Example #1
0
    def test_basic_inversion(self):
        """
        Test to see if inversion recovers model
        """

        h = [(2, 30)]
        meshObj = Mesh.TensorMesh((h, h, [(2, 10)]), x0='CCN')

        mod = 0.00025 * np.ones(meshObj.nC)
        mod[(meshObj.gridCC[:, 0] > -4.) & (meshObj.gridCC[:, 1] > -4.) &
            (meshObj.gridCC[:, 0] < 4.) & (meshObj.gridCC[:, 1] < 4.)] = 0.001

        times = np.logspace(-4, -2, 5)
        waveObj = VRM.WaveformVRM.SquarePulse(0.02)

        x, y = np.meshgrid(np.linspace(-17, 17, 16), np.linspace(-17, 17, 16))
        x, y, z = mkvc(x), mkvc(y), 0.5 * np.ones(np.size(x))
        rxList = [VRM.Rx.Point(np.c_[x, y, z], times, 'dbdt', 'z')]

        txNodes = np.array([[-20, -20, 0.001], [20, -20,
                                                0.001], [20, 20, 0.001],
                            [-20, 20, 0.01], [-20, -20, 0.001]])
        txList = [VRM.Src.LineCurrent(rxList, txNodes, 1., waveObj)]

        Survey = VRM.Survey(txList)
        Problem = VRM.Problem_Linear(meshObj, refFact=2)
        Problem.pair(Survey)
        Survey.makeSyntheticData(mod)
        Survey.eps = 1e-11

        dmis = DataMisfit.l2_DataMisfit(Survey)
        W = mkvc((np.sum(np.array(Problem.A)**2, axis=0)))**0.25
        reg = Regularization.Simple(meshObj,
                                    alpha_s=0.01,
                                    alpha_x=1.,
                                    alpha_y=1.,
                                    alpha_z=1.,
                                    cell_weights=W)
        opt = Optimization.ProjectedGNCG(maxIter=20,
                                         lower=0.,
                                         upper=1e-2,
                                         maxIterLS=20,
                                         tolCG=1e-4)
        invProb = InvProblem.BaseInvProblem(dmis, reg, opt)
        directives = [
            Directives.BetaSchedule(coolingFactor=2, coolingRate=1),
            Directives.TargetMisfit()
        ]
        inv = Inversion.BaseInversion(invProb, directiveList=directives)

        m0 = 1e-6 * np.ones(len(mod))
        mrec = inv.run(m0)

        dmis_final = np.sum(
            (dmis.W.diagonal() * (Survey.dobs - Problem.fields(mrec)))**2)
        mod_err_2 = np.sqrt(np.sum((mrec - mod)**2)) / np.size(mod)
        mod_err_inf = np.max(np.abs(mrec - mod))

        self.assertTrue(dmis_final < Survey.nD and mod_err_2 < 5e-6
                        and mod_err_inf < np.max(mod))
Example #2
0
def run(N=100, plotIt=True):

    np.random.seed(1)

    mesh = Mesh.TensorMesh([N])

    nk = 20
    jk = np.linspace(1., 60., nk)
    p = -0.25
    q = 0.25

    def g(k):
        return (np.exp(p * jk[k] * mesh.vectorCCx) *
                np.cos(np.pi * q * jk[k] * mesh.vectorCCx))

    G = np.empty((nk, mesh.nC))

    for i in range(nk):
        G[i, :] = g(i)

    mtrue = np.zeros(mesh.nC)
    mtrue[mesh.vectorCCx > 0.3] = 1.
    mtrue[mesh.vectorCCx > 0.45] = -0.5
    mtrue[mesh.vectorCCx > 0.6] = 0

    prob = Problem.LinearProblem(mesh, G=G)
    survey = Survey.LinearSurvey()
    survey.pair(prob)
    survey.makeSyntheticData(mtrue, std=0.01)

    M = prob.mesh

    reg = Regularization.Tikhonov(mesh, alpha_s=1., alpha_x=1.)
    dmis = DataMisfit.l2_DataMisfit(survey)
    opt = Optimization.InexactGaussNewton(maxIter=60)
    invProb = InvProblem.BaseInvProblem(dmis, reg, opt)
    directives = [
        Directives.BetaEstimate_ByEig(beta0_ratio=1e-2),
        Directives.TargetMisfit()
    ]
    inv = Inversion.BaseInversion(invProb, directiveList=directives)
    m0 = np.zeros_like(survey.mtrue)

    mrec = inv.run(m0)

    if plotIt:
        fig, axes = plt.subplots(1, 2, figsize=(12 * 1.2, 4 * 1.2))
        for i in range(prob.G.shape[0]):
            axes[0].plot(prob.G[i, :])
        axes[0].set_title('Columns of matrix G')

        axes[1].plot(M.vectorCCx, survey.mtrue, 'b-')
        axes[1].plot(M.vectorCCx, mrec, 'r-')
        axes[1].legend(('True Model', 'Recovered Model'))
        axes[1].set_ylim([-2, 2])

    return prob, survey, mesh, mrec
    def fit_colecole_with_se(self, eta_cc=0.8, tau_cc=0.003, c_cc=0.6):
        def ColeColeSeigel(f, sigmaInf, eta, tau, c):
            w = 2 * np.pi * f
            return sigmaInf * (1 - eta / (1 + (1j * w * tau)**c))

        # Step1: Fit Cole-Cole with Stretched Exponential function
        time = np.logspace(-6, np.log10(0.01), 41)
        wt, tbase, omega_int = DigFilter.setFrequency(time)
        frequency = omega_int / (2 * np.pi)
        # Cole-Cole parameters
        siginf = 1.
        self.eta_cc = eta_cc
        self.tau_cc = tau_cc
        self.c_cc = c_cc

        sigma = ColeColeSeigel(frequency, siginf, eta_cc, tau_cc, c_cc)
        sigTCole = DigFilter.transFiltImpulse(sigma,
                                              wt,
                                              tbase,
                                              omega_int,
                                              time,
                                              tol=1e-12)
        wires = Maps.Wires(('eta', 1), ('tau', 1), ('c', 1))
        taumap = Maps.ExpMap(nP=1) * wires.tau
        survey = SESurvey()
        dtrue = -sigTCole
        survey.dobs = dtrue
        m1D = Mesh.TensorMesh([np.ones(3)])
        prob = SEInvImpulseProblem(m1D,
                                   etaMap=wires.eta,
                                   tauMap=taumap,
                                   cMap=wires.c)
        update_sens = Directives.UpdateSensitivityWeights()
        prob.time = time
        prob.pair(survey)
        m0 = np.r_[eta_cc, np.log(tau_cc), c_cc]
        perc = 0.05
        dmisfitpeta = DataMisfit.l2_DataMisfit(survey)
        dmisfitpeta.W = 1 / (abs(survey.dobs) * perc)
        reg = regularization.Simple(m1D)
        opt = Optimization.ProjectedGNCG(maxIter=10)
        invProb = InvProblem.BaseInvProblem(dmisfitpeta, reg, opt)
        # Create an inversion object
        target = Directives.TargetMisfit()
        invProb.beta = 0.
        inv = Inversion.BaseInversion(invProb, directiveList=[target])
        reg.mref = 0. * m0
        prob.counter = opt.counter = Utils.Counter()
        opt.LSshorten = 0.5
        opt.remember('xc')
        opt.tolX = 1e-20
        opt.tolF = 1e-20
        opt.tolG = 1e-20
        opt.eps = 1e-20
        mopt = inv.run(m0)
        return mopt
    def solve(self):
        # Tikhonov Inversion
        ####################

        # Initial model values
        m0 = np.median(self.ln_sigback) * np.ones(self.mapping.nP)
        m0 += np.random.randn(m0.size)

        # Misfit functional
        dmis = DataMisfit.l2_DataMisfit(self.survey.simpeg_survey)
        # Regularization functional
        regT = Regularization.Simple(self.mesh,
                                     alpha_s=10.0,
                                     alpha_x=10.0,
                                     alpha_y=10.0,
                                     alpha_z=10.0,
                                     indActive=self.actind)

        # Personal preference for this solver with a Jacobi preconditioner
        opt = Optimization.ProjectedGNCG(maxIter=8, tolX=1, maxIterCG=30)
        #opt = Optimization.ProjectedGradient(maxIter=100, tolX=1e-2,
        #                                 maxIterLS=20, maxIterCG=30, tolCG=1e-4)

        opt.printers.append(Optimization.IterationPrinters.iterationLS)
        #print(opt.printersLS)

        # Optimization class keeps value of 'xc'. Seems to be solution for the model parameters
        opt.remember('xc')
        invProb = InvProblem.BaseInvProblem(dmis, regT, opt)

        # Options for the inversion algorithm in particular selection of Beta weight for regularization.

        # How to choose initial estimate for beta
        beta = Directives.BetaEstimate_ByEig(beta0_ratio=1.)
        Target = Directives.TargetMisfit()
        # Beta changing algorithm.
        betaSched = Directives.BetaSchedule(coolingFactor=5., coolingRate=2)
        # Change model weights, seems sensitivity of conductivity ?? Not sure.
        updateSensW = Directives.UpdateSensitivityWeights(threshold=1e-3)
        # Use Jacobi preconditioner ( the only available).
        update_Jacobi = Directives.UpdatePreconditioner()

        inv = Inversion.BaseInversion(invProb,
                                      directiveList=[
                                          beta, Target, betaSched, updateSensW,
                                          update_Jacobi
                                      ])

        self.minv = inv.run(m0)
Example #5
0
 def solve(self):
     # initial values/model
     m0 = numpy.median(-4) * numpy.ones(self.mapping.nP)
     # Data Misfit
     dataMisfit = DataMisfit.l2_DataMisfit(self.survey)
     # Regularization
     regT = Regularization.Simple(self.mesh, indActive=self.activeCellIndices, alpha_s=1e-6, alpha_x=1., alpha_y=1., alpha_z=1.)
     # Optimization Scheme
     opt = Optimization.InexactGaussNewton(maxIter=10)
     # Form the problem
     opt.remember('xc')
     invProb = InvProblem.BaseInvProblem(dataMisfit, regT, opt)
     # Directives for Inversions
     beta = Directives.BetaEstimate_ByEig(beta0_ratio=0.5e+1)
     Target = Directives.TargetMisfit()
     betaSched = Directives.BetaSchedule(coolingFactor=5., coolingRate=2)
     inversion = Inversion.BaseInversion(invProb, directiveList=[beta, Target, betaSched])
     # Run Inversion
     self.invModelOnActiveCells = inversion.run(m0)
     self.invModelOnAllCells = self.givenModelCond * numpy.ones_like(self.givenModelCond)
     self.invModelOnAllCells[self.activeCellIndices] = self.invModelOnActiveCells
     self.invModelOnCoreCells = self.invModelOnAllCells[self.coreMeshCellIndices]
     pass
def run(plotIt=True,
        survey_type="dipole-dipole",
        rho_background=1e3,
        rho_block=1e2,
        block_x0=100,
        block_dx=10,
        block_y0=-10,
        block_dy=5):

    np.random.seed(1)
    # Initiate I/O class for DC
    IO = DC.IO()
    # Obtain ABMN locations

    xmin, xmax = 0., 200.
    ymin, ymax = 0., 0.
    zmin, zmax = 0, 0
    endl = np.array([[xmin, ymin, zmin], [xmax, ymax, zmax]])
    # Generate DC survey object
    survey = DC.Utils.gen_DCIPsurvey(endl,
                                     survey_type=survey_type,
                                     dim=2,
                                     a=10,
                                     b=10,
                                     n=10)
    survey.getABMN_locations()
    survey = IO.from_ambn_locations_to_survey(survey.a_locations,
                                              survey.b_locations,
                                              survey.m_locations,
                                              survey.n_locations,
                                              survey_type,
                                              data_dc_type='volt')

    # Obtain 2D TensorMesh
    mesh, actind = IO.set_mesh()
    # Flat topography
    actind = Utils.surface2ind_topo(mesh, np.c_[mesh.vectorCCx,
                                                mesh.vectorCCx * 0.])
    survey.drapeTopo(mesh, actind, option="top")
    # Use Exponential Map: m = log(rho)
    actmap = Maps.InjectActiveCells(mesh,
                                    indActive=actind,
                                    valInactive=np.log(1e8))
    parametric_block = Maps.ParametricBlock(mesh, slopeFact=1e2)
    mapping = Maps.ExpMap(mesh) * parametric_block
    # Set true model
    # val_background,val_block, block_x0, block_dx, block_y0, block_dy
    mtrue = np.r_[np.log(1e3), np.log(10), 100, 10, -20, 10]

