoxyz(-H0[1], H0[2], H0[0]) self.rad = 2. self.chi = 0.01 # Define a mesh cs = 0.2 hxind = [(cs, 21)] hyind = [(cs, 21)] hzind = [(cs, 21)] mesh = Mesh.TensorMesh([hxind, hyind, hzind], 'CCC') # Get cells inside the sphere sph_ind = PF.MagAnalytics.spheremodel(mesh, 0., 0., 0., self.rad) # Adjust susceptibility for volume difference Vratio = (4./3.*np.pi*self.rad**3.) / (np.sum(sph_ind)*cs**3.) model = np.ones(mesh.nC)*self.chi*Vratio self.model = model[sph_ind] # Creat reduced identity map for Linear Pproblem idenMap = Maps.IdentityMap(nP=int(sum(sph_ind))) # Create plane of observations xr = np.linspace(-20, 20, 21) yr = np.linspace(-20, 20, 21) X, Y = np.meshgrid(xr, yr) # Move obs plane 2 radius away from sphere Z = np.ones((xr.size, yr.size))*2.*self.rad self.locXyz = np.c_[Utils.mkvc(X), Utils.mkvc(Y), Utils.mkvc(Z)] rxLoc = PF.BaseMag.RxObs(self.locXyz) srcField = PF.BaseMag.SrcField([rxLoc], param=H0) self.survey = PF.BaseMag.LinearSurvey(srcField) self.prob_xyz = PF.Magnetics.MagneticIntegral(mesh, mapping=idenMap, actInd=sph_ind, forwardOnly=True, rtype='xyz') self.prob_tmi = PF.Magnetics.MagneticIntegral(mesh, mapping=idenMap, actInd=sph_ind, forwardOnly=True, rtype='tmi')
def setUp(self): # Define sphere parameters self.rad = 2. self.rho = 0.1 # Define a mesh cs = 0.2 hxind = [(cs, 21)] hyind = [(cs, 21)] hzind = [(cs, 21)] mesh = Mesh.TensorMesh([hxind, hyind, hzind], 'CCC') # Get cells inside the sphere sph_ind = PF.MagAnalytics.spheremodel(mesh, 0., 0., 0., self.rad) # Adjust density for volume difference Vratio = (4./3.*np.pi*self.rad**3.) / (np.sum(sph_ind)*cs**3.) model = np.ones(mesh.nC)*self.rho*Vratio self.model = model[sph_ind] # Create reduced identity map for Linear Pproblem idenMap = Maps.IdentityMap(nP=int(sum(sph_ind))) # Create plane of observations xr = np.linspace(-20, 20, 21) yr = np.linspace(-20, 20, 21) X, Y = np.meshgrid(xr, yr) # Move obs plane 2 radius away from sphere Z = np.ones((xr.size, yr.size))*2.*self.rad self.locXyz = np.c_[Utils.mkvc(X), Utils.mkvc(Y), Utils.mkvc(Z)] rxLoc = PF.BaseGrav.RxObs(self.locXyz) srcField = PF.BaseGrav.SrcField([rxLoc]) self.survey = PF.BaseGrav.LinearSurvey(srcField) self.prob_xyz = PF.Gravity.GravityIntegral(mesh, mapping=idenMap, actInd=sph_ind, forwardOnly=True, rtype='xyz') self.prob_z = PF.Gravity.GravityIntegral(mesh, mapping=idenMap, actInd=sph_ind, forwardOnly=True, rtype='z')
ii = 1 ddata = 9999. while ddata > 2.: ii += 1 indx = np.unravel_index(bc, (mesh.nCx, mesh.nCy, mesh.nCz), order='F') xbreak = np.unique(indx[0]) ybreak = np.unique(indx[1]) zbreak = np.unique(indx[2]) # Compute the new distance dl = np.sum(hxind[xbreak]) dx = float(hxind[xbreak].min() / 2) nx = dl / dx hxind = np.r_[hxind[0:xbreak.min()], np.ones(nx) * dx, hxind[xbreak.max():]] dl = np.sum(hyind[ybreak]) dy = float(hyind[ybreak].min() / 2) ny = dl / dy hyind = np.r_[hyind[0:ybreak.min()], np.ones(ny) * dy, hyind[ybreak.max():]] dl = np.sum(hzind[zbreak]) dz = float(hzind[zbreak].min() / 2)
ylim = (546000, 546750) xlim = (422900, 423675) # Takes two points from ginput and create survey temp = plt.ginput(2) # Add z coordinate nz = mesh.vectorNz endp = np.c_[np.asarray(temp), np.ones(2).T * nz[-1]] # Create dipole survey receivers and plot nrx = 10 ab = 40 a = 20 # Evenly distribute transmitters for now and put on surface dplen = np.sqrt(np.sum((endp[1, :] - endp[0, :])**2)) dp_x = (endp[1, 0] - endp[0, 0]) / dplen dp_y = (endp[1, 1] - endp[0, 1]) / dplen nstn = np.floor(dplen / ab) stn_x = endp[0, 0] + np.cumsum(np.ones(nstn) * dp_x * ab) stn_y = endp[0, 1] + np.cumsum(np.ones(nstn) * dp_y * ab) plt.scatter(stn_x, stn_y, s=100, c='w') M = np.c_[stn_x - a * dp_x, stn_y - a * dp_y, np.ones(nstn).T * nz[-1]] N = np.c_[stn_x + a * dp_x, stn_y + a * dp_y, np.ones(nstn).T * nz[-1]] plt.scatter(M[:, 0], M[:, 1], s=10, c='r') plt.scatter(N[:, 0], N[:, 1], s=10, c='b')
def xy_2_r(x1, x2, y1, y2): r = np.sqrt(np.sum((x2 - x1)**2 + (y2 - y1)**2)) return r
def _r2(xyz): return np.sum(xyz**2,1)
def _fastInnerProductDeriv(self, projType, prop, invProp=False, invMat=False): """ :param str projType: 'E' or 'F' :param TensorType tensorType: type of the tensor :param bool invProp: inverts the material property :param bool invMat: inverts the matrix :rtype: function :return: dMdmu, the derivative of the inner product matrix """ assert projType in ["F", "E"], "projType must be 'F' for faces or 'E'" " for edges" tensorType = Utils.TensorType(self, prop) dMdprop = None if invMat or invProp: MI = self._fastInnerProduct(projType, prop, invProp=invProp, invMat=invMat) # number of elements we are averaging (equals dim for regular # meshes, but for cyl, where we use symmetry, it is 1 for edge # variables and 2 for face variables) if self._meshType == "CYL": n_elements = np.sum(getattr(self, "vn" + projType).nonzero()) else: n_elements = self.dim if tensorType == 0: # isotropic, constant Av = getattr(self, "ave" + projType + "2CC") V = Utils.sdiag(self.vol) ones = sp.csr_matrix((np.ones(self.nC), (range(self.nC), np.zeros(self.nC))), shape=(self.nC, 1)) if not invMat and not invProp: dMdprop = n_elements * Av.T * V * ones elif invMat and invProp: dMdprop = n_elements * ( Utils.sdiag(MI.diagonal() ** 2) * Av.T * V * ones * Utils.sdiag(1.0 / prop ** 2) ) elif invProp: dMdprop = n_elements * Av.T * V * Utils.sdiag(-1.0 / prop ** 2) elif invMat: dMdprop = n_elements * (Utils.sdiag(-MI.diagonal() ** 2) * Av.T * V) elif tensorType == 1: # isotropic, variable in space Av = getattr(self, "ave" + projType + "2CC") V = Utils.sdiag(self.vol) if not invMat and not invProp: dMdprop = n_elements * Av.T * V elif invMat and invProp: dMdprop = n_elements * (Utils.sdiag(MI.diagonal() ** 2) * Av.T * V * Utils.sdiag(1.0 / prop ** 2)) elif invProp: dMdprop = n_elements * Av.T * V * Utils.sdiag(-1.0 / prop ** 2) elif invMat: dMdprop = n_elements * (Utils.sdiag(-MI.diagonal() ** 2) * Av.T * V) elif tensorType == 2: # anisotropic Av = getattr(self, "ave" + projType + "2CCV") V = sp.kron(sp.identity(self.dim), Utils.sdiag(self.vol)) if self._meshType == "CYL": Zero = sp.csr_matrix((self.nC, self.nC)) Eye = sp.eye(self.nC) if projType == "E": P = sp.hstack([Zero, Eye, Zero]) # print(P.todense()) elif projType == "F": P = sp.vstack([sp.hstack([Eye, Zero, Zero]), sp.hstack([Zero, Zero, Eye])]) # print(P.todense()) else: P = sp.eye(self.nC * self.dim) if not invMat and not invProp: dMdprop = Av.T * P * V elif invMat and invProp: dMdprop = Utils.sdiag(MI.diagonal() ** 2) * Av.T * P * V * Utils.sdiag(1.0 / prop ** 2) elif invProp: dMdprop = Av.T * P * V * Utils.sdiag(-1.0 / prop ** 2) elif invMat: dMdprop = Utils.sdiag(-MI.diagonal() ** 2) * Av.T * P * V if dMdprop is not None: def innerProductDeriv(v=None): if v is None: warnings.warn( "Depreciation Warning: " "TensorMesh.innerProductDeriv." " You should be supplying a vector. " "Use: sdiag(u)*dMdprop", FutureWarning, ) return dMdprop return Utils.sdiag(v) * dMdprop return innerProductDeriv else: return None
