Example #1
0
def MagneticsDiffSecondaryInv(mesh, model, data, **kwargs):
    """
        Inversion module for MagneticsDiffSecondary

    """
    from SimPEG import Optimization, Regularization, Parameters, ObjFunction, Inversion
    prob = MagneticsDiffSecondary(mesh, model)

    miter = kwargs.get('maxIter', 10)

    if prob.ispaired:
        prob.unpair()
    if data.ispaired:
        data.unpair()
    prob.pair(data)

    # Create an optimization program
    opt = Optimization.InexactGaussNewton(maxIter=miter)
    opt.bfgsH0 = Solver(sp.identity(model.nP), flag='D')
    # Create a regularization program
    reg = Regularization.Tikhonov(model)
    # Create an objective function
    beta = Parameters.BetaSchedule(beta0=1e0)
    obj = ObjFunction.BaseObjFunction(data, reg, beta=beta)
    # Create an inversion object
    inv = Inversion.BaseInversion(obj, opt)

    return inv, reg
    def setUp(self):

        cs = 25.
        hx = [(cs, 0, -1.3), (cs, 21), (cs, 0, 1.3)]
        hz = [(cs, 0, -1.3), (cs, 20)]
        mesh = Mesh.TensorMesh([hx, hz], x0="CN")
        blkind0 = Utils.ModelBuilder.getIndicesSphere(np.r_[-100., -200.], 75.,
                                                      mesh.gridCC)
        blkind1 = Utils.ModelBuilder.getIndicesSphere(np.r_[100., -200.], 75.,
                                                      mesh.gridCC)

        sigma = np.ones(mesh.nC) * 1e-2
        eta = np.zeros(mesh.nC)
        tau = np.ones_like(sigma) * 1.
        eta[blkind0] = 0.1
        eta[blkind1] = 0.1
        tau[blkind0] = 0.1
        tau[blkind1] = 0.1

        x = mesh.vectorCCx[(mesh.vectorCCx > -155.) & (mesh.vectorCCx < 155.)]

        Aloc = np.r_[-200., 0.]
        Bloc = np.r_[200., 0.]
        M = Utils.ndgrid(x - 25., np.r_[0.])
        N = Utils.ndgrid(x + 25., np.r_[0.])

        times = np.arange(10) * 1e-3 + 1e-3
        rx = SIP.Rx.Dipole(M, N, times)
        src = SIP.Src.Dipole([rx], Aloc, Bloc)
        survey = SIP.Survey([src])
        wires = Maps.Wires(('eta', mesh.nC), ('taui', mesh.nC))
        problem = SIP.Problem2D_CC(mesh,
                                   rho=1. / sigma,
                                   etaMap=wires.eta,
                                   tauiMap=wires.taui,
                                   verbose=False)
        problem.Solver = Solver
        problem.pair(survey)
        mSynth = np.r_[eta, 1. / tau]
        problem.model = mSynth
        survey.makeSyntheticData(mSynth)
        # Now set up the problem to do some minimization
        dmis = DataMisfit.l2_DataMisfit(survey)
        reg = Regularization.Tikhonov(mesh)
        opt = Optimization.InexactGaussNewton(maxIterLS=20,
                                              maxIter=10,
                                              tolF=1e-6,
                                              tolX=1e-6,
                                              tolG=1e-6,
                                              maxIterCG=6)
        invProb = InvProblem.BaseInvProblem(dmis, reg, opt, beta=1e4)
        inv = Inversion.BaseInversion(invProb)

        self.inv = inv
        self.reg = reg
        self.p = problem
        self.mesh = mesh
        self.m0 = mSynth
        self.survey = survey
        self.dmis = dmis
    def setUp(self, parallel=False):
        frequency = np.array([900, 7200, 56000], dtype=float)
        hz = np.r_[1.]
        n_sounding = 10
        dx = 20.
        hx = np.ones(n_sounding) * dx
        e = np.ones(n_sounding)
        mSynth = np.r_[e * np.log(1. / 100.), e * 20]

        x = np.arange(n_sounding)
        y = np.zeros_like(x)
        z = np.ones_like(x) * 30.
        rx_locations = np.c_[x, y, z]
        src_locations = np.c_[x, y, z]
        topo = np.c_[x, y, z - 30.].astype(float)