    # Set initial model
    m0 = np.r_[np.log(rho_background),
               np.log(rho_block), block_x0, block_dx, block_y0, block_dy]
    rho = mapping * mtrue
    rho0 = mapping * m0
    # Show the true conductivity model
    fig = plt.figure(figsize=(12, 3))
    ax = plt.subplot(111)
    temp = rho.copy()
    temp[~actind] = np.nan
    out = mesh.plotImage(temp,
                         grid=False,
                         ax=ax,
                         gridOpts={'alpha': 0.2},
                         clim=(10, 1000),
                         pcolorOpts={
                             "cmap": "viridis",
                             "norm": colors.LogNorm()
                         })
    ax.plot(survey.electrode_locations[:, 0], survey.electrode_locations[:, 1],
            'k.')
    ax.set_xlim(IO.grids[:, 0].min(), IO.grids[:, 0].max())
    ax.set_ylim(-IO.grids[:, 1].max(), IO.grids[:, 1].min())
    cb = plt.colorbar(out[0])
    cb.set_label("Resistivity (ohm-m)")
    ax.set_aspect('equal')
    ax.set_title("True resistivity model")
    plt.show()
    # Show the true conductivity model
    fig = plt.figure(figsize=(12, 3))
    ax = plt.subplot(111)
    temp = rho0.copy()
    temp[~actind] = np.nan
    out = mesh.plotImage(temp,
                         grid=False,
                         ax=ax,
                         gridOpts={'alpha': 0.2},
                         clim=(10, 1000),
                         pcolorOpts={
                             "cmap": "viridis",
                             "norm": colors.LogNorm()
                         })
    ax.plot(survey.electrode_locations[:, 0], survey.electrode_locations[:, 1],
            'k.')
    ax.set_xlim(IO.grids[:, 0].min(), IO.grids[:, 0].max())
    ax.set_ylim(-IO.grids[:, 1].max(), IO.grids[:, 1].min())
    cb = plt.colorbar(out[0])
    cb.set_label("Resistivity (ohm-m)")
    ax.set_aspect('equal')
    ax.set_title("Initial resistivity model")
    plt.show()

    # Generate 2.5D DC problem
    # "N" means potential is defined at nodes
    prb = DC.Problem2D_N(mesh, rhoMap=mapping, storeJ=True, Solver=Solver)
    # Pair problem with survey
    try:
        prb.pair(survey)
    except:
        survey.unpair()
        prb.pair(survey)

    # Make synthetic DC data with 5% Gaussian noise
    dtrue = survey.makeSyntheticData(mtrue, std=0.05, force=True)

    # Show apparent resisitivty pseudo-section
    IO.plotPseudoSection(data=survey.dobs / IO.G,
                         data_type='apparent_resistivity')

    # Show apparent resisitivty histogram
    fig = plt.figure()
    out = hist(survey.dobs / IO.G, bins=20)
    plt.show()
    # Set uncertainty
    # floor
    eps = 10**(-3.2)
    # percentage
    std = 0.05
    dmisfit = DataMisfit.l2_DataMisfit(survey)
    uncert = abs(survey.dobs) * std + eps
    dmisfit.W = 1. / uncert

    # Map for a regularization
    mesh_1d = Mesh.TensorMesh([parametric_block.nP])
    # Related to inversion
    reg = Regularization.Simple(mesh_1d, alpha_x=0.)
    opt = Optimization.InexactGaussNewton(maxIter=10)
    invProb = InvProblem.BaseInvProblem(dmisfit, reg, opt)
    beta = Directives.BetaSchedule(coolingFactor=5, coolingRate=2)
    betaest = Directives.BetaEstimate_ByEig(beta0_ratio=1e0)
    target = Directives.TargetMisfit()
    updateSensW = Directives.UpdateSensitivityWeights()
    update_Jacobi = Directives.UpdatePreconditioner()
    invProb.beta = 0.
    inv = Inversion.BaseInversion(invProb, directiveList=[target])
    prb.counter = opt.counter = Utils.Counter()
    opt.LSshorten = 0.5
    opt.remember('xc')

    # Run inversion
    mopt = inv.run(m0)

    # Convert obtained inversion model to resistivity
    # rho = M(m), where M(.) is a mapping

    rho_est = mapping * mopt
    rho_true = rho.copy()
    # show recovered conductivity
    vmin, vmax = rho.min(), rho.max()
    fig, ax = plt.subplots(2, 1, figsize=(20, 6))
    out1 = mesh.plotImage(rho_true,
                          clim=(10, 1000),
                          pcolorOpts={
                              "cmap": "viridis",
                              "norm": colors.LogNorm()
                          },
                          ax=ax[0])
    out2 = mesh.plotImage(rho_est,
                          clim=(10, 1000),
                          pcolorOpts={
                              "cmap": "viridis",
                              "norm": colors.LogNorm()
                          },
                          ax=ax[1])
    out = [out1, out2]
    for i in range(2):
        ax[i].plot(survey.electrode_locations[:, 0],
                   survey.electrode_locations[:, 1], 'kv')
        ax[i].set_xlim(IO.grids[:, 0].min(), IO.grids[:, 0].max())
        ax[i].set_ylim(-IO.grids[:, 1].max(), IO.grids[:, 1].min())
        cb = plt.colorbar(out[i][0], ax=ax[i])
        cb.set_label("Resistivity ($\Omega$m)")
        ax[i].set_xlabel("Northing (m)")
        ax[i].set_ylabel("Elevation (m)")
        ax[i].set_aspect('equal')
    ax[0].set_title("True resistivity model")
    ax[1].set_title("Recovered resistivity model")
    plt.tight_layout()
    plt.show()
Example #7
0
def run_inversion(
    m0,
    survey,
    actind,
    mesh,
    wires,
    std,
    eps,
    maxIter=15,
    beta0_ratio=1e0,
    coolingFactor=2,
    coolingRate=2,
    maxIterLS=20,
    maxIterCG=10,
    LSshorten=0.5,
    eta_lower=1e-5,
    eta_upper=1,
    tau_lower=1e-6,
    tau_upper=10.,
    c_lower=1e-2,
    c_upper=1.,
    is_log_tau=True,
    is_log_c=True,
    is_log_eta=True,
    mref=None,
    alpha_s=1e-4,
    alpha_x=1e0,
    alpha_y=1e0,
    alpha_z=1e0,
):
    """
    Run Spectral Spectral IP inversion
    """
    dmisfit = DataMisfit.l2_DataMisfit(survey)
    uncert = abs(survey.dobs) * std + eps
    dmisfit.W = 1. / uncert
    # Map for a regularization
    # Related to inversion

    # Set Upper and Lower bounds
    e = np.ones(actind.sum())

    if np.isscalar(eta_lower):
        eta_lower = e * eta_lower
    if np.isscalar(tau_lower):
        tau_lower = e * tau_lower
    if np.isscalar(c_lower):
        c_lower = e * c_lower

    if np.isscalar(eta_upper):
        eta_upper = e * eta_upper
    if np.isscalar(tau_upper):
        tau_upper = e * tau_upper
    if np.isscalar(c_upper):
        c_upper = e * c_upper

    if is_log_eta:
        eta_upper = np.log(eta_upper)
        eta_lower = np.log(eta_lower)

    if is_log_tau:
        tau_upper = np.log(tau_upper)
        tau_lower = np.log(tau_lower)

    if is_log_c:
        c_upper = np.log(c_upper)
        c_lower = np.log(c_lower)

    m_upper = np.r_[eta_upper, tau_upper, c_upper]
    m_lower = np.r_[eta_lower, tau_lower, c_lower]

    # Set up regularization
    reg_eta = Regularization.Tikhonov(mesh,
                                      mapping=wires.eta,
                                      indActive=actind)
    reg_tau = Regularization.Tikhonov(mesh,
                                      mapping=wires.tau,
                                      indActive=actind)

    reg_c = Regularization.Tikhonov(mesh, mapping=wires.c, indActive=actind)

    # Todo:

    reg_eta.alpha_s = alpha_s
    reg_tau.alpha_s = alpha_s
    reg_c.alpha_s = alpha_s

    reg_eta.alpha_x = alpha_x
    reg_tau.alpha_x = alpha_x
    reg_c.alpha_x = alpha_x

    reg_eta.alpha_y = alpha_y
    reg_tau.alpha_y = alpha_y
    reg_c.alpha_y = alpha_y

    reg_eta.alpha_z = alpha_z
    reg_tau.alpha_z = alpha_z
    reg_c.alpha_z = alpha_z

    reg = reg_eta + reg_tau + reg_c

    # Use Projected Gauss Newton scheme
    opt = Optimization.ProjectedGNCG(maxIter=maxIter,
                                     upper=m_upper,
                                     lower=m_lower,
                                     maxIterLS=maxIterLS,
                                     maxIterCG=maxIterCG,
                                     LSshorten=LSshorten)
    invProb = InvProblem.BaseInvProblem(dmisfit, reg, opt)
    beta = Directives.BetaSchedule(coolingFactor=coolingFactor,
                                   coolingRate=coolingRate)
    betaest = Directives.BetaEstimate_ByEig(beta0_ratio=beta0_ratio)
    target = Directives.TargetMisfit()

    directiveList = [beta, betaest, target]

    inv = Inversion.BaseInversion(invProb, directiveList=directiveList)
    opt.LSshorten = 0.5
    opt.remember('xc')

    # Run inversion
    mopt = inv.run(m0)
    return mopt, invProb.dpred
Example #8
0
def run(plotIt=True):
    """
    1D FDEM Mu Inversion
    ====================

    1D inversion of Magnetic Susceptibility from FDEM data assuming a fixed
    electrical conductivity

    """

    # Set up cylindrically symmeric mesh
    cs, ncx, ncz, npad = 10., 15, 25, 13  # padded cyl mesh
    hx = [(cs, ncx), (cs, npad, 1.3)]
    hz = [(cs, npad, -1.3), (cs, ncz), (cs, npad, 1.3)]
    mesh = Mesh.CylMesh([hx, 1, hz], '00C')

    # Geologic Parameters model
    layerz = np.r_[-100., -50.]
    layer = (mesh.vectorCCz >= layerz[0]) & (mesh.vectorCCz <= layerz[1])
    active = mesh.vectorCCz < 0.

    # Electrical Conductivity
    sig_half = 1e-2  # Half-space conductivity
    sig_air = 1e-8  # Air conductivity
    sig_layer = 1e-2  # Layer conductivity
    sigma = np.ones(mesh.nCz) * sig_air
    sigma[active] = sig_half
    sigma[layer] = sig_layer

    # mur - relative magnetic permeability
    mur_half = 1.
    mur_air = 1.
    mur_layer = 2.
    mur = np.ones(mesh.nCz) * mur_air
    mur[active] = mur_half
    mur[layer] = mur_layer

    mtrue = mur[active]

    # Maps
    actMap = Maps.InjectActiveCells(mesh, active, mur_air, nC=mesh.nCz)
    surj1Dmap = Maps.SurjectVertical1D(mesh)
    murMap = Maps.MuRelative(mesh)

    # Mapping
    muMap = murMap * surj1Dmap * actMap

    # ----- FDEM problem & survey -----
    rxlocs = Utils.ndgrid([np.r_[10.], np.r_[0], np.r_[30.]])
    bzr = FDEM.Rx.Point_bSecondary(rxlocs, 'z', 'real')
    # bzi = FDEM.Rx.Point_bSecondary(rxlocs, 'z', 'imag')

    freqs = np.linspace(2000, 10000, 10)  #np.logspace(3, 4, 10)
    srcLoc = np.array([0., 0., 30.])

    print('min skin depth = ', 500. / np.sqrt(freqs.max() * sig_half),
          'max skin depth = ', 500. / np.sqrt(freqs.min() * sig_half))
    print('max x ', mesh.vectorCCx.max(), 'min z ', mesh.vectorCCz.min(),
          'max z ', mesh.vectorCCz.max())

    srcList = [
        FDEM.Src.MagDipole([bzr], freq, srcLoc, orientation='Z')
        for freq in freqs
    ]

    surveyFD = FDEM.Survey(srcList)
    prbFD = FDEM.Problem3D_b(mesh,
                             sigma=surj1Dmap * sigma,
                             muMap=muMap,
                             Solver=Solver)
    prbFD.pair(surveyFD)
    std = 0.03
    surveyFD.makeSyntheticData(mtrue, std)
    surveyFD.eps = np.linalg.norm(surveyFD.dtrue) * 1e-6

    # FDEM inversion
    np.random.seed(13472)
    dmisfit = DataMisfit.l2_DataMisfit(surveyFD)
    regMesh = Mesh.TensorMesh([mesh.hz[muMap.maps[-1].indActive]])
    reg = Regularization.Simple(regMesh)
    opt = Optimization.InexactGaussNewton(maxIterCG=10)
    invProb = InvProblem.BaseInvProblem(dmisfit, reg, opt)