def run(plotIt=True): """ MT: 1D: Inversion ================= Forward model 1D MT data. Setup and run a MT 1D inversion. """ ## Setup the forward modeling # Setting up 1D mesh and conductivity models to forward model data. # Frequency nFreq = 26 freqs = np.logspace(2, -3, nFreq) # Set mesh parameters ct = 10 air = simpeg.Utils.meshTensor([(ct, 25, 1.4)]) core = np.concatenate( (np.kron(simpeg.Utils.meshTensor([(ct, 10, -1.3)]), np.ones( (5, ))), simpeg.Utils.meshTensor([(ct, 5)]))) bot = simpeg.Utils.meshTensor([(core[0], 25, -1.4)]) x0 = -np.array([np.sum(np.concatenate((core, bot)))]) # Make the model m1d = simpeg.Mesh.TensorMesh([np.concatenate((bot, core, air))], x0=x0) # Setup model varibles active = m1d.vectorCCx < 0. layer1 = (m1d.vectorCCx < -500.) & (m1d.vectorCCx >= -800.) layer2 = (m1d.vectorCCx < -3500.) & (m1d.vectorCCx >= -5000.) # Set the conductivity values sig_half = 1e-2 sig_air = 1e-8 sig_layer1 = .2 sig_layer2 = .2 # Make the true model sigma_true = np.ones(m1d.nCx) * sig_air sigma_true[active] = sig_half sigma_true[layer1] = sig_layer1 sigma_true[layer2] = sig_layer2 # Extract the model m_true = np.log(sigma_true[active]) # Make the background model sigma_0 = np.ones(m1d.nCx) * sig_air sigma_0[active] = sig_half m_0 = np.log(sigma_0[active]) # Set the mapping actMap = simpeg.Maps.InjectActiveCells(m1d, active, np.log(1e-8), nC=m1d.nCx) mappingExpAct = simpeg.Maps.ExpMap(m1d) * actMap ## Setup the layout of the survey, set the sources and the connected receivers # Receivers rxList = [] rxList.append( NSEM.Rx.Point_impedance1D(simpeg.mkvc(np.array([-0.5]), 2).T, 'real')) rxList.append( NSEM.Rx.Point_impedance1D(simpeg.mkvc(np.array([-0.5]), 2).T, 'imag')) # Source list srcList = [] for freq in freqs: srcList.append(NSEM.Src.Planewave_xy_1Dprimary(rxList, freq)) # Make the survey survey = NSEM.Survey(srcList) survey.mtrue = m_true ## Set the problem problem = NSEM.Problem1D_ePrimSec(m1d, sigmaPrimary=sigma_0, mapping=mappingExpAct) problem.pair(survey) ## Forward model data # Project the data survey.dtrue = survey.dpred(m_true) survey.dobs = survey.dtrue + 0.01 * abs( survey.dtrue) * np.random.randn(*survey.dtrue.shape) if plotIt: fig = NSEM.Utils.dataUtils.plotMT1DModelData(problem, []) fig.suptitle('Target - smooth true') # Assign uncertainties std = 0.05 # 5% std survey.std = np.abs(survey.dobs * std) # Assign the data weight Wd = 1. / survey.std ## Setup the inversion proceedure # Define a counter C = simpeg.Utils.Counter() # Set the optimization opt = simpeg.Optimization.ProjectedGNCG(maxIter=25) opt.counter = C opt.lower = np.log(1e-4) opt.upper = np.log(5) opt.LSshorten = 0.1 opt.remember('xc') # Data misfit dmis = simpeg.DataMisfit.l2_DataMisfit(survey) dmis.Wd = Wd # Regularization - with a regularization mesh regMesh = simpeg.Mesh.TensorMesh([m1d.hx[active]], m1d.x0) reg = simpeg.Regularization.Tikhonov(regMesh) reg.mrefInSmooth = True reg.alpha_s = 1e-1 reg.alpha_x = 1. # Inversion problem invProb = simpeg.InvProblem.BaseInvProblem(dmis, reg, opt) invProb.counter = C # Beta cooling beta = simpeg.Directives.BetaSchedule() beta.coolingRate = 4. beta.coolingFactor = 4. betaest = simpeg.Directives.BetaEstimate_ByEig(beta0_ratio=100.) betaest.beta0 = 1. targmis = simpeg.Directives.TargetMisfit() targmis.target = survey.nD # Create an inversion object inv = simpeg.Inversion.BaseInversion( invProb, directiveList=[beta, betaest, targmis]) ## Run the inversion mopt = inv.run(m_0) if plotIt: fig = NSEM.Utils.dataUtils.plotMT1DModelData(problem, [mopt]) fig.suptitle('Target - smooth true') fig.axes[0].set_ylim([-10000, 500]) plt.show()
def _fastInnerProductDeriv(self, projType, prop, invProp=False, invMat=False): """ :param str projType: 'E' or 'F' :param TensorType tensorType: type of the tensor :param bool invProp: inverts the material property :param bool invMat: inverts the matrix :rtype: function :return: dMdmu, the derivative of the inner product matrix """ assert projType in ['F', 'E'], ("projType must be 'F' for faces or 'E'" " for edges") tensorType = Utils.TensorType(self, prop) dMdprop = None if invMat or invProp: MI = self._fastInnerProduct(projType, prop, invProp=invProp, invMat=invMat) # number of elements we are averaging (equals dim for regular # meshes, but for cyl, where we use symmetry, it is 1 for edge # variables and 2 for face variables) if self._meshType == 'CYL': n_elements = np.sum(getattr(self, 'vn'+projType).nonzero()) else: n_elements = self.dim if tensorType == 0: # isotropic, constant Av = getattr(self, 'ave'+projType+'2CC') V = Utils.sdiag(self.vol) ones = sp.csr_matrix((np.ones(self.nC), (range(self.nC), np.zeros(self.nC))), shape=(self.nC, 1)) if not invMat and not invProp: dMdprop = n_elements * Av.T * V * ones elif invMat and invProp: dMdprop = n_elements * (Utils.sdiag(MI.diagonal()**2) * Av.T * V * ones * Utils.sdiag(1./prop**2)) elif invProp: dMdprop = n_elements * Av.T * V * Utils.sdiag(- 1./prop**2) elif invMat: dMdprop = n_elements * (Utils.sdiag(- MI.diagonal()**2) * Av.T * V) elif tensorType == 1: # isotropic, variable in space Av = getattr(self, 'ave'+projType+'2CC') V = Utils.sdiag(self.vol) if not invMat and not invProp: dMdprop = n_elements * Av.T * V elif invMat and invProp: dMdprop = n_elements * (Utils.sdiag(MI.diagonal()**2) * Av.T * V * Utils.sdiag(1./prop**2)) elif invProp: dMdprop = n_elements * Av.T * V * Utils.sdiag(-1./prop**2) elif invMat: dMdprop = n_elements * (Utils.sdiag(- MI.diagonal()**2) * Av.T * V) elif tensorType == 2: # anisotropic Av = getattr(self, 'ave'+projType+'2CCV') V = sp.kron(sp.identity(self.dim), Utils.sdiag(self.vol)) if self._meshType == 'CYL': Zero = sp.csr_matrix((self.nC, self.nC)) Eye = sp.eye(self.nC) if projType == 'E': P = sp.hstack([Zero, Eye, Zero]) # print P.todense() elif projType == 'F': P = sp.vstack([sp.hstack([Eye, Zero, Zero]), sp.hstack([Zero, Zero, Eye])]) # print P.todense() else: P = sp.eye(self.nC*self.dim) if not invMat and not invProp: dMdprop = Av.T * P * V elif invMat and invProp: dMdprop = (Utils.sdiag(MI.diagonal()**2) * Av.T * P * V * Utils.sdiag(1./prop**2)) elif invProp: dMdprop = Av.T * P * V * Utils.sdiag(-1./prop**2) elif invMat: dMdprop = Utils.sdiag(- MI.diagonal()**2) * Av.T * P * V if dMdprop is not None: def innerProductDeriv(v=None): if v is None: warnings.warn("Depreciation Warning: " "TensorMesh.innerProductDeriv." " You should be supplying a vector. " "Use: sdiag(u)*dMdprop", FutureWarning) return dMdprop return Utils.sdiag(v) * dMdprop return innerProductDeriv else: return None