        wires = Maps.Wires(('sigma', n_sounding), ('h', n_sounding))
        expmap = Maps.ExpMap(nP=n_sounding)
        sigmaMap = expmap * wires.sigma

        survey = GlobalEM1DSurveyFD(rx_locations=rx_locations,
                                    src_locations=src_locations,
                                    frequency=frequency,
                                    offset=np.ones_like(frequency) * 8.,
                                    src_type="VMD",
                                    rx_type="ppm",
                                    field_type='secondary',
                                    topo=topo,
                                    half_switch=True)

        problem = GlobalEM1DProblemFD([],
                                      sigmaMap=sigmaMap,
                                      hMap=wires.h,
                                      hz=hz,
                                      parallel=parallel,
                                      n_cpu=2)
        problem.pair(survey)
        survey.makeSyntheticData(mSynth)

        # Now set up the problem to do some minimization
        mesh = Mesh.TensorMesh([int(n_sounding * 2)])
        dmis = DataMisfit.l2_DataMisfit(survey)
        reg = Regularization.Tikhonov(mesh)
        opt = Optimization.InexactGaussNewton(maxIterLS=20,
                                              maxIter=10,
                                              tolF=1e-6,
                                              tolX=1e-6,
                                              tolG=1e-6,
                                              maxIterCG=6)

        invProb = InvProblem.BaseInvProblem(dmis, reg, opt, beta=0.)
        inv = Inversion.BaseInversion(invProb)
        self.inv = inv
        self.reg = reg
        self.p = problem
        self.mesh = mesh
        self.m0 = mSynth * 1.2
        self.survey = survey
        self.dmis = dmis
    def setUp(self, parallel=True):
        frequency = np.array([900, 7200, 56000], dtype=float)
        hz = get_vertical_discretization_frequency(
            frequency, sigma_background=1./10.
        )

        n_sounding = 10
        dx = 20.
        hx = np.ones(n_sounding) * dx
        mesh = Mesh.TensorMesh([hx, hz], x0='00')
        inds = mesh.gridCC[:, 1] < 25
        inds_1 = mesh.gridCC[:, 1] < 50
        sigma = np.ones(mesh.nC) * 1./100.
        sigma[inds_1] = 1./10.
        sigma[inds] = 1./50.
        sigma_em1d = sigma.reshape(mesh.vnC, order='F').flatten()
        mSynth = np.log(sigma_em1d)

        x = mesh.vectorCCx
        y = np.zeros_like(x)
        z = np.ones_like(x) * 30.
        rx_locations = np.c_[x, y, z]
        src_locations = np.c_[x, y, z]
        topo = np.c_[x, y, z-30.].astype(float)
        mapping = Maps.ExpMap(mesh)
        survey = GlobalEM1DSurveyFD(
            rx_locations=rx_locations,
            src_locations=src_locations,
            frequency=frequency,
            offset=np.ones_like(frequency) * 8.,
            src_type="VMD",
            rx_type="Hz",
            field_type='secondary',
            topo=topo
        )

        problem = GlobalEM1DProblemFD(
            [], sigmaMap=mapping, hz=hz,
            parallel=parallel, n_cpu=5
        )
        problem.pair(survey)
        survey.makeSyntheticData(mSynth)

        # Now set up the problem to do some minimization
        dmis = DataMisfit.l2_DataMisfit(survey)
        reg = Regularization.Tikhonov(mesh)
        opt = Optimization.InexactGaussNewton(
            maxIterLS=20, maxIter=10, tolF=1e-6,
            tolX=1e-6, tolG=1e-6, maxIterCG=6
        )
        invProb = InvProblem.BaseInvProblem(dmis, reg, opt, beta=0.)
        inv = Inversion.BaseInversion(invProb)
        self.inv = inv
        self.reg = reg
        self.p = problem
        self.mesh = mesh
        self.m0 = mSynth
        self.survey = survey
        self.dmis = dmis
Example #5
0
def run(N=100, plotIt=True):

    np.random.seed(1)

    mesh = Mesh.TensorMesh([N])

    nk = 20
    jk = np.linspace(1., 60., nk)
    p = -0.25
    q = 0.25

    def g(k):
        return (np.exp(p * jk[k] * mesh.vectorCCx) *
                np.cos(np.pi * q * jk[k] * mesh.vectorCCx))