    # Inversion Directives    betaest = Directives.BetaEstimate_ByEig(beta0_ratio=2.)

    beta = Directives.BetaSchedule(coolingFactor=4, coolingRate=3)
    betaest = Directives.BetaEstimate_ByEig(beta0_ratio=2.)
    target = Directives.TargetMisfit()
    directiveList = [beta, betaest, target]

    inv = Inversion.BaseInversion(invProb, directiveList=directiveList)
    m0 = mur_half * np.ones(mtrue.size)
    reg.alpha_s = 2e-2
    reg.alpha_x = 1.
    prbFD.counter = opt.counter = Utils.Counter()
    opt.remember('xc')
    moptFD = inv.run(m0)

    dpredFD = surveyFD.dpred(moptFD)

    if plotIt:
        fig, ax = plt.subplots(1, 3, figsize=(10, 6))

        fs = 13  # fontsize
        matplotlib.rcParams['font.size'] = fs

        # Plot the conductivity model
        ax[0].semilogx(sigma[active], mesh.vectorCCz[active], 'k-', lw=2)
        ax[0].set_ylim(-500, 0)
        ax[0].set_xlim(5e-3, 1e-1)

        ax[0].set_xlabel('Conductivity (S/m)', fontsize=fs)
        ax[0].set_ylabel('Depth (m)', fontsize=fs)
        ax[0].grid(which='both',
                   color='k',
                   alpha=0.5,
                   linestyle='-',
                   linewidth=0.2)
        ax[0].legend(['Conductivity Model'], fontsize=fs, loc=4)

        # Plot the permeability model
        ax[1].plot(mur[active], mesh.vectorCCz[active], 'k-', lw=2)
        ax[1].plot(moptFD, mesh.vectorCCz[active], 'b-', lw=2)
        ax[1].set_ylim(-500, 0)
        ax[1].set_xlim(0.5, 2.1)

        ax[1].set_xlabel('Relative Permeability', fontsize=fs)
        ax[1].set_ylabel('Depth (m)', fontsize=fs)
        ax[1].grid(which='both',
                   color='k',
                   alpha=0.5,
                   linestyle='-',
                   linewidth=0.2)
        ax[1].legend(['True', 'Predicted'], fontsize=fs, loc=4)

        # plot the data misfits - negative b/c we choose positive to be in the
        # direction of primary

        ax[2].plot(freqs, -surveyFD.dobs, 'k-', lw=2)
        # ax[2].plot(freqs, -surveyFD.dobs[1::2], 'k--', lw=2)

        ax[2].loglog(freqs, -dpredFD, 'bo', ms=6)
        # ax[2].loglog(freqs, -dpredFD[1::2], 'b+', markeredgewidth=2., ms=10)

        # Labels, gridlines, etc
        ax[2].grid(which='both', alpha=0.5, linestyle='-', linewidth=0.2)
        ax[2].grid(which='both', alpha=0.5, linestyle='-', linewidth=0.2)

        ax[2].set_xlabel('Frequency (Hz)', fontsize=fs)
        ax[2].set_ylabel('Vertical magnetic field (-T)', fontsize=fs)

        # ax[2].legend(("Obs", "Pred"), fontsize=fs)
        ax[2].legend(("z-Obs (real)", "z-Pred (real)"), fontsize=fs)
        ax[2].set_xlim(freqs.max(), freqs.min())

        ax[0].set_title("(a) Conductivity Model", fontsize=fs)
        ax[1].set_title("(b) $\mu_r$ Model", fontsize=fs)
        ax[2].set_title("(c) FDEM observed vs. predicted", fontsize=fs)
        # ax[2].set_title("(c) TDEM observed vs. predicted", fontsize=fs)

        plt.tight_layout(pad=1.5)
def run(plotIt=True):

    M = Mesh.TensorMesh([np.ones(40)], x0='N')
    M.setCellGradBC('dirichlet')
    # We will use the haverkamp empirical model with parameters from Celia1990
    k_fun, theta_fun = Richards.Empirical.haverkamp(M,
                                                    A=1.1750e+06,
                                                    gamma=4.74,
                                                    alpha=1.6110e+06,
                                                    theta_s=0.287,
                                                    theta_r=0.075,
                                                    beta=3.96)

    # Here we are making saturated hydraulic conductivity
    # an exponential mapping to the model (defined below)
    k_fun.KsMap = Maps.ExpMap(nP=M.nC)

    # Setup the boundary and initial conditions
    bc = np.array([-61.5, -20.7])
    h = np.zeros(M.nC) + bc[0]
    prob = Richards.RichardsProblem(M,
                                    hydraulic_conductivity=k_fun,
                                    water_retention=theta_fun,
                                    boundary_conditions=bc,
                                    initial_conditions=h,
                                    do_newton=False,
                                    method='mixed',
                                    debug=False)
    prob.timeSteps = [(5, 25, 1.1), (60, 40)]

    # Create the survey
    locs = -np.arange(2, 38, 4.)
    times = np.arange(30, prob.timeMesh.vectorCCx[-1], 60)
    rxSat = Richards.SaturationRx(locs, times)
    survey = Richards.RichardsSurvey([rxSat])
    survey.pair(prob)

    # Create a simple model for Ks
    Ks = 1e-3
    mtrue = np.ones(M.nC) * np.log(Ks)
    mtrue[15:20] = np.log(5e-2)
    mtrue[20:35] = np.log(3e-3)
    mtrue[35:40] = np.log(1e-2)
    m0 = np.ones(M.nC) * np.log(Ks)

    # Create some synthetic data and fields
    stdev = 0.02  # The standard deviation for the noise
    Hs = prob.fields(mtrue)
    survey.makeSyntheticData(mtrue, std=stdev, f=Hs, force=True)

    # Setup a pretty standard inversion
    reg = Regularization.Tikhonov(M, alpha_s=1e-1)
    dmis = DataMisfit.l2_DataMisfit(survey)
    opt = Optimization.InexactGaussNewton(maxIter=20, maxIterCG=10)
    invProb = InvProblem.BaseInvProblem(dmis, reg, opt)
    beta = Directives.BetaSchedule(coolingFactor=4)
    betaest = Directives.BetaEstimate_ByEig(beta0_ratio=1e2)
    target = Directives.TargetMisfit()
    dir_list = [beta, betaest, target]
    inv = Inversion.BaseInversion(invProb, directiveList=dir_list)

    mopt = inv.run(m0)

    Hs_opt = prob.fields(mopt)

    if plotIt:
        plt.figure(figsize=(14, 9))

        ax = plt.subplot(121)
        plt.semilogx(np.exp(np.c_[mopt, mtrue]), M.gridCC)
        plt.xlabel('Saturated Hydraulic Conductivity, $K_s$')
        plt.ylabel('Depth, cm')
        plt.semilogx([10**-3.9] * len(locs), locs, 'ro')
        plt.legend(('$m_{rec}$', '$m_{true}$', 'Data locations'), loc=4)

        ax = plt.subplot(222)
        mesh2d = Mesh.TensorMesh([prob.timeMesh.hx / 60, prob.mesh.hx], '0N')
        sats = [theta_fun(_) for _ in Hs]
        clr = mesh2d.plotImage(np.c_[sats][1:, :], ax=ax)
        cmap0 = matplotlib.cm.RdYlBu_r
        clr[0].set_cmap(cmap0)
        c = plt.colorbar(clr[0])
        c.set_label('Saturation $\\theta$')
        plt.xlabel('Time, minutes')
        plt.ylabel('Depth, cm')
        plt.title('True saturation over time')

        ax = plt.subplot(224)
        mesh2d = Mesh.TensorMesh([prob.timeMesh.hx / 60, prob.mesh.hx], '0N')
        sats = [theta_fun(_) for _ in Hs_opt]
        clr = mesh2d.plotImage(np.c_[sats][1:, :], ax=ax)
        cmap0 = matplotlib.cm.RdYlBu_r
        clr[0].set_cmap(cmap0)
        c = plt.colorbar(clr[0])
        c.set_label('Saturation $\\theta$')
        plt.xlabel('Time, minutes')
        plt.ylabel('Depth, cm')
        plt.title('Recovered saturation over time')

        plt.tight_layout()
Example #10
0
    def run_inversion_cg(
        self,
        maxIter=60,
        m0=0.0,
        mref=0.0,
        percentage=5,
        floor=0.1,
        chifact=1,
        beta0_ratio=1.0,
        coolingFactor=1,
        coolingRate=1,
        alpha_s=1.0,
        alpha_x=1.0,
        use_target=False,
    ):
        survey, prob = self.get_problem_survey()
        survey.eps = percentage
        survey.std = floor
        survey.dobs = self.data.copy()
        self.uncertainty = percentage * abs(survey.dobs) * 0.01 + floor

        m0 = np.ones(self.M) * m0
        mref = np.ones(self.M) * mref
        reg = Regularization.Tikhonov(
            self.mesh, alpha_s=alpha_s, alpha_x=alpha_x, mref=mref
        )
        dmis = DataMisfit.l2_DataMisfit(survey)
        dmis.W = 1.0 / self.uncertainty

        opt = Optimization.InexactGaussNewton(maxIter=maxIter, maxIterCG=20)
        opt.remember("xc")
        opt.tolG = 1e-10
        opt.eps = 1e-10
        invProb = InvProblem.BaseInvProblem(dmis, reg, opt)
        save = Directives.SaveOutputEveryIteration()
        beta_schedule = Directives.BetaSchedule(
            coolingFactor=coolingFactor, coolingRate=coolingRate
        )
        target = Directives.TargetMisfit(chifact=chifact)

        if use_target:
            directives = [
                Directives.BetaEstimate_ByEig(beta0_ratio=beta0_ratio),
                beta_schedule,
                target,
                save,
            ]
        else:
            directives = [
                Directives.BetaEstimate_ByEig(beta0_ratio=beta0_ratio),
                beta_schedule,
                save,
            ]
        inv = Inversion.BaseInversion(invProb, directiveList=directives)
        mopt = inv.run(m0)
        model = opt.recall("xc")
        model.append(mopt)
        pred = []
        for m in model:
            pred.append(survey.dpred(m))
        return model, pred, save
Example #11
0
# Define misfit function (obs-calc)
dmis = DataMisfit.l2_DataMisfit(survey)
dmis.W = 1./survey.std

# Create the default L2 inverse problem from the above objects
invProb = InvProblem.BaseInvProblem(dmis, reg, opt)

# Specify how the initial beta is found
betaest = Directives.BetaEstimate_ByEig()

# Beta schedule for inversion
betaSchedule = Directives.BetaSchedule(coolingFactor=2., coolingRate=1)

# Target misfit to stop the inversion,
# try to fit as much as possible of the signal, we don't want to lose anything
targetMisfit = Directives.TargetMisfit(chifact=0.1)

# Put all the parts together
inv = Inversion.BaseInversion(invProb,
                              directiveList=[betaest, betaSchedule, targetMisfit])

# Run the equivalent source inversion
mstart = np.zeros(nC)
mrec = inv.run(mstart)

# Ouput result
Mesh.TensorMesh.writeModelUBC(mesh, work_dir + out_dir + "EquivalentSource.sus", surfMap*mrec)


# %% STEP 2: COMPUTE AMPLITUDE DATA
# Now that we have an equialent source layer, we can forward model alh three
def run(plotIt=True, saveFig=False):

    # Set up cylindrically symmeric mesh
    cs, ncx, ncz, npad = 10., 15, 25, 13  # padded cyl mesh
    hx = [(cs, ncx), (cs, npad, 1.3)]
    hz = [(cs, npad, -1.3), (cs, ncz), (cs, npad, 1.3)]
    mesh = Mesh.CylMesh([hx, 1, hz], '00C')

    # Conductivity model
    layerz = np.r_[-200., -100.]
    layer = (mesh.vectorCCz >= layerz[0]) & (mesh.vectorCCz <= layerz[1])
    active = mesh.vectorCCz < 0.
    sig_half = 1e-2  # Half-space conductivity
    sig_air = 1e-8  # Air conductivity
    sig_layer = 5e-2  # Layer conductivity
    sigma = np.ones(mesh.nCz) * sig_air
    sigma[active] = sig_half
    sigma[layer] = sig_layer

    # Mapping
    actMap = Maps.InjectActiveCells(mesh, active, np.log(1e-8), nC=mesh.nCz)
    mapping = Maps.ExpMap(mesh) * Maps.SurjectVertical1D(mesh) * actMap
    mtrue = np.log(sigma[active])

    # ----- FDEM problem & survey ----- #
    rxlocs = Utils.ndgrid([np.r_[50.], np.r_[0], np.r_[0.]])
    bzr = FDEM.Rx.Point_bSecondary(rxlocs, 'z', 'real')
    bzi = FDEM.Rx.Point_bSecondary(rxlocs, 'z', 'imag')

    freqs = np.logspace(2, 3, 5)
    srcLoc = np.array([0., 0., 0.])

    print('min skin depth = ', 500. / np.sqrt(freqs.max() * sig_half),
          'max skin depth = ', 500. / np.sqrt(freqs.min() * sig_half))
    print('max x ', mesh.vectorCCx.max(), 'min z ', mesh.vectorCCz.min(),
          'max z ', mesh.vectorCCz.max())

    srcList = [
        FDEM.Src.MagDipole([bzr, bzi], freq, srcLoc, orientation='Z')
        for freq in freqs
    ]

    surveyFD = FDEM.Survey(srcList)
    prbFD = FDEM.Problem3D_b(mesh, sigmaMap=mapping, Solver=Solver)
    prbFD.pair(surveyFD)
    std = 0.03
    surveyFD.makeSyntheticData(mtrue, std)
    surveyFD.eps = np.linalg.norm(surveyFD.dtrue) * 1e-5