def run(loc=None, sig=None, radi=None, param=None, stype='dpdp', plotIt=True): """ DC Forward Simulation ===================== Forward model conductive spheres in a half-space and plot a pseudo-section Created by @fourndo on Mon Feb 01 19:28:06 2016 """ assert stype in ['pdp', 'dpdp'], "Source type (stype) must be pdp or dpdp (pole dipole or dipole dipole)" if loc is None: loc = np.c_[[-50.,0.,-50.],[50.,0.,-50.]] if sig is None: sig = np.r_[1e-2,1e-1,1e-3] if radi is None: radi = np.r_[25.,25.] if param is None: param = np.r_[30.,30.,5] # First we need to create a mesh and a model. # This is our mesh dx = 5. hxind = [(dx,15,-1.3), (dx, 75), (dx,15,1.3)] hyind = [(dx,15,-1.3), (dx, 10), (dx,15,1.3)] hzind = [(dx,15,-1.3),(dx, 15)] mesh = Mesh.TensorMesh([hxind, hyind, hzind], 'CCN') # Set background conductivity model = np.ones(mesh.nC) * sig[0] # First anomaly ind = Utils.ModelBuilder.getIndicesSphere(loc[:,0],radi[0],mesh.gridCC) model[ind] = sig[1] # Second anomaly ind = Utils.ModelBuilder.getIndicesSphere(loc[:,1],radi[1],mesh.gridCC) model[ind] = sig[2] # Get index of the center indy = int(mesh.nCy/2) # Plot the model for reference # Define core mesh extent xlim = 200 zlim = 125 # Specify the survey type: "pdp" | "dpdp" # Then specify the end points of the survey. Let's keep it simple for now and survey above the anomalies, top of the mesh ends = [(-175,0),(175,0)] ends = np.c_[np.asarray(ends),np.ones(2).T*mesh.vectorNz[-1]] # Snap the endpoints to the grid. Easier to create 2D section. indx = Utils.closestPoints(mesh, ends ) locs = np.c_[mesh.gridCC[indx,0],mesh.gridCC[indx,1],np.ones(2).T*mesh.vectorNz[-1]] # We will handle the geometry of the survey for you and create all the combination of tx-rx along line # [Tx, Rx] = DC.gen_DCIPsurvey(locs, mesh, stype, param[0], param[1], param[2]) survey, Tx, Rx = DC.gen_DCIPsurvey(locs, mesh, stype, param[0], param[1], param[2]) # Define some global geometry dl_len = np.sqrt( np.sum((locs[0,:] - locs[1,:])**2) ) dl_x = ( Tx[-1][0,1] - Tx[0][0,0] ) / dl_len dl_y = ( Tx[-1][1,1] - Tx[0][1,0] ) / dl_len azm = np.arctan(dl_y/dl_x) #Set boundary conditions mesh.setCellGradBC('neumann') # Define the differential operators needed for the DC problem Div = mesh.faceDiv Grad = mesh.cellGrad Msig = Utils.sdiag(1./(mesh.aveF2CC.T*(1./model))) A = Div*Msig*Grad # Change one corner to deal with nullspace A[0,0] = 1 A = sp.csc_matrix(A) # We will solve the system iteratively, so a pre-conditioner is helpful # This is simply a Jacobi preconditioner (inverse of the main diagonal) dA = A.diagonal() P = sp.spdiags(1/dA,0,A.shape[0],A.shape[0]) # Now we can solve the system for all the transmitters # We want to store the data data = [] # There is probably a more elegant way to do this, but we can just for-loop through the transmitters for ii in range(len(Tx)): start_time = time.time() # Let's time the calculations #print("Transmitter %i / %i\r" % (ii+1,len(Tx))) # Select dipole locations for receiver rxloc_M = np.asarray(Rx[ii][:,0:3]) rxloc_N = np.asarray(Rx[ii][:,3:]) # For usual cases "dpdp" or "gradient" if stype == 'pdp': # Create an "inifinity" pole tx = np.squeeze(Tx[ii][:,0:1]) tinf = tx + np.array([dl_x,dl_y,0])*dl_len*2 inds = Utils.closestPoints(mesh, np.c_[tx,tinf].T) RHS = mesh.getInterpolationMat(np.asarray(Tx[ii]).T, 'CC').T*( [-1] / mesh.vol[inds] ) else: inds = Utils.closestPoints(mesh, np.asarray(Tx[ii]).T ) RHS = mesh.getInterpolationMat(np.asarray(Tx[ii]).T, 'CC').T*( [-1,1] / mesh.vol[inds] ) # Iterative Solve Ainvb = sp.linalg.bicgstab(P*A,P*RHS, tol=1e-5) # We now have the potential everywhere phi = Utils.mkvc(Ainvb[0]) # Solve for phi on pole locations P1 = mesh.getInterpolationMat(rxloc_M, 'CC') P2 = mesh.getInterpolationMat(rxloc_N, 'CC') # Compute the potential difference dtemp = (P1*phi - P2*phi)*np.pi data.append( dtemp ) print '\rTransmitter {0} of {1} -> Time:{2} sec'.format(ii,len(Tx),time.time()- start_time), print 'Transmitter {0} of {1}'.format(ii,len(Tx)) print 'Forward completed' # Let's just convert the 3D format into 2D (distance along line) and plot # [Tx2d, Rx2d] = DC.convertObs_DC3D_to_2D(survey, np.ones(survey.nSrc)) survey2D = DC.convertObs_DC3D_to_2D(survey, np.ones(survey.nSrc)) survey2D.dobs =np.hstack(data) # Here is an example for the first tx-rx array if plotIt: import matplotlib.pyplot as plt fig = plt.figure() ax = plt.subplot(2,1,1, aspect='equal') mesh.plotSlice(np.log10(model), ax =ax, normal = 'Y', ind = indy,grid=True) ax.set_title('E-W section at '+str(mesh.vectorCCy[indy])+' m') plt.gca().set_aspect('equal', adjustable='box') plt.scatter(Tx[0][0,:],Tx[0][2,:],s=40,c='g', marker='v') plt.scatter(Rx[0][:,0::3],Rx[0][:,2::3],s=40,c='y') plt.xlim([-xlim,xlim]) plt.ylim([-zlim,mesh.vectorNz[-1]+dx]) ax = plt.subplot(2,1,2, aspect='equal') # Plot the location of the spheres for reference circle1=plt.Circle((loc[0,0]-Tx[0][0,0],loc[2,0]),radi[0],color='w',fill=False, lw=3) circle2=plt.Circle((loc[0,1]-Tx[0][0,0],loc[2,1]),radi[1],color='k',fill=False, lw=3) ax.add_artist(circle1) ax.add_artist(circle2) # Add the speudo section DC.plot_pseudoSection(survey2D,ax,stype) # plt.scatter(Tx2d[0][:],Tx[0][2,:],s=40,c='g', marker='v') # plt.scatter(Rx2d[0][:],Rx[0][:,2::3],s=40,c='y') # plt.plot(np.r_[Tx2d[0][0],Rx2d[-1][-1,-1]],np.ones(2)*mesh.vectorNz[-1], color='k') plt.ylim([-zlim,mesh.vectorNz[-1]+dx]) plt.show() return fig, ax
b0 = PF.MagAnalytics.IDTtoxyz(-H0[1], H0[2], H0[0]) rad = 2. chi = 0.01 # Define a mesh cs = 0.2 hxind = [(cs,10,1.3),(cs, 21),(cs,10,1.3)] hyind = [(cs,10,1.3),(cs, 21),(cs,10,1.3)] hzind = [(cs,10,1.3),(cs, 21),(cs,10,1.3)] mesh = Mesh.TensorMesh([hxind, hyind, hzind], 'CCC') # Get cells inside the sphere sph_ind = PF.MagAnalytics.spheremodel(mesh, 0., 0., 0., rad) # Adjust susceptibility for volume difference Vratio = (4./3.*np.pi*rad**3.) / (np.sum(sph_ind)*cs**3.) model = np.zeros(mesh.nC) model[sph_ind] = chi*Vratio m = model[sph_ind] # Creat reduced identity map for Linear Pproblem idenMap = Maps.IdentityMap(nP=int(sum(sph_ind))) # Create plane of observations xr = np.linspace(-10, 10, 21) yr = np.linspace(-10, 10, 21) X, Y = np.meshgrid(xr, yr) # Move obs plane 2 radius away from sphere Z = np.ones((xr.size, yr.size))*2.*rad locXyz = np.c_[Utils.mkvc(X), Utils.mkvc(Y), Utils.mkvc(Z)]
H0 = (50000., 60., 270.) rad = 2. rho = 0.1 # Define a mesh cs = 0.5 hxind = [(cs, 5, -1.3), (cs, 9), (cs, 5, 1.3)] hyind = [(cs, 5, -1.3), (cs, 9), (cs, 5, 1.3)] hzind = [(cs, 5, -1.3), (cs, 9), (cs, 5, 1.3)] mesh = Mesh.TensorMesh([hxind, hyind, hzind], 'CCC') # Get cells inside the sphere sph_ind = PF.MagAnalytics.spheremodel(mesh, 0., 0., 0., rad) # Adjust susceptibility for volume difference Vratio = (4. / 3. * np.pi * rad**3.) / (np.sum(sph_ind) * cs**3.) model = np.ones(mesh.nC) * 1e-8 model[sph_ind] = 0.01 rxLoc = np.asarray([np.r_[0, 0, 4.]]) bzi = FDEM.Rx.Point_bSecondary(rxLoc, 'z', 'real') bzr = FDEM.Rx.Point_bSecondary(rxLoc, 'z', 'imag') freqs = [400] #np.logspace(2, 3, 5) srcLoc = np.r_[0, 0, 4.] srcList = [ FDEM.Src.MagDipole([bzr, bzi], freq, srcLoc, orientation='Z') for freq in freqs ]
def xy_2_r(x1,x2,y1,y2): r = np.sqrt( np.sum((x2 - x1)**2 + (y2 - y1)**2) ) return r
def _r2(xyz): return np.sum(xyz**2, 1)
# #%% Create dcin2d inversion files and run dx = 20. dl_len = np.max(srcMat[lineID == 0, 0, 0]) - np.min(srcMat[lineID == 0, 0, 0]) nc = np.ceil(dl_len / dx) + 10 padx = dx * np.power(1.4, range(1, padc)) # Creating padding cells hx = np.r_[padx[::-1], np.ones(nc) * dx, padx] hz = np.r_[padx[::-1], np.ones(int(nc / 5)) * dx] # Create mesh with 0 coordinate centerer on the ginput points in cell center mesh2d = Mesh.TensorMesh([hx, hz], x0=(-np.sum(padx) + np.min(srcMat[0][:, 0]), np.ceil(np.max(srcMat[0][0, 2])) - np.sum(hz))) inv_dir = home_dir + '\Inv2D' if not os.path.exists(inv_dir): os.makedirs(inv_dir) mshfile2d = 'Mesh_2D.msh' modfile2d = 'MtIsa_2D.con' obsfile2d = 'FWR_3D_2_2D.dat' ipfile2d = 'IP_2D.dat' inp_file = 'dcinv2d.inp' ini_mod = 1e-2 ref_mod = 1e-2
def run(plotIt=True): """ MT: 1D: Inversion ================= Forward model 1D MT data. Setup and run a MT 1D inversion. """ ## Setup the forward modeling # Setting up 1D mesh and conductivity models to forward model data. # Frequency nFreq = 26 freqs = np.logspace(2,-3,nFreq) # Set mesh parameters ct = 10 air = simpeg.Utils.meshTensor([(ct,25,1.4)]) core = np.concatenate( ( np.kron(simpeg.Utils.meshTensor([(ct,10,-1.3)]),np.ones((5,))) , simpeg.Utils.meshTensor([(ct,5)]) ) ) bot = simpeg.Utils.meshTensor([(core[0],25,-1.4)]) x0 = -np.array([np.sum(np.concatenate((core,bot)))]) # Make the model m1d = simpeg.Mesh.TensorMesh([np.concatenate((bot,core,air))], x0=x0) # Setup model varibles active = m1d.vectorCCx<0. layer1 = (m1d.vectorCCx<-500.) & (m1d.vectorCCx>=-800.) layer2 = (m1d.vectorCCx<-3500.) & (m1d.vectorCCx>=-5000.) # Set the conductivity values sig_half = 1e-2 sig_air = 1e-8 sig_layer1 = .2 sig_layer2 = .2 # Make the true model sigma_true = np.ones(m1d.nCx)*sig_air sigma_true[active] = sig_half sigma_true[layer1] = sig_layer1 sigma_true[layer2] = sig_layer2 # Extract the model m_true = np.log(sigma_true[active]) # Make the background model sigma_0 = np.ones(m1d.nCx)*sig_air sigma_0[active] = sig_half m_0 = np.log(sigma_0[active]) # Set the mapping actMap = simpeg.Maps.InjectActiveCells(m1d, active, np.log(1e-8), nC=m1d.nCx) mappingExpAct = simpeg.Maps.ExpMap(m1d) * actMap ## Setup the layout of the survey, set the sources and the connected receivers # Receivers rxList = [] rxList.append(NSEM.Rx.Point_impedance1D(simpeg.mkvc(np.array([-0.5]),2).T,'real')) rxList.append(NSEM.Rx.Point_impedance1D(simpeg.mkvc(np.array([-0.5]),2).T,'imag')) # Source list srcList =[] for freq in freqs: srcList.append(NSEM.Src.Planewave_xy_1Dprimary(rxList,freq)) # Make the survey survey = NSEM.Survey(srcList) survey.mtrue = m_true ## Set the problem problem = NSEM.Problem1D_ePrimSec(m1d,sigmaPrimary=sigma_0,mapping=mappingExpAct) problem.pair(survey) ## Forward model data # Project the data survey.dtrue = survey.dpred(m_true) survey.dobs = survey.dtrue + 0.01*abs(survey.dtrue)*np.random.randn(*survey.dtrue.shape) if plotIt: fig = NSEM.Utils.dataUtils.plotMT1DModelData(problem,[]) fig.suptitle('Target - smooth true') # Assign uncertainties std = 0.05 # 5% std survey.std = np.abs(survey.dobs*std) # Assign the data weight Wd = 1./survey.std ## Setup the inversion proceedure # Define a counter C = simpeg.Utils.Counter() # Set the optimization opt = simpeg.Optimization.ProjectedGNCG(maxIter = 25) opt.counter = C opt.lower = np.log(1e-4) opt.upper = np.log(5) opt.LSshorten = 0.1 opt.remember('xc') # Data misfit dmis = simpeg.DataMisfit.l2_DataMisfit(survey) dmis.Wd = Wd # Regularization - with a regularization mesh regMesh = simpeg.Mesh.TensorMesh([m1d.hx[active]],m1d.x0) reg = simpeg.Regularization.Tikhonov(regMesh) reg.mrefInSmooth = True reg.alpha_s = 1e-1 reg.alpha_x = 1. # Inversion problem invProb = simpeg.InvProblem.BaseInvProblem(dmis, reg, opt) invProb.counter = C # Beta cooling beta = simpeg.Directives.BetaSchedule() beta.coolingRate = 4. beta.coolingFactor = 4. betaest = simpeg.Directives.BetaEstimate_ByEig(beta0_ratio=100.) betaest.beta0 = 1. targmis = simpeg.Directives.TargetMisfit() targmis.target = survey.nD # Create an inversion object inv = simpeg.Inversion.BaseInversion(invProb, directiveList=[beta,betaest,targmis]) ## Run the inversion mopt = inv.run(m_0) if plotIt: fig = NSEM.Utils.dataUtils.plotMT1DModelData(problem,[mopt]) fig.suptitle('Target - smooth true') fig.axes[0].set_ylim([-10000,500]) plt.show()
def run(loc=None, sig=None, radi=None, param=None, stype='dpdp', plotIt=True): """ DC Forward Simulation ===================== Forward model conductive spheres in a half-space and plot a pseudo-section Created by @fourndo on Mon Feb 01 19:28:06 2016 """ assert stype in [ 'pdp', 'dpdp' ], "Source type (stype) must be pdp or dpdp (pole dipole or dipole dipole)" if loc is None: loc = np.c_[[-50., 0., -50.], [50., 0., -50.]] if sig is None: sig = np.r_[1e-2, 1e-1, 1e-3] if radi is None: radi = np.r_[25., 25.] if param is None: param = np.r_[30., 30., 5] # First we need to create a mesh and a model. # This is our mesh dx = 5. hxind = [(dx, 15, -1.3), (dx, 75), (dx, 15, 1.3)] hyind = [(dx, 15, -1.3), (dx, 10), (dx, 15, 1.3)] hzind = [(dx, 15, -1.3), (dx, 15)] mesh = Mesh.TensorMesh([hxind, hyind, hzind], 'CCN') # Set background conductivity model = np.ones(mesh.nC) * sig[0] # First anomaly ind = Utils.ModelBuilder.getIndicesSphere(loc[:, 0], radi[0], mesh.gridCC) model[ind] = sig[1] # Second anomaly ind = Utils.ModelBuilder.getIndicesSphere(loc[:, 1], radi[1], mesh.gridCC) model[ind] = sig[2] # Get index of the center indy = int(mesh.nCy / 2) # Plot the model for reference # Define core mesh extent xlim = 200 zlim = 125 # Specify the survey type: "pdp" | "dpdp" # Then specify the end points of the survey. Let's keep it simple for now and survey above the anomalies, top of the mesh ends = [(-175, 0), (175, 0)] ends = np.c_[np.asarray(ends), np.ones(2).T * mesh.vectorNz[-1]] # Snap the endpoints to the grid. Easier to create 2D section. indx = Utils.closestPoints(mesh, ends) locs = np.c_[mesh.gridCC[indx, 0], mesh.gridCC[indx, 1], np.ones(2).T * mesh.vectorNz[-1]] # We will handle the geometry of the survey for you