    # FDEM inversion
    np.random.seed(1)
    dmisfit = DataMisfit.l2_DataMisfit(surveyFD)
    regMesh = Mesh.TensorMesh([mesh.hz[mapping.maps[-1].indActive]])
    reg = Regularization.Simple(regMesh)
    opt = Optimization.InexactGaussNewton(maxIterCG=10)
    invProb = InvProblem.BaseInvProblem(dmisfit, reg, opt)

    # Inversion Directives
    beta = Directives.BetaSchedule(coolingFactor=4, coolingRate=3)
    betaest = Directives.BetaEstimate_ByEig(beta0_ratio=2.)
    target = Directives.TargetMisfit()
    directiveList = [beta, betaest, target]

    inv = Inversion.BaseInversion(invProb, directiveList=directiveList)
    m0 = np.log(np.ones(mtrue.size) * sig_half)
    reg.alpha_s = 5e-1
    reg.alpha_x = 1.
    prbFD.counter = opt.counter = Utils.Counter()
    opt.remember('xc')
    moptFD = inv.run(m0)

    # TDEM problem
    times = np.logspace(-4, np.log10(2e-3), 10)
    print('min diffusion distance ',
          1.28 * np.sqrt(times.min() / (sig_half * mu_0)),
          'max diffusion distance ',
          1.28 * np.sqrt(times.max() / (sig_half * mu_0)))
    rx = TDEM.Rx.Point_b(rxlocs, times, 'z')
    src = TDEM.Src.MagDipole(
        [rx],
        waveform=TDEM.Src.StepOffWaveform(),
        loc=srcLoc  # same src location as FDEM problem
    )

    surveyTD = TDEM.Survey([src])
    prbTD = TDEM.Problem3D_b(mesh, sigmaMap=mapping, Solver=Solver)
    prbTD.timeSteps = [(5e-5, 10), (1e-4, 10), (5e-4, 10)]
    prbTD.pair(surveyTD)

    std = 0.03
    surveyTD.makeSyntheticData(mtrue, std)
    surveyTD.std = std
    surveyTD.eps = np.linalg.norm(surveyTD.dtrue) * 1e-5

    # TDEM inversion
    dmisfit = DataMisfit.l2_DataMisfit(surveyTD)
    regMesh = Mesh.TensorMesh([mesh.hz[mapping.maps[-1].indActive]])
    reg = Regularization.Simple(regMesh)
    opt = Optimization.InexactGaussNewton(maxIterCG=10)
    invProb = InvProblem.BaseInvProblem(dmisfit, reg, opt)

    # directives
    beta = Directives.BetaSchedule(coolingFactor=4, coolingRate=3)
    betaest = Directives.BetaEstimate_ByEig(beta0_ratio=2.)
    target = Directives.TargetMisfit()
    directiveList = [beta, betaest, target]

    inv = Inversion.BaseInversion(invProb, directiveList=directiveList)
    m0 = np.log(np.ones(mtrue.size) * sig_half)
    reg.alpha_s = 5e-1
    reg.alpha_x = 1.
    prbTD.counter = opt.counter = Utils.Counter()
    opt.remember('xc')
    moptTD = inv.run(m0)

    # Plot the results
    if plotIt:
        plt.figure(figsize=(10, 8))
        ax0 = plt.subplot2grid((2, 2), (0, 0), rowspan=2)
        ax1 = plt.subplot2grid((2, 2), (0, 1))
        ax2 = plt.subplot2grid((2, 2), (1, 1))

        fs = 13  # fontsize
        matplotlib.rcParams['font.size'] = fs

        # Plot the model
        ax0.semilogx(sigma[active],
                     mesh.vectorCCz[active],
                     'k-',
                     lw=2,
                     label="True")
        ax0.semilogx(np.exp(moptFD),
                     mesh.vectorCCz[active],
                     'bo',
                     ms=6,
                     markeredgecolor='k',
                     markeredgewidth=0.5,
                     label="FDEM")
        ax0.semilogx(np.exp(moptTD),
                     mesh.vectorCCz[active],
                     'r*',
                     ms=10,
                     markeredgecolor='k',
                     markeredgewidth=0.5,
                     label="TDEM")
        ax0.set_ylim(-700, 0)
        ax0.set_xlim(5e-3, 1e-1)

        ax0.set_xlabel('Conductivity (S/m)', fontsize=fs)
        ax0.set_ylabel('Depth (m)', fontsize=fs)
        ax0.grid(which='both',
                 color='k',
                 alpha=0.5,
                 linestyle='-',
                 linewidth=0.2)
        ax0.legend(fontsize=fs, loc=4)

        # plot the data misfits - negative b/c we choose positive to be in the
        # direction of primary

        ax1.plot(freqs, -surveyFD.dobs[::2], 'k-', lw=2, label="Obs (real)")
        ax1.plot(freqs, -surveyFD.dobs[1::2], 'k--', lw=2, label="Obs (imag)")

        dpredFD = surveyFD.dpred(moptTD)
        ax1.loglog(freqs,
                   -dpredFD[::2],
                   'bo',
                   ms=6,
                   markeredgecolor='k',
                   markeredgewidth=0.5,
                   label="Pred (real)")
        ax1.loglog(freqs,
                   -dpredFD[1::2],
                   'b+',
                   ms=10,
                   markeredgewidth=2.,
                   label="Pred (imag)")

        ax2.loglog(times, surveyTD.dobs, 'k-', lw=2, label='Obs')
        ax2.loglog(times,
                   surveyTD.dpred(moptTD),
                   'r*',
                   ms=10,
                   markeredgecolor='k',
                   markeredgewidth=0.5,
                   label='Pred')
        ax2.set_xlim(times.min() - 1e-5, times.max() + 1e-4)

        # Labels, gridlines, etc
        ax2.grid(which='both', alpha=0.5, linestyle='-', linewidth=0.2)
        ax1.grid(which='both', alpha=0.5, linestyle='-', linewidth=0.2)

        ax1.set_xlabel('Frequency (Hz)', fontsize=fs)
        ax1.set_ylabel('Vertical magnetic field (-T)', fontsize=fs)

        ax2.set_xlabel('Time (s)', fontsize=fs)
        ax2.set_ylabel('Vertical magnetic field (T)', fontsize=fs)

        ax2.legend(fontsize=fs, loc=3)
        ax1.legend(fontsize=fs, loc=3)
        ax1.set_xlim(freqs.max() + 1e2, freqs.min() - 1e1)

        ax0.set_title("(a) Recovered Models", fontsize=fs)
        ax1.set_title("(b) FDEM observed vs. predicted", fontsize=fs)
        ax2.set_title("(c) TDEM observed vs. predicted", fontsize=fs)

        plt.tight_layout(pad=1.5)

        if saveFig is True:
            plt.savefig('example1.png', dpi=600)
                        hz,
                        dim=3,
                        use_cell_weights=True,
                        minimum_distance=1e3)

np.random.seed(1)
dmisfit = DataMisfit.l2_DataMisfit(survey)
dmisfit.W = 1. / uncert

opt = Optimization.ProjectedGNCG(maxIter=10, maxIterCG=20)
# opt.upper = m_upper
# opt.lower = m_lower
invProb = InvProblem.BaseInvProblem(dmisfit, reg, opt)
beta = Directives.BetaSchedule(coolingFactor=2, coolingRate=1)
betaest = Directives.BetaEstimate_ByEig(beta0_ratio=1.)
target = Directives.TargetMisfit(chifact=1.)
save_model = Directives.SaveOutputDictEveryIteration(
    directory=output_dir.as_posix())
inv = Inversion.BaseInversion(
    invProb, directiveList=[beta, betaest, target, save_model])
prob.counter = opt.counter = Utils.Counter()
opt.LSshorten = 0.5
opt.remember('xc')
try:
    save_model.outDict = {}
except:
    pass

print('Target misfit:', target.target)

## Run it!
def run(plotIt=True, survey_type="dipole-dipole"):
    np.random.seed(1)
    # Initiate I/O class for DC
    IO = DC.IO()
    # Obtain ABMN locations

    xmin, xmax = 0., 200.
    ymin, ymax = 0., 0.
    zmin, zmax = 0, 0
    endl = np.array([[xmin, ymin, zmin], [xmax, ymax, zmax]])
    # Generate DC survey object
    survey = DC.Utils.gen_DCIPsurvey(endl, survey_type=survey_type, dim=2,
                                     a=10, b=10, n=10)
    survey.getABMN_locations()
    survey = IO.from_ambn_locations_to_survey(
        survey.a_locations, survey.b_locations,
        survey.m_locations, survey.n_locations,
        survey_type, data_dc_type='volt'
    )

    # Obtain 2D TensorMesh
    mesh, actind = IO.set_mesh()
    topo, mesh1D = DC.Utils.genTopography(mesh, -10, 0, its=100)
    actind = Utils.surface2ind_topo(mesh, np.c_[mesh1D.vectorCCx, topo])
    survey.drapeTopo(mesh, actind, option="top")

    # Build a conductivity model
    blk_inds_c = Utils.ModelBuilder.getIndicesSphere(
        np.r_[60., -25.], 12.5, mesh.gridCC
    )
    blk_inds_r = Utils.ModelBuilder.getIndicesSphere(
        np.r_[140., -25.], 12.5, mesh.gridCC
    )
    layer_inds = mesh.gridCC[:, 1] > -5.
    sigma = np.ones(mesh.nC)*1./100.
    sigma[blk_inds_c] = 1./10.
    sigma[blk_inds_r] = 1./1000.
    sigma[~actind] = 1./1e8
    rho = 1./sigma

    # Show the true conductivity model
    if plotIt:
        fig = plt.figure(figsize=(12, 3))
        ax = plt.subplot(111)
        temp = rho.copy()
        temp[~actind] = np.nan
        out = mesh.plotImage(
            temp, grid=True, ax=ax, gridOpts={'alpha': 0.2},
            clim=(10, 1000),
            pcolorOpts={"cmap": "viridis", "norm": colors.LogNorm()}
        )
        ax.plot(
            survey.electrode_locations[:, 0],
            survey.electrode_locations[:, 1], 'k.'
        )
        ax.set_xlim(IO.grids[:, 0].min(), IO.grids[:, 0].max())
        ax.set_ylim(-IO.grids[:, 1].max(), IO.grids[:, 1].min())
        cb = plt.colorbar(out[0])
        cb.set_label("Resistivity (ohm-m)")
        ax.set_aspect('equal')
        plt.show()

    # Use Exponential Map: m = log(rho)
    actmap = Maps.InjectActiveCells(
        mesh, indActive=actind, valInactive=np.log(1e8)
    )
    mapping = Maps.ExpMap(mesh) * actmap

    # Generate mtrue
    mtrue = np.log(rho[actind])

    # Generate 2.5D DC problem
    # "N" means potential is defined at nodes
    prb = DC.Problem2D_N(
        mesh, rhoMap=mapping, storeJ=True,
        Solver=Solver
    )
    # Pair problem with survey
    try:
        prb.pair(survey)
    except:
        survey.unpair()
        prb.pair(survey)

    geometric_factor = survey.set_geometric_factor(
        data_type="apparent_resistivity",
        survey_type='dipole-dipole',
        space_type='half-space'
    )

    # Make synthetic DC data with 5% Gaussian noise
    dtrue = survey.makeSyntheticData(mtrue, std=0.05, force=True)

    IO.data_dc = dtrue
    # Show apparent resisitivty pseudo-section
    if plotIt:
        IO.plotPseudoSection(
            data=survey.dobs, data_type='apparent_resistivity'
        )

    # Show apparent resisitivty histogram
    if plotIt:
        fig = plt.figure()
        out = hist(survey.dobs, bins=20)
        plt.xlabel("Apparent Resisitivty ($\Omega$m)")
        plt.show()

    # Set initial model based upon histogram
    m0 = np.ones(actmap.nP)*np.log(100.)

    # Set uncertainty
    # floor (10 ohm-m)
    eps = 1.
    # percentage
    std = 0.05
    dmisfit = DataMisfit.l2_DataMisfit(survey)
    uncert = abs(survey.dobs) * std + eps
    dmisfit.W = 1./uncert

    # Map for a regularization
    regmap = Maps.IdentityMap(nP=int(actind.sum()))

    # Related to inversion
    reg = Regularization.Sparse(mesh, indActive=actind, mapping=regmap)
    opt = Optimization.InexactGaussNewton(maxIter=15)
    invProb = InvProblem.BaseInvProblem(dmisfit, reg, opt)
    beta = Directives.BetaSchedule(coolingFactor=5, coolingRate=2)
    betaest = Directives.BetaEstimate_ByEig(beta0_ratio=1e0)
    target = Directives.TargetMisfit()
    updateSensW = Directives.UpdateSensitivityWeights()
    update_Jacobi = Directives.UpdatePreconditioner()
    inv = Inversion.BaseInversion(
        invProb, directiveList=[
            beta, betaest, target, updateSensW, update_Jacobi
        ]
        )
    prb.counter = opt.counter = Utils.Counter()
    opt.LSshorten = 0.5
    opt.remember('xc')