and create all the combination of tx-rx along line # [Tx, Rx] = DC.gen_DCIPsurvey(locs, mesh, stype, param[0], param[1], param[2]) survey, Tx, Rx = DC.gen_DCIPsurvey(locs, mesh, stype, param[0], param[1], param[2]) # Define some global geometry dl_len = np.sqrt(np.sum((locs[0, :] - locs[1, :])**2)) dl_x = (Tx[-1][0, 1] - Tx[0][0, 0]) / dl_len dl_y = (Tx[-1][1, 1] - Tx[0][1, 0]) / dl_len azm = np.arctan(dl_y / dl_x) #Set boundary conditions mesh.setCellGradBC('neumann') # Define the differential operators needed for the DC problem Div = mesh.faceDiv Grad = mesh.cellGrad Msig = Utils.sdiag(1. / (mesh.aveF2CC.T * (1. / model))) A = Div * Msig * Grad # Change one corner to deal with nullspace A[0, 0] = 1 A = sp.csc_matrix(A) # We will solve the system iteratively, so a pre-conditioner is helpful # This is simply a Jacobi preconditioner (inverse of the main diagonal) dA = A.diagonal() P = sp.spdiags(1 / dA, 0, A.shape[0], A.shape[0]) # Now we can solve the system for all the transmitters # We want to store the data data = [] # There is probably a more elegant way to do this, but we can just for-loop through the transmitters for ii in range(len(Tx)): start_time = time.time() # Let's time the calculations #print("Transmitter %i / %i\r" % (ii+1,len(Tx))) # Select dipole locations for receiver rxloc_M = np.asarray(Rx[ii][:, 0:3]) rxloc_N = np.asarray(Rx[ii][:, 3:]) # For usual cases "dpdp" or "gradient" if stype == 'pdp': # Create an "inifinity" pole tx = np.squeeze(Tx[ii][:, 0:1]) tinf = tx + np.array([dl_x, dl_y, 0]) * dl_len * 2 inds = Utils.closestPoints(mesh, np.c_[tx, tinf].T) RHS = mesh.getInterpolationMat(np.asarray(Tx[ii]).T, 'CC').T * ([-1] / mesh.vol[inds]) else: inds = Utils.closestPoints(mesh, np.asarray(Tx[ii]).T) RHS = mesh.getInterpolationMat(np.asarray(Tx[ii]).T, 'CC').T * ([-1, 1] / mesh.vol[inds]) # Iterative Solve Ainvb = sp.linalg.bicgstab(P * A, P * RHS, tol=1e-5) # We now have the potential everywhere phi = Utils.mkvc(Ainvb[0]) # Solve for phi on pole locations P1 = mesh.getInterpolationMat(rxloc_M, 'CC') P2 = mesh.getInterpolationMat(rxloc_N, 'CC') # Compute the potential difference dtemp = (P1 * phi - P2 * phi) * np.pi data.append(dtemp) print '\rTransmitter {0} of {1} -> Time:{2} sec'.format( ii, len(Tx), time.time() - start_time), print 'Transmitter {0} of {1}'.format(ii, len(Tx)) print 'Forward completed' # Let's just convert the 3D format into 2D (distance along line) and plot # [Tx2d, Rx2d] = DC.convertObs_DC3D_to_2D(survey, np.ones(survey.nSrc)) survey2D = DC.convertObs_DC3D_to_2D(survey, np.ones(survey.nSrc)) survey2D.dobs = np.hstack(data) # Here is an example for the first tx-rx array if plotIt: import matplotlib.pyplot as plt fig = plt.figure() ax = plt.subplot(2, 1, 1, aspect='equal') mesh.plotSlice(np.log10(model), ax=ax, normal='Y', ind=indy, grid=True) ax.set_title('E-W section at ' + str(mesh.vectorCCy[indy]) + ' m') plt.gca().set_aspect('equal', adjustable='box') plt.scatter(Tx[0][0, :], Tx[0][2, :], s=40, c='g', marker='v') plt.scatter(Rx[0][:, 0::3], Rx[0][:, 2::3], s=40, c='y') plt.xlim([-xlim, xlim]) plt.ylim([-zlim, mesh.vectorNz[-1] + dx]) ax = plt.subplot(2, 1, 2, aspect='equal') # Plot the location of the spheres for reference circle1 = plt.Circle((loc[0, 0] - Tx[0][0, 0], loc[2, 0]), radi[0], color='w', fill=False, lw=3) circle2 = plt.Circle((loc[0, 1] - Tx[0][0, 0], loc[2, 1]), radi[1], color='k', fill=False, lw=3) ax.add_artist(circle1) ax.add_artist(circle2) # Add the speudo section DC.plot_pseudoSection(survey2D, ax, stype) # plt.scatter(Tx2d[0][:],Tx[0][2,:],s=40,c='g', marker='v') # plt.scatter(Rx2d[0][:],Rx[0][:,2::3],s=40,c='y') # plt.plot(np.r_[Tx2d[0][0],Rx2d[-1][-1,-1]],np.ones(2)*mesh.vectorNz[-1], color='k') plt.ylim([-zlim, mesh.vectorNz[-1] + dx]) plt.show() return fig, ax
def animate(ii): #for ii in range(1): removeFrame() # Grab current line and indx = np.where(lineID == ii)[0] srcLeft = [] obs_l = [] obs = [] srcRight = [] obs_r = [] srcList = [] # Split the obs file into left and right # Split the obs file into left and right for jj in range(len(indx)): # Grab corresponding data obs = np.hstack([obs, DCdobs2D.dobs[dataID == indx[jj]]]) #std = dobs2D.std[dataID==indx[jj]] srcList.append(DCdobs2D.srcList[indx[jj]]) Tx = DCdobs2D.srcList[indx[jj]].loc Rx = DCdobs2D.srcList[indx[jj]].rxList[0].locs # Create mid-point location Cmid = (Tx[0][0] + Tx[1][0]) / 2 Pmid = (Rx[0][:, 0] + Rx[1][:, 0]) / 2 ileft = Pmid < Cmid iright = Pmid >= Cmid temp = np.zeros(len(ileft)) temp[ileft] = 1 obs_l = np.hstack([obs_l, temp]) temp = np.zeros(len(iright)) temp[iright] = 1 obs_r = np.hstack([obs_r, temp]) if np.any(ileft): rx = DC.RxDipole(Rx[0][ileft, :], Rx[1][ileft, :]) srcLeft.append(DC.SrcDipole([rx], Tx[0], Tx[1])) #std_l = np.hstack([std_l,std[ileft]]) if np.any(iright): rx = DC.RxDipole(Rx[0][iright, :], Rx[1][iright, :]) srcRight.append(DC.SrcDipole([rx], Tx[0], Tx[1])) #obs_r = np.hstack([obs_r,iright]) #std_r = np.hstack([std_r,std[iright]]) DC2D_full = DC.SurveyDC(srcList) DC2D_full.dobs = np.asarray(obs) DC2D_full.std = DC2D_full.dobs * 0. DC2D_full.std[obs_l == 1] = np.abs(DC2D_full.dobs[obs_l == 1]) * 0.02 + 2e-5 DC2D_full.std[obs_r == 1] = np.abs(DC2D_full.dobs[obs_r == 1]) * 0.06 + 4e-5 # DC2D_l = DC.SurveyDC(srcLeft) # DC2D_l.dobs = np.asarray(obs[obs_l==1]) # DC2D_l.std = np.abs(np.asarray(DC2D_l.dobs))*0.05 + 2e-5 # # DC2D_r = DC.SurveyDC(srcRight) # DC2D_r.dobs = np.asarray(obs[obs_r==1]) # DC2D_r.std = np.abs(np.asarray(DC2D_r.dobs))*0.05 + 2e-5 survey = DC2D_full # Export data file DC.writeUBC_DCobs(inv_dir + dsep + obsfile2d, survey, '2D', 'SIMPLE') # Write input file fid = open(inv_dir + dsep + inp_file, 'w') fid.write('OBS LOC_X %s \n' % obsfile2d) fid.write('MESH FILE %s \n' % mshfile2d) fid.write('CHIFACT 1 \n') fid.write('TOPO DEFAULT \n') fid.write('INIT_MOD VALUE %e\n' % ini_mod) fid.write('REF_MOD VALUE %e\n' % ref_mod) fid.write('ALPHA VALUE %f %f %F\n' % (1. / dx**4., 1, 1)) fid.write('WEIGHT DEFAULT\n') fid.write('STORE_ALL_MODELS FALSE\n') fid.write('INVMODE CG\n') #fid.write('CG_PARAM 200 1e-4\n') fid.write('USE_MREF FALSE\n') #fid.write('BOUNDS VALUE 1e-4 1e+2\n') fid.close() os.chdir(inv_dir) os.system('dcinv2d ' + inp_file) #%% Load DC model and predicted data minv = DC.readUBC_DC2DModel(inv_dir + dsep + 'dcinv2d.con') minv = np.reshape(minv, (mesh2d.nCy, mesh2d.nCx)) #%% Repeat for IP data indx = np.where(IPlineID == ii)[0] srcLeft = [] obs_l = [] std_l = [] srcRight = [] obs_r = [] std_r = [] obs_full = [] std_full = [] srcList = [] # Split the obs file into left and right for jj in range(len(indx)): srcList.append(IPdobs2D.srcList[indx[jj]]) # Grab corresponding data obs = IPdobs2D.dobs[IPdataID == indx[jj]] std = IPdobs2D.std[IPdataID == indx[jj]] obs_full = np.hstack([obs_full, obs]) std_full = np.hstack([std_full, std]) Tx = IPdobs2D.srcList[indx[jj]].loc Rx = IPdobs2D.srcList[indx[jj]].rxList[0].locs # Create mid-point location Cmid = (Tx[0][0] + Tx[1][0]) / 2 Pmid = (Rx[0][:, 0] + Rx[1][:, 0]) / 2 ileft = Pmid < Cmid iright = Pmid >= Cmid temp = np.zeros(len(ileft)) temp[ileft] = 1 obs_l = np.hstack([obs_l, temp]) temp = np.zeros(len(iright)) temp[iright] = 1 obs_r = np.hstack([obs_r, temp]) if np.any(ileft): rx = DC.RxDipole(Rx[0][ileft, :], Rx[1][ileft, :]) srcLeft.append(DC.SrcDipole([rx], Tx[0], Tx[1])) #std_l = np.hstack([std_l,std[ileft]]) if np.any(iright): rx = DC.RxDipole(Rx[0][iright, :], Rx[1][iright, :]) srcRight.append(DC.SrcDipole([rx], Tx[0], Tx[1])) IP2D_full = DC.SurveyDC(srcList) IP2D_full.dobs = np.asarray(obs_full) IP2D_full.std = np.asarray(std_full) IP2D_l = DC.SurveyDC(srcLeft) IP2D_l.dobs = np.asarray(obs_full[obs_l == 1]) #IP2D_l.std = np.abs(np.asarray(obs_l))*0.03 + 2e-2 IP2D_r = DC.SurveyDC(srcRight) IP2D_r.dobs = np.asarray(obs_full[obs_r == 1]) #IP2D_r.std = np.abs(np.asarray(obs_r))*0.03 + 1e-2 id_lbe = int(IPsurvey.srcList[indx[jj]].loc[0][1]) mesh3d = Mesh.TensorMesh([hx, np.ones(1) * 100., hz], x0=(-np.sum(padx) + np.min(srcMat[0][:, 0]), id_lbe - 50, np.max(srcMat[0][0, 2]) - np.sum(hz))) Mesh.TensorMesh.writeUBC(mesh3d, home_dir + dsep + 'Mesh' + str(id_lbe) + '.msh') global ax1, ax2, ax3, ax5, ax6, fig ax2 = plt.subplot(3, 2, 2) ph = DC.plot_pseudoSection(IP2D_r, ax2, stype='pdp', dtype='volt', colorbar=False) ax2.set_title('Observed P-DP', fontsize=10) plt.xlim([xmin, xmax]) plt.ylim([zmin, zmax]) plt.gca().set_aspect('equal', adjustable='box') ax2.set_xticklabels([]) ax2.set_yticklabels([]) ax1 = plt.subplot(3, 2, 1) DC.plot_pseudoSection(IP2D_l, ax1, stype='pdp', dtype='volt', clim=(ph[0].get_clim()[0], ph[0].get_clim()[1]), colorbar=False) ax1.set_title('Observed DP-P', fontsize=10) plt.xlim([xmin, xmax]) plt.ylim([zmin, zmax]) plt.gca().set_aspect('equal', adjustable='box') ax1.set_xticklabels([]) z = np.linspace(np.min(ph[2]), np.max(ph[2]), 5) z_label = np.linspace(20, 1, 5) ax1.set_yticks(map(int, z)) ax1.set_yticklabels(map(str, map(int, z_label)), size=8) ax1.set_ylabel('n-spacing', fontsize=8) #%% Add labels bbox_props = dict(boxstyle="circle,pad=0.3", fc="r", ec="k", lw=1) ax2.text(0.00, 1, 'A', transform=ax2.transAxes, ha="left", va="center", size=6, bbox=bbox_props) bbox_props = dict(boxstyle="circle,pad=0.3", fc="y", ec="k", lw=1) ax2.text(0.1, 1, 'M', transform=ax2.transAxes, ha="left", va="center", size=6, bbox=bbox_props) bbox_props = dict(boxstyle="circle,pad=0.3", fc="g", ec="k", lw=1) ax2.text(0.2, 1, 'N', transform=ax2.transAxes, ha="left", va="center", size=6, bbox=bbox_props) bbox_props = dict(boxstyle="circle,pad=0.3", fc="g", ec="k", lw=1) ax1.text(0.00, 1, 'N', transform=ax1.transAxes, ha="left", va="center", size=6, bbox=bbox_props) bbox_props = dict(boxstyle="circle,pad=0.3", fc="y", ec="k", lw=1) ax1.text(0.1, 1, 'M', transform=ax1.transAxes, ha="left", va="center", size=6, bbox=bbox_props) bbox_props = dict(boxstyle="circle,pad=0.3", fc="r", ec="k", lw=1) ax1.text(0.2, 1, 'A', transform=ax1.transAxes, ha="left", va="center", size=6, bbox=bbox_props) survey = IP2D_full # Export data file DC.writeUBC_DCobs(inv_dir + dsep + ipfile2d, survey, '2D', 'SIMPLE', iptype=1) fid = open(inv_dir + dsep + inp_file, 'w') fid.write('OBS LOC_X %s \n' % ipfile2d) fid.write('MESH FILE %s \n' % mshfile2d) fid.write('CHIFACT 4 \n') fid.write('COND FILE dcinv2d.con\n') fid.write('TOPO DEFAULT \n') fid.write('INIT_MOD VALUE %e\n' % ini_mod) fid.write('REF_MOD VALUE 0.0\n') fid.write('ALPHA VALUE %f %f %F\n' % (1. / dx**4., 1, 1)) fid.write('WEIGHT DEFAULT\n') fid.write('STORE_ALL_MODELS FALSE\n') fid.write('INVMODE CG\n') #fid.write('CG_PARAM 200 1e-4\n') fid.write('USE_MREF FALSE\n') #fid.write('BOUNDS VALUE 1e-4 1e+2\n') fid.close() os.chdir(inv_dir) os.system('ipinv2d ' + inp_file) #%% Load model and predicted data minv = DC.readUBC_DC2DModel(inv_dir + dsep + 'ipinv2d.chg') minv = np.reshape(minv, (mesh2d.nCy, mesh2d.nCx)) Mesh.TensorMesh.writeModelUBC( mesh3d, home_dir + dsep + 'Model' + str(id_lbe) + '.chg', minv.T) dpre = DC.readUBC_DC2Dpre(inv_dir + dsep + 'ipinv2d.pre') DCpre = dpre['DCsurvey'] DCtemp = IP2D_l DCtemp.dobs = DCpre.dobs[obs_l == 1] ax5 = plt.subplot(3, 2, 3) DC.plot_pseudoSection(DCtemp, ax5, stype='pdp', dtype='volt', clim=(ph[0].get_clim()[0], ph[0].get_clim()[1]), colorbar=False) ax5.set_title('Predicted', fontsize=10) plt.xlim([xmin, xmax]) plt.ylim([zmin, zmax]) plt.gca().set_aspect('equal', adjustable='box') ax5.set_xticklabels([]) z = np.linspace(np.min(ph[2]), np.max(ph[2]), 5) z_label = np.linspace(20, 1, 5) ax5.set_yticks(map(int, z)) ax5.set_yticklabels(map(str, map(int, z_label)), size=8) ax5.set_ylabel('n-spacing', fontsize=8) DCtemp = IP2D_r DCtemp.dobs = DCpre.dobs[obs_r == 1] ax6 = plt.subplot(3, 2, 4) DC.plot_pseudoSection(DCtemp, ax6, stype='pdp', dtype='volt', clim=(ph[0].get_clim()[0], ph[0].get_clim()[1]), colorbar=False) ax6.set_title('Predicted', fontsize=10) plt.xlim([xmin, xmax]) plt.ylim([zmin, zmax]) plt.gca().set_aspect('equal', adjustable='box') ax6.set_xticklabels([]) ax6.set_yticklabels([]) pos = ax6.get_position() cbarax = fig.add_axes([ pos.x0 + 0.325, pos.y0 + 0.2, pos.width * 0.1, pos.height * 0.5 ]) ## the parameters are the specified position you set cb = fig.colorbar(ph[0], cax=cbarax, orientation="vertical", ax=ax6, ticks=np.linspace(ph[0].get_clim()[0], ph[0].get_clim()[1], 4), format="$10^{%.1f}$") cb.set_label("App. Charg.", size=8) ax3 = plt.subplot(3, 1, 3) ax3.set_title('2-D Model (S/m)', fontsize=10) ax3.set_xticks(map(int, x)) ax3.set_xticklabels(map(str, map(int, x))) ax3.set_xlabel('Easting (m)', fontsize=8) ax3.set_yticks(map(int, z)) ax3.set_yticklabels(map(str, map(int, z)), rotation='vertical') ax3.set_ylabel('Depth (m)', fontsize=8) plt.xlim([xmin, xmax]) plt.ylim([zmin / 2, zmax]) plt.gca().set_aspect('equal', adjustable='box') ph2 = plt.pcolormesh(mesh2d.vectorNx, mesh2d.vectorNy, (minv), vmin=vmin, vmax=vmax) plt.gca().tick_params(axis='both', which='major', labelsize=8) plt.draw() for ss in range(survey.nSrc): Tx = survey.srcList[ss].loc[0] plt.scatter(Tx[0], mesh2d.vectorNy[-1] + 10, s=10) pos = ax3.get_position() ax3.set_position([pos.x0 + 0.025, pos.y0, pos.width, pos.height]) pos = ax3.get_position() cbarax = fig.add_axes([ pos.x0 + 0.65, pos.y0 + 0.01, pos.width * 0.05, pos.height * 0.75 ]) ## the parameters are the specified position you set cb = fig.colorbar(ph2, cax=cbarax, orientation="vertical", ax=ax3, ticks=np.linspace(vmin, vmax, 