    # Run inversion
    mopt = inv.run(m0)

    # Get diag(JtJ)
    mask_inds = np.ones(mesh.nC, dtype=bool)
    jtj = np.sqrt(updateSensW.JtJdiag[0])
    jtj /= jtj.max()
    temp = np.ones_like(jtj, dtype=bool)
    temp[jtj > 0.005] = False
    mask_inds[actind] = temp
    actind_final = np.logical_and(actind, ~mask_inds)
    jtj_cc = np.ones(mesh.nC)*np.nan
    jtj_cc[actind] = jtj

    # Show the sensitivity
    if plotIt:
        fig = plt.figure(figsize=(12, 3))
        ax = plt.subplot(111)
        temp = rho.copy()
        temp[~actind] = np.nan
        out = mesh.plotImage(
            jtj_cc, grid=True, ax=ax,
            gridOpts={'alpha': 0.2}, clim=(0.005, 0.5),
            pcolorOpts={"cmap": "viridis", "norm": colors.LogNorm()}
        )
        ax.plot(
            survey.electrode_locations[:, 0],
            survey.electrode_locations[:, 1], 'k.'
        )
        ax.set_xlim(IO.grids[:, 0].min(), IO.grids[:, 0].max())
        ax.set_ylim(-IO.grids[:, 1].max(), IO.grids[:, 1].min())
        cb = plt.colorbar(out[0])
        cb.set_label("Sensitivity")
        ax.set_aspect('equal')
        plt.show()

    # Convert obtained inversion model to resistivity
    # rho = M(m), where M(.) is a mapping

    rho_est = mapping*mopt
    rho_est[~actind_final] = np.nan
    rho_true = rho.copy()
    rho_true[~actind_final] = np.nan

    # show recovered conductivity
    if plotIt:
        vmin, vmax = rho.min(), rho.max()
        fig, ax = plt.subplots(2, 1, figsize=(20, 6))
        out1 = mesh.plotImage(
                rho_true, clim=(10, 1000),
                pcolorOpts={"cmap": "viridis", "norm": colors.LogNorm()},
                ax=ax[0]
        )
        out2 = mesh.plotImage(
            rho_est, clim=(10, 1000),
            pcolorOpts={"cmap": "viridis", "norm": colors.LogNorm()},
            ax=ax[1]
        )
        out = [out1, out2]
        for i in range(2):
            ax[i].plot(
                survey.electrode_locations[:, 0],
                survey.electrode_locations[:, 1], 'kv'
            )
            ax[i].set_xlim(IO.grids[:, 0].min(), IO.grids[:, 0].max())
            ax[i].set_ylim(-IO.grids[:, 1].max(), IO.grids[:, 1].min())
            cb = plt.colorbar(out[i][0], ax=ax[i])
            cb.set_label("Resistivity ($\Omega$m)")
            ax[i].set_xlabel("Northing (m)")
            ax[i].set_ylabel("Elevation (m)")
            ax[i].set_aspect('equal')
        plt.tight_layout()
        plt.show()
Example #15
0
def run(plotIt=True):
    """
        EM: TDEM: 1D: Inversion with VTEM waveform
        ==========================================

        Here we will create and run a TDEM 1D inversion,
        with VTEM waveform of which initial condition
        is zero, but have some on- and off-time.
    """

    cs, ncx, ncz, npad = 5., 25, 24, 15
    hx = [(cs, ncx), (cs, npad, 1.3)]
    hz = [(cs, npad, -1.3), (cs, ncz), (cs, npad, 1.3)]
    mesh = Mesh.CylMesh([hx, 1, hz], '00C')

    active = mesh.vectorCCz < 0.
    layer = (mesh.vectorCCz < -50.) & (mesh.vectorCCz >= -150.)
    actMap = Maps.InjectActiveCells(mesh, active, np.log(1e-8), nC=mesh.nCz)
    mapping = Maps.ExpMap(mesh) * Maps.SurjectVertical1D(mesh) * actMap
    sig_half = 1e-3
    sig_air = 1e-8
    sig_layer = 1e-2
    sigma = np.ones(mesh.nCz) * sig_air
    sigma[active] = sig_half
    sigma[layer] = sig_layer
    mtrue = np.log(sigma[active])

    x = np.r_[30, 50, 70, 90]
    rxloc = np.c_[x, x * 0., np.zeros_like(x)]

    prb = EM.TDEM.Problem3D_b(mesh, sigmaMap=mapping)
    prb.Solver = Solver
    prb.timeSteps = [(1e-3, 5), (1e-4, 5), (5e-5, 10), (5e-5, 5), (1e-4, 10),
                     (5e-4, 10)]

    # Use VTEM waveform
    out = EM.Utils.VTEMFun(prb.times, 0.00595, 0.006, 100)

    # Forming function handle for waveform using 1D linear interpolation
    wavefun = interp1d(prb.times, out)
    t0 = 0.006
    waveform = EM.TDEM.Src.RawWaveform(offTime=t0, waveFct=wavefun)

    rx = EM.TDEM.Rx.Point_dbdt(rxloc, np.logspace(-4, -2.5, 11) + t0, 'z')
    src = EM.TDEM.Src.CircularLoop([rx],
                                   waveform=waveform,
                                   loc=np.array([0., 0., 0.]),
                                   radius=10.)
    survey = EM.TDEM.Survey([src])
    prb.pair(survey)
    # create observed data
    std = 0.02

    survey.dobs = survey.makeSyntheticData(mtrue, std)
    # dobs = survey.dpred(mtrue)
    survey.std = std
    survey.eps = 1e-11

    dmisfit = DataMisfit.l2_DataMisfit(survey)
    regMesh = Mesh.TensorMesh([mesh.hz[mapping.maps[-1].indActive]])
    reg = Regularization.Simple(regMesh)
    opt = Optimization.InexactGaussNewton(maxIter=5, LSshorten=0.5)
    invProb = InvProblem.BaseInvProblem(dmisfit, reg, opt)
    target = Directives.TargetMisfit()
    # Create an inversion object
    beta = Directives.BetaSchedule(coolingFactor=1., coolingRate=2.)
    betaest = Directives.BetaEstimate_ByEig(beta0_ratio=1e0)
    invProb.beta = 1e2
    inv = Inversion.BaseInversion(invProb, directiveList=[beta, target])
    m0 = np.log(np.ones(mtrue.size) * sig_half)
    prb.counter = opt.counter = Utils.Counter()
    opt.remember('xc')
    mopt = inv.run(m0)

    if plotIt:
        fig, ax = plt.subplots(1, 2, figsize=(10, 6))
        Dobs = survey.dobs.reshape((len(rx.times), len(x)))
        Dpred = invProb.dpred.reshape((len(rx.times), len(x)))
        for i in range(len(x)):
            ax[0].loglog(rx.times - t0, -Dobs[:, i].flatten(), 'k')
            ax[0].loglog(rx.times - t0, -Dpred[:, i].flatten(), 'k.')
            if i == 0:
                ax[0].legend(('$d^{obs}$', '$d^{pred}$'), fontsize=16)
        ax[0].set_xlabel('Time (s)', fontsize=14)
        ax[0].set_ylabel('$db_z / dt$ (nT/s)', fontsize=16)
        ax[0].set_xlabel('Time (s)', fontsize=14)
        ax[0].grid(color='k', alpha=0.5, linestyle='dashed', linewidth=0.5)

        plt.semilogx(sigma[active], mesh.vectorCCz[active])
        plt.semilogx(np.exp(mopt), mesh.vectorCCz[active])
        ax[1].set_ylim(-600, 0)
        ax[1].set_xlim(1e-4, 1e-1)
        ax[1].set_xlabel('Conductivity (S/m)', fontsize=14)
        ax[1].set_ylabel('Depth (m)', fontsize=14)
        ax[1].grid(color='k', alpha=0.5, linestyle='dashed', linewidth=0.5)
        plt.legend(['$\sigma_{true}$', '$\sigma_{pred}$'])
Example #16
0
def run(plotIt=True, saveFig=False, cleanup=True):
    """
    Run 1D inversions for a single sounding of the RESOLVE and SkyTEM
    bookpurnong data

    :param bool plotIt: show the plots?
    :param bool saveFig: save the figure
    :param bool cleanup: remove the downloaded results
    """
    downloads, directory = download_and_unzip_data()

    resolve = h5py.File(
        os.path.sep.join([directory, "booky_resolve.hdf5"]),
        "r"
    )
    skytem = h5py.File(
        os.path.sep.join([directory, "booky_skytem.hdf5"]),
        "r"
    )
    river_path = resolve["river_path"].value

    # Choose a sounding location to invert
    xloc, yloc = 462100.0, 6196500.0
    rxind_skytem = np.argmin(
        abs(skytem["xy"][:, 0]-xloc)+abs(skytem["xy"][:, 1]-yloc)
    )
    rxind_resolve = np.argmin(
        abs(resolve["xy"][:, 0]-xloc)+abs(resolve["xy"][:, 1]-yloc)
    )

    # Plot both resolve and skytem data on 2D plane
    fig = plt.figure(figsize=(13, 6))
    title = ["RESOLVE In-phase 400 Hz", "SkyTEM High moment 156 $\mu$s"]
    ax1 = plt.subplot(121)
    ax2 = plt.subplot(122)
    axs = [ax1, ax2]
    out_re = Utils.plot2Ddata(
        resolve["xy"], resolve["data"][:, 0], ncontour=100,
        contourOpts={"cmap": "viridis"}, ax=ax1
    )
    vmin, vmax = out_re[0].get_clim()
    cb_re = plt.colorbar(
        out_re[0], ticks=np.linspace(vmin, vmax, 3), ax=ax1,
        fraction=0.046, pad=0.04
    )
    temp_skytem = skytem["data"][:, 5].copy()
    temp_skytem[skytem["data"][:, 5] > 7e-10] = 7e-10
    out_sky = Utils.plot2Ddata(
        skytem["xy"][:, :2], temp_skytem, ncontour=100,
        contourOpts={"cmap": "viridis", "vmax": 7e-10}, ax=ax2
    )
    vmin, vmax = out_sky[0].get_clim()
    cb_sky = plt.colorbar(
        out_sky[0], ticks=np.linspace(vmin, vmax*0.99, 3), ax=ax2,
        format="%.1e", fraction=0.046, pad=0.04
    )
    cb_re.set_label("Bz (ppm)")
    cb_sky.set_label("dB$_z$ / dt (V/A-m$^4$)")

    for i, ax in enumerate(axs):
        xticks = [460000, 463000]
        yticks = [6195000, 6198000, 6201000]
        ax.set_xticks(xticks)
        ax.set_yticks(yticks)
        ax.plot(xloc, yloc, 'wo')
        ax.plot(river_path[:, 0], river_path[:, 1], 'k', lw=0.5)

        ax.set_aspect("equal")
        if i == 1:
            ax.plot(
                skytem["xy"][:, 0], skytem["xy"][:, 1], 'k.',
                alpha=0.02, ms=1
            )
            ax.set_yticklabels([str(" ") for f in yticks])
        else:
            ax.plot(
                resolve["xy"][:, 0], resolve["xy"][:, 1], 'k.', alpha=0.02,
                ms=1
            )
            ax.set_yticklabels([str(f) for f in yticks])
            ax.set_ylabel("Northing (m)")
        ax.set_xlabel("Easting (m)")
        ax.set_title(title[i])
        ax.axis('equal')
    # plt.tight_layout()

    if saveFig is True:
        fig.savefig("resolve_skytem_data.png", dpi=600)

    # ------------------ Mesh ------------------ #
    # Step1: Set 2D cylindrical mesh
    cs, ncx, ncz, npad = 1., 10., 10., 20
    hx = [(cs, ncx), (cs, npad, 1.3)]
    npad = 12
    temp = np.logspace(np.log10(1.), np.log10(12.), 19)
    temp_pad = temp[-1] * 1.3 ** np.arange(npad)
    hz = np.r_[temp_pad[::-1], temp[::-1], temp, temp_pad]
    mesh = Mesh.CylMesh([hx, 1, hz], '00C')
    active = mesh.vectorCCz < 0.