4), format="%4.1f") cb.set_label("Chargeability", size=8) pos = ax1.get_position() ax1.set_position([pos.x0 + 0.03, pos.y0, pos.width, pos.height]) pos = ax5.get_position() ax5.set_position([pos.x0 + 0.03, pos.y0, pos.width, pos.height]) pos = ax2.get_position() ax2.set_position([pos.x0 - 0.03, pos.y0, pos.width, pos.height]) pos = ax6.get_position() ax6.set_position([pos.x0 - 0.03, pos.y0, pos.width, pos.height]) #%% Add the extra bbox_props = dict(boxstyle="rarrow,pad=0.3", fc="w", ec="k", lw=2) ax2.text(0.01, (float(ii) + 1.) / (len(uniqueID) + 2), 'N: ' + str(id_lbe), transform=fig.transFigure, ha="left", va="center", size=8, bbox=bbox_props) mrk_props = dict(boxstyle="square,pad=0.3", fc="w", ec="k", lw=2) ax2.text(0.01, 0.9, 'Line ID#', transform=fig.transFigure, ha="left", va="center", size=8, bbox=mrk_props) mrk_props = dict(boxstyle="square,pad=0.3", fc="b", ec="k", lw=2) for jj in range(len(uniqueID)): ax2.text(0.1, (float(jj) + 1.) / (len(uniqueID) + 2), ".", transform=fig.transFigure, ha="right", va="center", size=8, bbox=mrk_props) mrk_props = dict(boxstyle="square,pad=0.3", fc="r", ec="k", lw=2) ax2.text(0.1, (float(ii) + 1.) / (len(uniqueID) + 2), ".", transform=fig.transFigure, ha="right", va="center", size=8, bbox=mrk_props)
def evalDeriv(self, src, mesh, f, v, adjoint=False): """ The derivative of the projection wrt u :param MTsrc src: MT source :param TensorMesh mesh: Mesh defining the topology of the problem :param MTfields f: MT fields object of the source :param numpy.ndarray v: Random vector of size """ real_or_imag = self.projComp if not adjoint: if self.projType is 'Z1D': Pex = mesh.getInterpolationMat(self.locs[:,-1],'Fx') Pbx = mesh.getInterpolationMat(self.locs[:,-1],'Ex') # ex = Pex*mkvc(f[src,'e_1d'],2) # bx = Pbx*mkvc(f[src,'b_1d'],2)/mu_0 dP_de = -mkvc(Utils.sdiag(1./(Pbx*mkvc(f[src,'b_1d'],2)/mu_0))*(Pex*v),2) dP_db = mkvc( Utils.sdiag(Pex*mkvc(f[src,'e_1d'],2))*(Utils.sdiag(1./(Pbx*mkvc(f[src,'b_1d'],2)/mu_0)).T*Utils.sdiag(1./(Pbx*mkvc(f[src,'b_1d'],2)/mu_0)))*(Pbx*f._bDeriv_u(src,v)/mu_0),2) PDeriv_complex = np.sum(np.hstack((dP_de,dP_db)),1) elif self.projType is 'Z2D': raise NotImplementedError('Has not been implement for 2D impedance tensor') elif self.projType is 'Z3D': if self.locs.ndim == 3: eFLocs = self.locs[:,:,0] bFLocs = self.locs[:,:,1] else: eFLocs = self.locs bFLocs = self.locs # Get the projection Pex = mesh.getInterpolationMat(eFLocs,'Ex') Pey = mesh.getInterpolationMat(eFLocs,'Ey') Pbx = mesh.getInterpolationMat(bFLocs,'Fx') Pby = mesh.getInterpolationMat(bFLocs,'Fy') # Get the fields at location # px: x-polaration and py: y-polaration. ex_px = Pex*f[src,'e_px'] ey_px = Pey*f[src,'e_px'] ex_py = Pex*f[src,'e_py'] ey_py = Pey*f[src,'e_py'] hx_px = Pbx*f[src,'b_px']/mu_0 hy_px = Pby*f[src,'b_px']/mu_0 hx_py = Pbx*f[src,'b_py']/mu_0 hy_py = Pby*f[src,'b_py']/mu_0 # Derivatives as lambda functions # The size of the diratives should be nD,nU ex_px_u = lambda vec: Pex*f._e_pxDeriv_u(src,vec) ey_px_u = lambda vec: Pey*f._e_pxDeriv_u(src,vec) ex_py_u = lambda vec: Pex*f._e_pyDeriv_u(src,vec) ey_py_u = lambda vec: Pey*f._e_pyDeriv_u(src,vec) # NOTE: Think b_p?Deriv_u should return a 2*nF size matrix hx_px_u = lambda vec: Pbx*f._b_pxDeriv_u(src,vec)/mu_0 hy_px_u = lambda vec: Pby*f._b_pxDeriv_u(src,vec)/mu_0 hx_py_u = lambda vec: Pbx*f._b_pyDeriv_u(src,vec)/mu_0 hy_py_u = lambda vec: Pby*f._b_pyDeriv_u(src,vec)/mu_0 # Update the input vector sDiag = lambda t: Utils.sdiag(mkvc(t,2)) # Define the components of the derivative Hd = sDiag(1./(sDiag(hx_px)*hy_py - sDiag(hx_py)*hy_px)) Hd_uV = sDiag(hy_py)*hx_px_u(v) + sDiag(hx_px)*hy_py_u(v) - sDiag(hx_py)*hy_px_u(v) - sDiag(hy_px)*hx_py_u(v) # Calculate components if 'zxx' in self.rxType: Zij = sDiag(Hd*( sDiag(ex_px)*hy_py - sDiag(ex_py)*hy_px )) ZijN_uV = sDiag(hy_py)*ex_px_u(v) + sDiag(ex_px)*hy_py_u(v) - sDiag(ex_py)*hy_px_u(v) - sDiag(hy_px)*ex_py_u(v) elif 'zxy' in self.rxType: Zij = sDiag(Hd*(-sDiag(ex_px)*hx_py + sDiag(ex_py)*hx_px )) ZijN_uV = -sDiag(hx_py)*ex_px_u(v) - sDiag(ex_px)*hx_py_u(v) + sDiag(ex_py)*hx_px_u(v) + sDiag(hx_px)*ex_py_u(v) elif 'zyx' in self.rxType: Zij = sDiag(Hd*( sDiag(ey_px)*hy_py - sDiag(ey_py)*hy_px )) ZijN_uV = sDiag(hy_py)*ey_px_u(v) + sDiag(ey_px)*hy_py_u(v) - sDiag(ey_py)*hy_px_u(v) - sDiag(hy_px)*ey_py_u(v) elif 'zyy' in self.rxType: Zij = sDiag(Hd*(-sDiag(ey_px)*hx_py + sDiag(ey_py)*hx_px )) ZijN_uV = -sDiag(hx_py)*ey_px_u(v) - sDiag(ey_px)*hx_py_u(v) + sDiag(ey_py)*hx_px_u(v) + sDiag(hx_px)*ey_py_u(v) # Calculate the complex derivative PDeriv_complex = Hd * (ZijN_uV - Zij * Hd_uV ) elif self.projType is 'T3D': if self.locs.ndim == 3: eFLocs = self.locs[:,:,0] bFLocs = self.locs[:,:,1] else: eFLocs = self.locs bFLocs = self.locs # Get the projection Pbx = mesh.getInterpolationMat(bFLocs,'Fx') Pby = mesh.getInterpolationMat(bFLocs,'Fy') Pbz = mesh.getInterpolationMat(bFLocs,'Fz') # Get the fields at location # px: x-polaration and py: y-polaration. bx_px = Pbx*f[src,'b_px'] by_px = Pby*f[src,'b_px'] bz_px = Pbz*f[src,'b_px'] bx_py = Pbx*f[src,'b_py'] by_py = Pby*f[src,'b_py'] bz_py = Pbz*f[src,'b_py'] # Derivatives as lambda functions # NOTE: Think b_p?Deriv_u should return a 2*nF size matrix bx_px_u = lambda vec: Pbx*f._b_pxDeriv_u(src,vec) by_px_u = lambda vec: Pby*f._b_pxDeriv_u(src,vec) bz_px_u = lambda vec: Pbz*f._b_pxDeriv_u(src,vec) bx_py_u = lambda vec: Pbx*f._b_pyDeriv_u(src,vec) by_py_u = lambda vec: Pby*f._b_pyDeriv_u(src,vec) bz_py_u = lambda vec: Pbz*f._b_pyDeriv_u(src,vec) # Update the input vector sDiag = lambda t: Utils.sdiag(mkvc(t,2)) # Define the components of the derivative Hd = sDiag(1./(sDiag(bx_px)*by_py - sDiag(bx_py)*by_px)) Hd_uV = sDiag(by_py)*bx_px_u(v) + sDiag(bx_px)*by_py_u(v) - sDiag(bx_py)*by_px_u(v) - sDiag(by_px)*bx_py_u(v) if 'tzx' in self.rxType: Tij = sDiag(Hd*( - sDiag(by_px)*bz_py + sDiag(by_py)*bz_px )) TijN_uV = -sDiag(by_px)*bz_py_u(v) - sDiag(bz_py)*by_px_u(v) + sDiag(by_py)*bz_px_u(v) + sDiag(bz_px)*by_py_u(v) elif 'tzy' in self.rxType: Tij = sDiag(Hd*( sDiag(bx_px)*bz_py - sDiag(bx_py)*bz_px )) TijN_uV = sDiag(bz_py)*bx_px_u(v) + sDiag(bx_px)*bz_py_u(v) - sDiag(bx_py)*bz_px_u(v) - sDiag(bz_px)*bx_py_u(v) # Calculate the complex derivative PDeriv_complex = Hd * (TijN_uV - Tij * Hd_uV ) # Extract the real number for the real/imag components. Pv = np.array(getattr(PDeriv_complex, real_or_imag)) elif adjoint: # Note: The v vector is real and the return should be complex if self.projType is 'Z1D': Pex = mesh.getInterpolationMat(self.locs[:,-1],'Fx') Pbx = mesh.getInterpolationMat(self.locs[:,-1],'Ex') # ex = Pex*mkvc(f[src,'e_1d'],2) # bx = Pbx*mkvc(f[src,'b_1d'],2)/mu_0 dP_deTv = -mkvc(Pex.T*Utils.sdiag(1./(Pbx*mkvc(f[src,'b_1d'],2)/mu_0)).T*v,2) db_duv = Pbx.T/mu_0*Utils.sdiag(1./(Pbx*mkvc(f[src,'b_1d'],2)/mu_0))*(Utils.sdiag(1./(Pbx*mkvc(f[src,'b_1d'],2)/mu_0))).T*Utils.sdiag(Pex*mkvc(f[src,'e_1d'],2)).T*v dP_dbTv = mkvc(f._bDeriv_u(src,db_duv,adjoint=True),2) PDeriv_real = np.sum(np.hstack((dP_deTv,dP_dbTv)),1) elif self.projType is 'Z2D': raise NotImplementedError('Has not be implement for 2D impedance tensor') elif self.projType is 'Z3D': if self.locs.ndim == 3: eFLocs = self.locs[:,:,0] bFLocs = self.locs[:,:,1] else: eFLocs = self.locs bFLocs = self.locs # Get the projection Pex = mesh.getInterpolationMat(eFLocs,'Ex') Pey = mesh.getInterpolationMat(eFLocs,'Ey') Pbx = mesh.getInterpolationMat(bFLocs,'Fx') Pby = mesh.getInterpolationMat(bFLocs,'Fy') # Get the fields at location # px: x-polaration and py: y-polaration. aex_px = mkvc(mkvc(f[src,'e_px'],2).T*Pex.T) aey_px = mkvc(mkvc(f[src,'e_px'],2).T*Pey.T) aex_py = mkvc(mkvc(f[src,'e_py'],2).T*Pex.T) aey_py = mkvc(mkvc(f[src,'e_py'],2).T*Pey.T) ahx_px = mkvc(mkvc(f[src,'b_px'],2).T/mu_0*Pbx.T) ahy_px = mkvc(mkvc(f[src,'b_px'],2).T/mu_0*Pby.T) ahx_py = mkvc(mkvc(f[src,'b_py'],2).T/mu_0*Pbx.T) ahy_py = mkvc(mkvc(f[src,'b_py'],2).T/mu_0*Pby.T) # Derivatives as lambda functions aex_px_u = lambda vec: f._e_pxDeriv_u(src,Pex.T*vec,adjoint=True) aey_px_u = lambda vec: f._e_pxDeriv_u(src,Pey.T*vec,adjoint=True) aex_py_u = lambda vec: f._e_pyDeriv_u(src,Pex.T*vec,adjoint=True) aey_py_u = lambda vec: f._e_pyDeriv_u(src,Pey.T*vec,adjoint=True) ahx_px_u = lambda vec: f._b_pxDeriv_u(src,Pbx.T*vec,adjoint=True)/mu_0 ahy_px_u = lambda vec: f._b_pxDeriv_u(src,Pby.T*vec,adjoint=True)/mu_0 ahx_py_u = lambda vec: f._b_pyDeriv_u(src,Pbx.T*vec,adjoint=True)/mu_0 ahy_py_u = lambda vec: f._b_pyDeriv_u(src,Pby.T*vec,adjoint=True)/mu_0 # Update the input vector # Define shortcuts sDiag = lambda t: Utils.sdiag(mkvc(t,2)) sVec = lambda t: Utils.sp.csr_matrix(mkvc(t,2)) # Define the components of the derivative aHd = sDiag(1./(sDiag(ahx_px)*ahy_py - sDiag(ahx_py)*ahy_px)) aHd_uV = lambda x: ahx_px_u(sDiag(ahy_py)*x) + ahx_px_u(sDiag(ahy_py)*x) - ahy_px_u(sDiag(ahx_py)*x) - ahx_py_u(sDiag(ahy_px)*x) # Need to fix this to reflect the adjoint if 'zxx' in self.rxType: Zij = sDiag(aHd*( sDiag(ahy_py)*aex_px - sDiag(ahy_px)*aex_py)) ZijN_uV = lambda x: aex_px_u(sDiag(ahy_py)*x) + ahy_py_u(sDiag(aex_px)*x) - ahy_px_u(sDiag(aex_py)*x) - aex_py_u(sDiag(ahy_px)*x) elif 'zxy' in self.rxType: Zij = sDiag(aHd*(-sDiag(ahx_py)*aex_px + sDiag(ahx_px)*aex_py)) ZijN_uV = lambda x:-aex_px_u(sDiag(ahx_py)*x) - ahx_py_u(sDiag(aex_px)*x) + ahx_px_u(sDiag(aex_py)*x) + aex_py_u(sDiag(ahx_px)*x) elif 'zyx' in self.rxType: Zij = sDiag(aHd*( sDiag(ahy_py)*aey_px - sDiag(ahy_px)*aey_py)) ZijN_uV = lambda x: aey_px_u(sDiag(ahy_py)*x) + ahy_py_u(sDiag(aey_px)*x) - ahy_px_u(sDiag(aey_py)*x) - aey_py_u(sDiag(ahy_px)*x) elif 'zyy' in self.rxType: Zij = sDiag(aHd*(-sDiag(ahx_py)*aey_px + sDiag(ahx_px)*aey_py)) ZijN_uV = lambda x:-aey_px_u(sDiag(ahx_py)*x) - ahx_py_u(sDiag(aey_px)*x) + ahx_px_u(sDiag(aey_py)*x) + aey_py_u(sDiag(ahx_px)*x) # Calculate the complex derivative PDeriv_real = ZijN_uV(aHd*v) - aHd_uV(Zij.T*aHd*v)# # NOTE: Need to reshape the output to go from 2*nU array to a (nU,2) matrix for each polarization # PDeriv_real = np.hstack((mkvc(PDeriv_real[:len(PDeriv_real)/2],2),mkvc(PDeriv_real[len(PDeriv_real)/2::],2))) PDeriv_real = PDeriv_real.reshape((2,mesh.nE)).T elif self.projType is 'T3D': if self.locs.ndim == 3: bFLocs = self.locs[:,:,1] else: bFLocs = self.locs # Get the projection Pbx = mesh.getInterpolationMat(bFLocs,'Fx') Pby = mesh.getInterpolationMat(bFLocs,'Fy') Pbz = mesh.getInterpolationMat(bFLocs,'Fz') # Get the fields at location # px: x-polaration and py: y-polaration. abx_px = mkvc(mkvc(f[src,'b_px'],2).T*Pbx.T) aby_px = mkvc(mkvc(f[src,'b_px'],2).T*Pby.T) abz_px = mkvc(mkvc(f[src,'b_px'],2).T*Pbz.T) abx_py = mkvc(mkvc(f[src,'b_py'],2).T*Pbx.T) aby_py = mkvc(mkvc(f[src,'b_py'],2).T*Pby.T) abz_py = mkvc(mkvc(f[src,'b_py'],2).T*Pbz.T) # Derivatives as lambda functions abx_px_u = lambda vec: f._b_pxDeriv_u(src,Pbx.T*vec,adjoint=True) aby_px_u = lambda vec: f._b_pxDeriv_u(src,Pby.T*vec,adjoint=True) abz_px_u = lambda vec: f._b_pxDeriv_u(src,Pbz.T*vec,adjoint=True) abx_py_u = lambda vec: f._b_pyDeriv_u(src,Pbx.T*vec,adjoint=True) aby_py_u = lambda vec: f._b_pyDeriv_u(src,Pby.T*vec,adjoint=True) abz_py_u = lambda vec: f._b_pyDeriv_u(src,Pbz.T*vec,adjoint=True) # Update the input vector # Define shortcuts sDiag = lambda t: Utils.sdiag(mkvc(t,2)) sVec = lambda t: Utils.sp.csr_matrix(mkvc(t,2)) # Define the components of the derivative aHd = sDiag(1./(sDiag(abx_px)*aby_py - sDiag(abx_py)*aby_px)) aHd_uV = lambda x: abx_px_u(sDiag(aby_py)*x) + abx_px_u(sDiag(aby_py)*x) - aby_px_u(sDiag(abx_py)*x) - abx_py_u(sDiag(aby_px)*x) # Need to fix this to reflect the adjoint if 'tzx' in self.rxType: Tij = sDiag(aHd*( -sDiag(abz_py)*aby_px + sDiag(abz_px)*aby_py)) TijN_uV = lambda x: -abz_py_u(sDiag(aby_px)*x) - aby_px_u(sDiag(abz_py)*x) + aby_py_u(sDiag(abz_px)*x) + abz_px_u(sDiag(aby_py)*x) elif 'tzy' in self.rxType: Tij = sDiag(aHd*( sDiag(abz_py)*abx_px - sDiag(abz_px)*abx_py)) TijN_uV = lambda x: abx_px_u(sDiag(abz_py)*x) + abz_py_u(sDiag(abx_px)*x) - abx_py_u(sDiag(abz_px)*x) - abz_px_u(sDiag(abx_py)*x) # Calculate the complex derivative PDeriv_real = TijN_uV(aHd*v) - aHd_uV(Tij.T*aHd*v)# # NOTE: Need to reshape the output to go from 2*nU array to a (nU,2) matrix for each polarization # PDeriv_real = np.hstack((mkvc(PDeriv_real[:len(PDeriv_real)/2],2),mkvc(PDeriv_real[len(PDeriv_real)/2::],2))) PDeriv_real = PDeriv_real.reshape((2,mesh.nE)).T # Extract the data if real_or_imag == 'imag': Pv = 1j*PDeriv_real elif real_or_imag == 'real': Pv = PDeriv_real.astype(complex) return Pv
# if not gin: # print 'SimPED - Simulation has ended with return' # break #============================================================================== # Add z coordinate to all survey... assume flat nz = mesh.vectorNz var = np.c_[np.asarray(gin),np.ones(2).T*nz[-1]] # Snap the endpoints to the grid. Easier to create 2D section. indx = Utils.closestPoints(mesh, var ) endl = np.c_[mesh.gridCC[indx,0],mesh.gridCC[indx,1],np.ones(2).T*nz[-1]] [Tx, Rx] = DC.gen_DCIPsurvey(endl, mesh, stype, a, b, n) dl_len = np.sqrt( np.sum((endl[0,:] - endl[1,:])**2) ) dl_x = ( Tx[-1][0,1] - Tx[0][0,0] ) / dl_len dl_y = ( Tx[-1][1,1] - Tx[0][1,0] ) / dl_len azm = np.arctan(dl_y/dl_x) # Plot stations along line plt.scatter(Tx[0][0,:],Tx[0][1,:],s=20,c='g') plt.scatter(Rx[0][:,0::3],Rx[0][:,1::3],s=20,c='y') #%% Forward model data data = []#np.zeros( nstn*nrx ) unct = [] problem = DC.ProblemDC_CC(mesh) for ii in range(len(Tx)): start_time = time.time()