    # Step2: Set a SurjectVertical1D mapping
    # Note: this sets our inversion model as 1D log conductivity
    # below subsurface

    active = mesh.vectorCCz < 0.
    actMap = Maps.InjectActiveCells(mesh, active, np.log(1e-8), nC=mesh.nCz)
    mapping = Maps.ExpMap(mesh) * Maps.SurjectVertical1D(mesh) * actMap
    sig_half = 1e-1
    sig_air = 1e-8
    sigma = np.ones(mesh.nCz)*sig_air
    sigma[active] = sig_half

    # Initial and reference model
    m0 = np.log(sigma[active])

    # ------------------ RESOLVE Forward Simulation ------------------ #
    # Step3: Invert Resolve data

    # Bird height from the surface
    b_height_resolve = resolve["src_elevation"].value
    src_height_resolve = b_height_resolve[rxind_resolve]

    # Set Rx (In-phase and Quadrature)
    rxOffset = 7.86
    bzr = EM.FDEM.Rx.Point_bSecondary(
        np.array([[rxOffset, 0., src_height_resolve]]),
        orientation='z',
        component='real'
    )

    bzi = EM.FDEM.Rx.Point_b(
        np.array([[rxOffset, 0., src_height_resolve]]),
        orientation='z',
        component='imag'
    )

    # Set Source (In-phase and Quadrature)
    frequency_cp = resolve["frequency_cp"].value
    freqs = frequency_cp.copy()
    srcLoc = np.array([0., 0., src_height_resolve])
    srcList = [EM.FDEM.Src.MagDipole([bzr, bzi], freq, srcLoc, orientation='Z')
               for freq in freqs]

    # Set FDEM survey (In-phase and Quadrature)
    survey = EM.FDEM.Survey(srcList)
    prb = EM.FDEM.Problem3D_b(mesh, sigmaMap=mapping, Solver=Solver)
    prb.pair(survey)

    # ------------------ RESOLVE Inversion ------------------ #

    # Primary field
    bp = - mu_0/(4*np.pi*rxOffset**3)

    # Observed data
    cpi_inds = [0, 2, 6, 8, 10]
    cpq_inds = [1, 3, 7, 9, 11]
    dobs_re = np.c_[
        resolve["data"][rxind_resolve, :][cpi_inds],
        resolve["data"][rxind_resolve, :][cpq_inds]
    ].flatten() * bp * 1e-6

    # Uncertainty
    std = np.repeat(np.r_[np.ones(3)*0.1, np.ones(2)*0.15], 2)
    floor = 20 * abs(bp) * 1e-6
    uncert = abs(dobs_re) * std + floor

    # Data Misfit
    survey.dobs = dobs_re
    dmisfit = DataMisfit.l2_DataMisfit(survey)
    dmisfit.W = 1./uncert

    # Regularization
    regMesh = Mesh.TensorMesh([mesh.hz[mapping.maps[-1].indActive]])
    reg = Regularization.Simple(regMesh)

    # Optimization
    opt = Optimization.InexactGaussNewton(maxIter=5)

    # statement of the inverse problem
    invProb = InvProblem.BaseInvProblem(dmisfit, reg, opt)

    # Inversion directives and parameters
    target = Directives.TargetMisfit()  # stop when we hit target misfit
    invProb.beta = 2.
    # betaest = Directives.BetaEstimate_ByEig(beta0_ratio=1e0)
    inv = Inversion.BaseInversion(invProb, directiveList=[target])
    reg.alpha_s = 1e-3
    reg.alpha_x = 1.
    reg.mref = m0.copy()
    opt.LSshorten = 0.5
    opt.remember('xc')

    # run the inversion
    mopt_re = inv.run(m0)
    dpred_re = invProb.dpred

    # ------------------ SkyTEM Forward Simulation ------------------ #
    # Step4: Invert SkyTEM data

    # Bird height from the surface
    b_height_skytem = skytem["src_elevation"].value
    src_height = b_height_skytem[rxind_skytem]
    srcLoc = np.array([[0., 0., src_height]])

    # Radius of the source loop
    area = skytem["area"].value
    radius = np.sqrt(area/np.pi)
    rxLoc = np.array([[radius, 0., src_height]])

    # Parameters for current waveform
    t0 = skytem["t0"].value
    times = skytem["times"].value
    waveform_skytem = skytem["waveform"].value
    offTime = t0
    times_off = times - t0

    # Note: we are Using theoretical VTEM waveform,
    # but effectively fits SkyTEM waveform
    peakTime = 1.0000000e-02
    a = 3.

    dbdt_z = EM.TDEM.Rx.Point_dbdt(
        locs=rxLoc, times=times_off[:-3]+offTime, orientation='z'
    )  # vertical db_dt

    rxList = [dbdt_z]  # list of receivers
    srcList = [
        EM.TDEM.Src.CircularLoop(
            rxList, loc=srcLoc, radius=radius,
            orientation='z',
            waveform=EM.TDEM.Src.VTEMWaveform(
                    offTime=offTime, peakTime=peakTime, a=3.
                )
        )
    ]
    # solve the problem at these times
    timeSteps = [
        (peakTime/5, 5), ((offTime-peakTime)/5, 5),
        (1e-5, 5), (5e-5, 5), (1e-4, 10), (5e-4, 15)
    ]
    prob = EM.TDEM.Problem3D_e(
        mesh, timeSteps=timeSteps, sigmaMap=mapping, Solver=Solver
    )
    survey = EM.TDEM.Survey(srcList)
    prob.pair(survey)

    src = srcList[0]
    rx = src.rxList[0]
    wave = []
    for time in prob.times:
        wave.append(src.waveform.eval(time))
    wave = np.hstack(wave)
    out = survey.dpred(m0)

    # plot the waveform
    fig = plt.figure(figsize=(5, 3))
    times_off = times-t0
    plt.plot(waveform_skytem[:, 0], waveform_skytem[:, 1], 'k.')
    plt.plot(prob.times, wave, 'k-', lw=2)
    plt.legend(("SkyTEM waveform", "Waveform (fit)"), fontsize=10)
    for t in rx.times:
        plt.plot(np.ones(2)*t, np.r_[-0.03, 0.03], 'k-')
    plt.ylim(-0.1, 1.1)
    plt.grid(True)
    plt.xlabel("Time (s)")
    plt.ylabel("Normalized current")

    if saveFig:
        fig.savefig("skytem_waveform", dpi=200)

    # Observed data
    dobs_sky = skytem["data"][rxind_skytem, :-3] * area

    # ------------------ SkyTEM Inversion ------------------ #
    # Uncertainty
    std = 0.12
    floor = 7.5e-12
    uncert = abs(dobs_sky) * std + floor

    # Data Misfit
    survey.dobs = -dobs_sky
    dmisfit = DataMisfit.l2_DataMisfit(survey)
    uncert = 0.12*abs(dobs_sky) + 7.5e-12
    dmisfit.W = Utils.sdiag(1./uncert)

    # Regularization
    regMesh = Mesh.TensorMesh([mesh.hz[mapping.maps[-1].indActive]])
    reg = Regularization.Simple(regMesh)

    # Optimization
    opt = Optimization.InexactGaussNewton(maxIter=5)

    # statement of the inverse problem
    invProb = InvProblem.BaseInvProblem(dmisfit, reg, opt)

    # Directives and Inversion Parameters
    target = Directives.TargetMisfit()
    # betaest = Directives.BetaEstimate_ByEig(beta0_ratio=1e0)
    invProb.beta = 20.
    inv = Inversion.BaseInversion(invProb, directiveList=[target])
    reg.alpha_s = 1e-1
    reg.alpha_x = 1.
    opt.LSshorten = 0.5
    opt.remember('xc')
    reg.mref = mopt_re  # Use RESOLVE model as a reference model

    # run the inversion
    mopt_sky = inv.run(m0)
    dpred_sky = invProb.dpred

    # Plot the figure from the paper
    plt.figure(figsize=(12, 8))

    fs = 13  # fontsize
    matplotlib.rcParams['font.size'] = fs

    ax0 = plt.subplot2grid((2, 2), (0, 0), rowspan=2)
    ax1 = plt.subplot2grid((2, 2), (0, 1))
    ax2 = plt.subplot2grid((2, 2), (1, 1))

    # Recovered Models
    sigma_re = np.repeat(np.exp(mopt_re), 2, axis=0)
    sigma_sky = np.repeat(np.exp(mopt_sky), 2, axis=0)
    z = np.repeat(mesh.vectorCCz[active][1:], 2, axis=0)
    z = np.r_[mesh.vectorCCz[active][0], z, mesh.vectorCCz[active][-1]]

    ax0.semilogx(sigma_re, z, 'k', lw=2, label="RESOLVE")
    ax0.semilogx(sigma_sky, z, 'b', lw=2, label="SkyTEM")
    ax0.set_ylim(-50, 0)
    # ax0.set_xlim(5e-4, 1e2)
    ax0.grid(True)
    ax0.set_ylabel("Depth (m)")
    ax0.set_xlabel("Conducivity (S/m)")
    ax0.legend(loc=3)
    ax0.set_title("(a) Recovered Models")

    # RESOLVE Data
    ax1.loglog(
        frequency_cp, dobs_re.reshape((5, 2))[:, 0]/bp*1e6, 'k-',
        label="Obs (real)"
    )
    ax1.loglog(
        frequency_cp, dobs_re.reshape((5, 2))[:, 1]/bp*1e6, 'k--',
        label="Obs (imag)"
    )
    ax1.loglog(
        frequency_cp, dpred_re.reshape((5, 2))[:, 0]/bp*1e6, 'k+', ms=10,
        markeredgewidth=2., label="Pred (real)"
    )
    ax1.loglog(
        frequency_cp, dpred_re.reshape((5, 2))[:, 1]/bp*1e6, 'ko', ms=6,
        markeredgecolor='k', markeredgewidth=0.5, label="Pred (imag)"
    )
    ax1.set_title("(b) RESOLVE")
    ax1.set_xlabel("Frequency (Hz)")
    ax1.set_ylabel("Bz (ppm)")
    ax1.grid(True)
    ax1.legend(loc=3, fontsize=11)

    # SkyTEM data
    ax2.loglog(times_off[3:]*1e6, dobs_sky/area, 'b-', label="Obs")
    ax2.loglog(
        times_off[3:]*1e6, -dpred_sky/area, 'bo', ms=4,
        markeredgecolor='k', markeredgewidth=0.5, label="Pred"
    )
    ax2.set_xlim(times_off.min()*1e6*1.2, times_off.max()*1e6*1.1)

    ax2.set_xlabel("Time ($\mu s$)")
    ax2.set_ylabel("dBz / dt (V/A-m$^4$)")
    ax2.set_title("(c) SkyTEM High-moment")
    ax2.grid(True)
    ax2.legend(loc=3)

    a3 = plt.axes([0.86, .33, .1, .09], facecolor=[0.8, 0.8, 0.8, 0.6])
    a3.plot(prob.times*1e6, wave, 'k-')
    a3.plot(
        rx.times*1e6, np.zeros_like(rx.times), 'k|', markeredgewidth=1,
        markersize=12
    )
    a3.set_xlim([prob.times.min()*1e6*0.75, prob.times.max()*1e6*1.1])
    a3.set_title('(d) Waveform', fontsize=11)
    a3.set_xticks([prob.times.min()*1e6, t0*1e6, prob.times.max()*1e6])
    a3.set_yticks([])
    # a3.set_xticklabels(['0', '2e4'])
    a3.set_xticklabels(['-1e4', '0', '1e4'])

    plt.tight_layout()

    if saveFig:
        plt.savefig("booky1D_time_freq.png", dpi=600)

    if plotIt:
        plt.show()

    if cleanup:
        print( os.path.split(directory)[:-1])
        os.remove(
            os.path.sep.join(
                directory.split()[:-1] + ["._bookpurnong_inversion"]
            )
        )
        os.remove(downloads)
        shutil.rmtree(directory)
Example #17
0
def run_inversion(
    m0, survey, actind, mesh,
    std, eps,
    maxIter=15, beta0_ratio=1e0,
    coolingFactor=5, coolingRate=2,
    upper=np.inf, lower=-np.inf,
    use_sensitivity_weight=False,
    alpha_s=1e-4,
    alpha_x=1.,
    alpha_y=1.,
    alpha_z=1.,
):
    """
    Run IP inversion
    """
    dmisfit = DataMisfit.l2_DataMisfit(survey)
    uncert = abs(survey.dobs) * std + eps
    dmisfit.W = 1./uncert
    # Map for a regularization
    regmap = Maps.IdentityMap(nP=int(actind.sum()))
    # Related to inversion
    if use_sensitivity_weight:
        reg = Regularization.Sparse(
            mesh, indActive=actind, mapping=regmap
        )
        reg.alpha_s = alpha_s
        reg.alpha_x = alpha_x
        reg.alpha_y = alpha_y
        reg.alpha_z = alpha_z
    else:
        reg = Regularization.Sparse(
            mesh, indActive=actind, mapping=regmap,
            cell_weights=mesh.vol[actind]
        )
        reg.alpha_s = alpha_s
        reg.alpha_x = alpha_x
        reg.alpha_y = alpha_y
        reg.alpha_z = alpha_z
    opt = Optimization.ProjectedGNCG(maxIter=maxIter, upper=upper, lower=lower)
    invProb = InvProblem.BaseInvProblem(dmisfit, reg, opt)
    beta = Directives.BetaSchedule(
        coolingFactor=coolingFactor, coolingRate=coolingRate
    )
    betaest = Directives.BetaEstimate_ByEig(beta0_ratio=beta0_ratio)
    target = Directives.TargetMisfit()

    # Need to have basice saving function
    if use_sensitivity_weight:
        updateSensW = Directives.UpdateSensitivityWeights()
        update_Jacobi = Directives.UpdatePreconditioner()
        directiveList = [
            beta, betaest, target, update_Jacobi
        ]
    else:
        directiveList = [
            beta, betaest, target
        ]
    inv = Inversion.BaseInversion(
        invProb, directiveList=directiveList
        )
    opt.LSshorten = 0.5
    opt.remember('xc')

    # Run inversion
    mopt = inv.run(m0)
    return mopt, invProb.dpred
Example #18
0
opt = Optimization.ProjectedGNCG(maxIter=25,
                                 lower=-np.inf,
                                 upper=np.inf,
                                 maxIterLS=20,
                                 maxIterCG=30,
                                 tolCG=1e-3)

# Create the default L2 inverse problem from the above objects
invProb = InvProblem.BaseInvProblem(ComboMisfit, reg, opt)

# Specify how the initial beta is found
betaest = Directives.BetaEstimate_ByEig(beta0_ratio=1)

# Target misfit to stop the inversion,
# try to fit as much as possible of the signal, we don't want to lose anything
targetMisfit = Directives.TargetMisfit(chifact=targetChi)

# Pre-conditioner
update_Jacobi = Directives.UpdatePreconditioner()

IRLS = Directives.Update_IRLS(f_min_change=1e-3,
                              minGNiter=1,
                              beta_tol=0.25,
                              maxIRLSiter=1,
                              chifact_target=targetChi)

# Save model
saveIt = Directives.SaveUBCModelEveryIteration(mapping=activeCellsMap,
                                               fileName=workDir + dsep +
                                               outDir + driver["dataFile"][0])
# Put all the parts together
def run(plotIt=True, survey_type="dipole-dipole", p=0., qx=2., qz=2.):
    np.random.seed(1)
    # Initiate I/O class for DC
    IO = DC.IO()
    # Obtain ABMN locations

    xmin, xmax = 0., 200.
    ymin, ymax = 0., 0.
    zmin, zmax = 0, 0
    endl = np.array([[xmin, ymin, zmin], [xmax, ymax, zmax]])
    # Generate DC survey object
    survey = DC.Utils.gen_DCIPsurvey(endl,
                                     survey_type=survey_type,
                                     dim=2,
                                     a=10,
                                     b=10,
                                     n=10)
    survey.getABMN_locations()
    survey = IO.from_ambn_locations_to_survey(survey.a_locations,
                                              survey.b_locations,
                                              survey.m_locations,
                                              survey.n_locations,
                                              survey_type,
                                              data_dc_type='volt')

    # Obtain 2D TensorMesh
    mesh, actind = IO.set_mesh()
    topo, mesh1D = DC.Utils.genTopography(mesh, -10, 0, its=100)
    actind = Utils.surface2ind_topo(mesh, np.c_[mesh1D.vectorCCx, topo])
    survey.drapeTopo(mesh, actind, option="top")

    # Build a conductivity model
    blk_inds_c = Utils.ModelBuilder.getIndicesSphere(np.r_[60., -25.], 12.5,
                                                     mesh.gridCC)
    blk_inds_r = Utils.ModelBuilder.getIndicesSphere(np.r_[140., -25.], 12.5,
                                                     mesh.gridCC)
    layer_inds = mesh.gridCC[:, 1] > -5.
    sigma = np.ones(mesh.nC) * 1. / 100.
    sigma[blk_inds_c] = 1. / 10.
    sigma[blk_inds_r] = 1. / 1000.
    sigma[~actind] = 1. / 1e8
    rho = 1. / sigma

    # Show the true conductivity model
    if plotIt:
        fig = plt.figure(figsize=(12, 3))
        ax = plt.subplot(111)
        temp = rho.copy()
        temp[~actind] = np.nan
        out = mesh.plotImage(temp,
                             grid=True,
                             ax=ax,
                             gridOpts={'alpha': 0.2},
                             clim=(10, 1000),
                             pcolorOpts={
                                 "cmap": "viridis",
                                 "norm": colors.LogNorm()
                             })
        ax.plot(survey.electrode_locations[:, 0],
                survey.electrode_locations[:, 1], 'k.')
        ax.set_xlim(IO.grids[:, 0].min(), IO.grids[:, 0].max())
        ax.set_ylim(-IO.grids[:, 1].max(), IO.grids[:, 1].min())
        cb = plt.colorbar(out[0])
        cb.set_label("Resistivity (ohm-m)")
        ax.set_aspect('equal')
        plt.show()

    # Use Exponential Map: m = log(rho)
    actmap = Maps.InjectActiveCells(mesh,
                                    indActive=actind,
                                    valInactive=np.log(1e8))
    mapping = Maps.ExpMap(mesh) * actmap

    # Generate mtrue
    mtrue = np.log(rho[actind])

    # Generate 2.5D DC problem
    # "N" means potential is defined at nodes
    prb = DC.Problem2D_N(mesh,
                         rhoMap=mapping,
                         storeJ=True,
                         Solver=Solver,
                         verbose=True)
    # Pair problem with survey
    try:
        prb.pair(survey)
    except:
        survey.unpair()
        prb.pair(survey)

    # Make synthetic DC data with 5% Gaussian noise
    dtrue = survey.makeSyntheticData(mtrue, std=0.05, force=True)

    IO.data_dc = dtrue
    # Show apparent resisitivty pseudo-section
    if plotIt:
        IO.plotPseudoSection(data=survey.dobs / IO.G,
                             data_type='apparent_resistivity')

    # Show apparent resisitivty histogram
    if plotIt:
        fig = plt.figure()
        out = hist(survey.dobs / IO.G, bins=20)
        plt.xlabel("Apparent Resisitivty ($\Omega$m)")
        plt.show()

    # Set initial model based upon histogram
    m0 = np.ones(actmap.nP) * np.log(100.)

    # Set uncertainty
    # floor
    eps = 10**(-3.2)
    # percentage
    std = 0.05
    dmisfit = DataMisfit.l2_DataMisfit(survey)
    uncert = abs(survey.dobs) * std + eps
    dmisfit.W = 1. / uncert

    # Map for a regularization
    regmap = Maps.IdentityMap(nP=int(actind.sum()))

    # Related to inversion
    reg = Regularization.Sparse(mesh,
                                indActive=actind,
                                mapping=regmap,
                                gradientType='components')
    #     gradientType = 'components'
    reg.norms = np.c_[p, qx, qz, 0.]
    IRLS = Directives.Update_IRLS(maxIRLSiter=20,
                                  minGNiter=1,
                                  betaSearch=False,
                                  fix_Jmatrix=True)

    opt = Optimization.InexactGaussNewton(maxIter=40)
    invProb = InvProblem.BaseInvProblem(dmisfit, reg, opt)
    beta = Directives.BetaSchedule(coolingFactor=5, coolingRate=2)
    betaest = Directives.BetaEstimate_ByEig(beta0_ratio=1e0)
    target = Directives.TargetMisfit()
    update_Jacobi = Directives.UpdatePreconditioner()
    inv = Inversion.BaseInversion(invProb, directiveList=[betaest, IRLS])
    prb.counter = opt.counter = Utils.Counter()
    opt.LSshorten = 0.5
    opt.remember('xc')

    # Run inversion
    mopt = inv.run(m0)

    rho_est = mapping * mopt
    rho_est_l2 = mapping * invProb.l2model
    rho_est[~actind] = np.nan
    rho_est_l2[~actind] = np.nan
    rho_true = rho.copy()
    rho_true[~actind] = np.nan

    # show recovered conductivity
    if plotIt:
        vmin, vmax = rho.min(), rho.max()
        fig, ax = plt.subplots(3, 1, figsize=(20, 9))
        out1 = mesh.plotImage(rho_true,
                              clim=(10, 1000),
                              pcolorOpts={
                                  "cmap": "viridis",
                                  "norm": colors.LogNorm()
                              },
                              ax=ax[0])
        out2 = mesh.plotImage(rho_est_l2,
                              clim=(10, 1000),
                              pcolorOpts={
                                  "cmap": "viridis",
                                  "norm": colors.LogNorm()
                              },
                              ax=ax[1])
        out3 = mesh.plotImage(rho_est,
                              clim=(10, 1000),
                              pcolorOpts={
                                  "cmap": "viridis",
                                  "norm": colors.LogNorm()
                              },
                              ax=ax[2])

        out = [out1, out2, out3]
        titles = ["True", "L2", ("L%d, Lx%d, Lz%d") % (p, qx, qz)]
        for i in range(3):
            ax[i].plot(survey.electrode_locations[:, 0],
                       survey.electrode_locations[:, 1], 'kv')
            ax[i].set_xlim(IO.grids[:, 0].min(), IO.grids[:, 0].max())
            ax[i].set_ylim(-IO.grids[:, 1].max(), IO.grids[:, 1].min())
            cb = plt.colorbar(out[i][0], ax=ax[i])
            cb.set_label("Resistivity ($\Omega$m)")
            ax[i].set_xlabel("Northing (m)")
            ax[i].set_ylabel("Elevation (m)")
            ax[i].set_aspect('equal')
            ax[i].set_title(titles[i])
        plt.tight_layout()
        plt.show()
Example #20
0
    def run_inversion(
        self,
        maxIter=60,
        m0=0.0,
        mref=0.0,
        percentage=5,
        floor=0.1,
        chifact=1,
        beta0_ratio=1.0,
        coolingFactor=1,
        n_iter_per_beta=1,
        alpha_s=1.0,
        alpha_x=1.0,
        alpha_z=1.0,
        use_target=False,
        use_tikhonov=True,
        use_irls=False,
        p_s=2,
        p_x=2,
        p_y=2,
        p_z=2,
        beta_start=None,
    ):

        self.uncertainty = percentage * abs(self.survey.dobs) * 0.01 + floor

        m0 = np.ones(self.mesh.nC) * m0
        mref = np.ones(self.mesh.nC) * mref

        if ~use_tikhonov:
            reg = Regularization.Sparse(
                self.mesh,
                alpha_s=alpha_s,
                alpha_x=alpha_x,
                alpha_y=alpha_z,
                mref=mref,
                mapping=Maps.IdentityMap(self.mesh),
                cell_weights=self.mesh.vol,
            )
        else:
            reg = Regularization.Tikhonov(
                self.mesh,
                alpha_s=alpha_s,
                alpha_x=alpha_x,
                alpha_y=alpha_z,
                mref=mref,
                mapping=Maps.IdentityMap(self.mesh),
            )
        dmis = DataMisfit.l2_DataMisfit(self.survey)
        dmis.W = 1.0 / self.uncertainty

        opt = Optimization.ProjectedGNCG(maxIter=maxIter, maxIterCG=20)
        opt.lower = 0.0
        opt.remember("xc")
        opt.tolG = 1e-10
        opt.eps = 1e-10
        invProb = InvProblem.BaseInvProblem(dmis, reg, opt)
        save = Directives.SaveOutputEveryIteration()
        beta_schedule = Directives.BetaSchedule(coolingFactor=coolingFactor,
                                                coolingRate=n_iter_per_beta)

        if use_irls:
            IRLS = Directives.Update_IRLS(
                f_min_change=1e-4,
                minGNiter=1,
                silent=False,
                maxIRLSiter=40,
                beta_tol=5e-1,
                coolEpsFact=1.3,
                chifact_start=chifact,
            )

            if beta_start is None:
                directives = [
                    Directives.BetaEstimate_ByEig(beta0_ratio=beta0_ratio),
                    IRLS,
                    save,
                ]
            else:
                directives = [IRLS, save]
                invProb.beta = beta_start
            reg.norms = np.c_[p_s, p_x, p_z, 2]
        else:
            target = Directives.TargetMisfit(chifact=chifact)
            directives = [
                Directives.BetaEstimate_ByEig(beta0_ratio=beta0_ratio),
                beta_schedule,
                save,
            ]
            if use_target:
                directives.append(target)

        inv = Inversion.BaseInversion(invProb, directiveList=directives)
        mopt = inv.run(m0)
        model = opt.recall("xc")
        model.append(mopt)
        pred = []
        for m in model:
            pred.append(self.survey.dpred(m))
        return model, pred, save
Example #21
0
                             indActive=actind,
                             alpha_s=1e-6,
                             alpha_x=1.,
                             alpha_y=1.,
                             alpha_z=1.)

# Optimization Scheme
opt = Optimization.InexactGaussNewton(maxIter=10)

# Form the problem
opt.remember('xc')
invProb = InvProblem.BaseInvProblem(dmis, regT, opt)

# Directives for Inversions
beta = Directives.BetaEstimate_ByEig(beta0_ratio=1e+1)
Target = Directives.TargetMisfit()
betaSched = Directives.BetaSchedule(coolingFactor=5., coolingRate=2)

inv = Inversion.BaseInversion(invProb, directiveList=[beta, Target, betaSched])
# Run Inversion
minv = inv.run(m0)

# Final Plot
############

fig, ax = plt.subplots(2, 2, figsize=(12, 6))
ax = Utils.mkvc(ax)

cyl0v = getCylinderPoints(x0, z0, r0)
cyl1v = getCylinderPoints(x1, z1, r1)
Example #22
0
def fitWithStretchedExponetial(time, survey_ip, sources, Rho, start_time=None):
    if start_time is None:
        start_time = 0
    # Choose all time channels
    tinds = time > start_time
    nLoc = survey_ip.dobs.T[tinds, :].shape[1]
    # Setup wire for different properties
    wires = Maps.Wires(('eta', nLoc), ('tau', nLoc), ('c', nLoc))
    taumap = Maps.ExpMap(nP=nLoc) * wires.tau
    etamap = Maps.ExpMap(nP=nLoc) * wires.eta
    cmap = Maps.ExpMap(nP=nLoc) * wires.c

    # This is almost dummmy mesh and xyz loc at the moment
    # But, there is potential use later
    m1D = Mesh.TensorMesh([np.ones(nLoc)])

    # # Set survey
    survey = SEMultiSurvey(time[tinds] * 1e-3, sources[:, :], n_pulse=2, T=4)
    survey.dobs = (survey_ip.dobs.T[tinds, :]).flatten(order='F')
    # Set problem
    prob = SEMultiInvProblem(m1D, etaMap=etamap, tauMap=taumap, cMap=cmap)
    prob.pair(survey)

    # Set initial model
    eta0, tau0, c0 = abs(
        survey_ip.dobs.T[0, :].T), 1. * np.ones(nLoc), 1. * np.ones(nLoc)

    m0 = np.r_[np.log(eta0), np.log(tau0), np.log(c0)]
    std = 0.02

    plt.plot(survey.dpred(m0))
    plt.plot(survey.dobs, '.')
    plt.title("Obs & pred")
    plt.xlabel("data point")
    plt.ylabel("value")
    plt.show()

    mreg = Mesh.TensorMesh([len(m0)])
    dmisfit = DataMisfit.l2_DataMisfit(survey)
    uncert = (abs(survey.dobs) * std + 0.01) * 1.1
    dmisfit.W = 1. / uncert
    reg = Regularization.Simple(mreg)
    opt = Optimization.ProjectedGNCG(maxIter=20)
    invProb = InvProblem.BaseInvProblem(dmisfit, reg, opt)
    # Create an inversion object
    target = Directives.TargetMisfit()
    invProb.beta = 0.
    inv = Inversion.BaseInversion(invProb, directiveList=[target])
    # reg.mref = 0.*m0
    prob.counter = opt.counter = Utils.Counter()
    opt.LSshorten = 0.5
    opt.remember('xc')
    opt.tolX = 1e-20
    opt.tolF = 1e-20
    opt.tolG = 1e-20
    opt.eps = 1e-20
    m_upper = np.r_[np.ones_like(tau0) * np.log(200),
                    np.ones_like(tau0) * np.log(10.),
                    np.ones_like(tau0) * np.log(1.)]
    m_lower = np.r_[np.ones_like(tau0) * np.log(1),
                    np.ones_like(tau0) * np.log(1e-2),
                    np.ones_like(tau0) * np.log(0.1)]

    opt.lower = m_lower
    opt.upper = m_upper
    mopt = inv.run(m0)

    eta = etamap * mopt
    tau = taumap * mopt
    c = cmap * mopt
    DPRED = invProb.dpred.reshape((nLoc, time[tinds].size))
    DOBS = survey.dobs.reshape((nLoc, time[tinds].size))
    UNCERT = uncert.reshape((nLoc, time[tinds].size))
    error = ((eta * 1e-3) /
             np.sqrt(np.sum((DOBS - DPRED)**2, axis=1) / time[tinds].size))

    from matplotlib import colors
    fig = plt.figure(figsize=(6, 5))
    active_inds = (Rho[:, 0] > 10.) & (Rho[:, 0] < 1e3) & (abs(
        (DPRED - DOBS) / UNCERT).sum(axis=1) / time[tinds].size < 1.)
    out = plt.scatter(tau[active_inds],
                      c[active_inds],
                      c=eta[active_inds],
                      norm=colors.LogNorm(),
                      cmap="magma",
                      s=2)
    cb = plt.colorbar(out)
    plt.xscale('log')
    plt.yscale('log')
    plt.xlabel("Tau")
    plt.ylabel("c")
    cb.set_label("Eta (mV/V)")
    plt.show()

    inds = (abs((DPRED - DOBS) / UNCERT).sum(axis=1) / time[tinds].size < 20.)
    # print(inds)
    inds = np.arange(survey.n_location)[inds]
    out = plt.loglog(time[tinds], DPRED[inds[::2], :].T, 'r')
    out = plt.loglog(time[tinds], DOBS[inds[::2], :].T, 'kx')
    print(np.sum((DPRED - DOBS)**2) / time.size)

    fig, axs = plt.subplots(4, 1)
    properties = [
        Rho[:, 0][active_inds], eta[active_inds], tau[active_inds],
        c[active_inds]
    ]
    titles = ["$\\rho_{a}$", "$\\eta_{a}$", "$\\tau_{a}$", "$c_{a}$"]
    colors = ['#1f77b4', 'seagreen', 'crimson', 'gold']
    for i, ax in enumerate(axs):
        out = ax.hist(np.log10(properties[i]), bins=50, color=colors[i])
        ax.set_title(titles[i])
        ax.set_xticklabels([("%.1f") % (10**tick) for tick in ax.get_xticks()])
    plt.tight_layout()
    plt.show()

    return eta, tau, c, error
def resolve_1Dinversions(mesh,
                         dobs,
                         src_height,
                         freqs,
                         m0,
                         mref,
                         mapping,
                         std=0.08,
                         floor=1e-14,
                         rxOffset=7.86):
    """
    Perform a single 1D inversion for a RESOLVE sounding for Horizontal
    Coplanar Coil data (both real and imaginary).

    :param discretize.CylMesh mesh: mesh used for the forward simulation
    :param numpy.array dobs: observed data
    :param float src_height: height of the source above the ground
    :param numpy.array freqs: frequencies
    :param numpy.array m0: starting model
    :param numpy.array mref: reference model
    :param Maps.IdentityMap mapping: mapping that maps the model to electrical conductivity
    :param float std: percent error used to construct the data misfit term
    :param float floor: noise floor used to construct the data misfit term
    :param float rxOffset: offset between source and receiver.
    """

    # ------------------- Forward Simulation ------------------- #
    # set up the receivers
    bzr = EM.FDEM.Rx.Point_bSecondary(np.array([[rxOffset, 0., src_height]]),
                                      orientation='z',
                                      component='real')

    bzi = EM.FDEM.Rx.Point_b(np.array([[rxOffset, 0., src_height]]),
                             orientation='z',
                             component='imag')

    # source location
    srcLoc = np.array([0., 0., src_height])
    srcList = [
        EM.FDEM.Src.MagDipole([bzr, bzi], freq, srcLoc, orientation='Z')
        for freq in freqs
    ]

    # construct a forward simulation
    survey = EM.FDEM.Survey(srcList)
    prb = EM.FDEM.Problem3D_b(mesh, sigmaMap=mapping, Solver=PardisoSolver)
    prb.pair(survey)

    # ------------------- Inversion ------------------- #
    # data misfit term
    survey.dobs = dobs
    dmisfit = DataMisfit.l2_DataMisfit(survey)
    uncert = abs(dobs) * std + floor
    dmisfit.W = 1. / uncert

    # regularization
    regMesh = Mesh.TensorMesh([mesh.hz[mapping.maps[-1].indActive]])
    reg = Regularization.Simple(regMesh)
    reg.mref = mref

    # optimization
    opt = Optimization.InexactGaussNewton(maxIter=10)

    # statement of the inverse problem
    invProb = InvProblem.BaseInvProblem(dmisfit, reg, opt)

    # Inversion directives and parameters
    target = Directives.TargetMisfit()
    inv = Inversion.BaseInversion(invProb, directiveList=[target])

    invProb.beta = 2.  # Fix beta in the nonlinear iterations
    reg.alpha_s = 1e-3
    reg.alpha_x = 1.
    prb.counter = opt.counter = Utils.Counter()
    opt.LSshorten = 0.5
    opt.remember('xc')

    # run the inversion
    mopt = inv.run(m0)
    return mopt, invProb.dpred, survey.dobs
Example #24
0
def run(plotIt=True):
    """
        FLOW: Richards: 1D: Inversion
        =============================

        The example shows an inversion of Richards equation in 1D with a
        heterogeneous hydraulic conductivity function.

        The haverkamp model is used with the same parameters as Celia1990_
        the boundary and initial conditions are also the same. The simulation
        domain is 40cm deep and is run for an hour with an exponentially
        increasing time step that has a maximum of one minute. The general
        setup of the experiment is an infiltration front that advances
        downward through the model over time.

        The model chosen is the saturated hydraulic conductivity inside
        the hydraulic conductivity function (using haverkamp). The initial
        model is chosen to be the background (1e-3 cm/s). The saturation data
        has 2% random Gaussian noise added.

        The figure shows the recovered saturated hydraulic conductivity
        next to the true model. The other two figures show the saturation
        field for the entire simulation for the true and recovered models.

        Rowan Cockett - 21/12/2016

        .. _Celia1990: http://www.webpages.uidaho.edu/ch/papers/Celia.pdf
    """

    M = Mesh.TensorMesh([np.ones(40)], x0='N')
    M.setCellGradBC('dirichlet')
    # We will use the haverkamp empirical model with parameters from Celia1990
    k_fun, theta_fun = Richards.Empirical.haverkamp(M,
                                                    A=1.1750e+06,
                                                    gamma=4.74,
                                                    alpha=1.6110e+06,
                                                    theta_s=0.287,
                                                    theta_r=0.075,
                                                    beta=3.96)

    # Here we are making saturated hydraulic conductivity
    # an exponential mapping to the model (defined below)
    k_fun.KsMap = Maps.ExpMap(nP=M.nC)

    # Setup the boundary and initial conditions
    bc = np.array([-61.5, -20.7])
    h = np.zeros(M.nC) + bc[0]
    prob = Richards.RichardsProblem(M,
                                    hydraulic_conductivity=k_fun,
                                    water_retention=theta_fun,
                                    boundary_conditions=bc,
                                    initial_conditions=h,
                                    do_newton=False,
                                    method='mixed',
                                    debug=False)
    prob.timeSteps = [(5, 25, 1.1), (60, 40)]

    # Create the survey
    locs = -np.arange(2, 38, 4.)
    times = np.arange(30, prob.timeMesh.vectorCCx[-1], 60)
    rxSat = Richards.SaturationRx(locs, times)
    survey = Richards.RichardsSurvey([rxSat])
    survey.pair(prob)

    # Create a simple model for Ks
    Ks = 1e-3
    mtrue = np.ones(M.nC) * np.log(Ks)
    mtrue[15:20] = np.log(5e-2)
    mtrue[20:35] = np.log(3e-3)
    mtrue[35:40] = np.log(1e-2)
    m0 = np.ones(M.nC) * np.log(Ks)

    # Create some synthetic data and fields
    stdev = 0.02  # The standard deviation for the noise
    Hs = prob.fields(mtrue)
    survey.makeSyntheticData(mtrue, std=stdev, f=Hs, force=True)

    # Setup a pretty standard inversion
    reg = Regularization.Tikhonov(M, alpha_s=1e-1)
    dmis = DataMisfit.l2_DataMisfit(survey)
    opt = Optimization.InexactGaussNewton(maxIter=20, maxIterCG=10)
    invProb = InvProblem.BaseInvProblem(dmis, reg, opt)
    beta = Directives.BetaSchedule(coolingFactor=4)
    betaest = Directives.BetaEstimate_ByEig(beta0_ratio=1e2)
    target = Directives.TargetMisfit()
    dir_list = [beta, betaest, target]
    inv = Inversion.BaseInversion(invProb, directiveList=dir_list)

    mopt = inv.run(m0)

    Hs_opt = prob.fields(mopt)

    if plotIt:
        plt.figure(figsize=(14, 9))

        ax = plt.subplot(121)
        plt.semilogx(np.exp(np.c_[mopt, mtrue]), M.gridCC)
        plt.xlabel('Saturated Hydraulic Conductivity, $K_s$')
        plt.ylabel('Depth, cm')
        plt.semilogx([10**-3.9] * len(locs), locs, 'ro')
        plt.legend(('$m_{rec}$', '$m_{true}$', 'Data locations'), loc=4)

        ax = plt.subplot(222)
        mesh2d = Mesh.TensorMesh([prob.timeMesh.hx / 60, prob.mesh.hx], '0N')
        sats = [theta_fun(_) for _ in Hs]
        clr = mesh2d.plotImage(np.c_[sats][1:, :], ax=ax)
        cmap0 = matplotlib.cm.RdYlBu_r
        clr[0].set_cmap(cmap0)
        c = plt.colorbar(clr[0])
        c.set_label('Saturation $\\theta$')
        plt.xlabel('Time, minutes')
        plt.ylabel('Depth, cm')
        plt.title('True saturation over time')

        ax = plt.subplot(224)
        mesh2d = Mesh.TensorMesh([prob.timeMesh.hx / 60, prob.mesh.hx], '0N')
        sats = [theta_fun(_) for _ in Hs_opt]
        clr = mesh2d.plotImage(np.c_[sats][1:, :], ax=ax)
        cmap0 = matplotlib.cm.RdYlBu_r
        clr[0].set_cmap(cmap0)
        c = plt.colorbar(clr[0])
        c.set_label('Saturation $\\theta$')
        plt.xlabel('Time, minutes')
        plt.ylabel('Depth, cm')
        plt.title('Recovered saturation over time')

        plt.tight_layout()