    G = np.empty((nk, mesh.nC))

    for i in range(nk):
        G[i, :] = g(i)

    mtrue = np.zeros(mesh.nC)
    mtrue[mesh.vectorCCx > 0.3] = 1.
    mtrue[mesh.vectorCCx > 0.45] = -0.5
    mtrue[mesh.vectorCCx > 0.6] = 0

    prob = Problem.LinearProblem(mesh, G=G)
    survey = Survey.LinearSurvey()
    survey.pair(prob)
    survey.makeSyntheticData(mtrue, std=0.01)

    M = prob.mesh

    reg = Regularization.Tikhonov(mesh, alpha_s=1., alpha_x=1.)
    dmis = DataMisfit.l2_DataMisfit(survey)
    opt = Optimization.InexactGaussNewton(maxIter=60)
    invProb = InvProblem.BaseInvProblem(dmis, reg, opt)
    directives = [
        Directives.BetaEstimate_ByEig(beta0_ratio=1e-2),
        Directives.TargetMisfit()
    ]
    inv = Inversion.BaseInversion(invProb, directiveList=directives)
    m0 = np.zeros_like(survey.mtrue)

    mrec = inv.run(m0)

    if plotIt:
        fig, axes = plt.subplots(1, 2, figsize=(12 * 1.2, 4 * 1.2))
        for i in range(prob.G.shape[0]):
            axes[0].plot(prob.G[i, :])
        axes[0].set_title('Columns of matrix G')

        axes[1].plot(M.vectorCCx, survey.mtrue, 'b-')
        axes[1].plot(M.vectorCCx, mrec, 'r-')
        axes[1].legend(('True Model', 'Recovered Model'))
        axes[1].set_ylim([-2, 2])

    return prob, survey, mesh, mrec
    def setUp(self):

        cs = 25.
        hx = [(cs,0, -1.3),(cs,21),(cs,0, 1.3)]
        hy = [(cs,0, -1.3),(cs,21),(cs,0, 1.3)]
        hz = [(cs,0, -1.3),(cs,20),(cs,0, 1.3)]
        mesh = Mesh.TensorMesh([hx, hy, hz],x0="CCC")
        blkind0 = Utils.ModelBuilder.getIndicesSphere(np.r_[-100., -100., -200.], 75., mesh.gridCC)
        blkind1 = Utils.ModelBuilder.getIndicesSphere(np.r_[100., 100., -200.], 75., mesh.gridCC)
        sigma = np.ones(mesh.nC)*1e-2
        airind = mesh.gridCC[:,2]>0.
        sigma[airind] = 1e-8
        eta = np.zeros(mesh.nC)
        tau = np.ones_like(sigma)*1.
        eta[blkind0] = 0.1
        eta[blkind1] = 0.1
        tau[blkind0] = 0.1
        tau[blkind1] = 0.01

        actmapeta = Maps.InjectActiveCells(mesh, ~airind, 0.)
        actmaptau = Maps.InjectActiveCells(mesh, ~airind, 1.)

        x = mesh.vectorCCx[(mesh.vectorCCx>-155.)&(mesh.vectorCCx<155.)]
        y = mesh.vectorCCx[(mesh.vectorCCy>-155.)&(mesh.vectorCCy<155.)]
        Aloc = np.r_[-200., 0., 0.]
        Bloc = np.r_[200., 0., 0.]
        M = Utils.ndgrid(x-25.,y, np.r_[0.])
        N = Utils.ndgrid(x+25.,y, np.r_[0.])

        times = np.arange(10)*1e-3 + 1e-3
        rx = SIP.Rx.Dipole(M, N, times)
        src = SIP.Src.Dipole([rx], Aloc, Bloc)
        survey = SIP.Survey([src])
        colemap = [("eta", Maps.IdentityMap(mesh)*actmapeta), ("taui", Maps.IdentityMap(mesh)*actmaptau)]
        problem = SIP.Problem3D_N(mesh, sigma=sigma, mapping=colemap)
        problem.Solver = Solver
        problem.pair(survey)
        mSynth = np.r_[eta[~airind], 1./tau[~airind]]
        survey.makeSyntheticData(mSynth)
        # Now set up the problem to do some minimization
        dmis = DataMisfit.l2_DataMisfit(survey)
        regmap = Maps.IdentityMap(nP=int(mSynth[~airind].size*2))
        reg = SIP.MultiRegularization(mesh, mapping=regmap, nModels=2, indActive=~airind)
        opt = Optimization.InexactGaussNewton(maxIterLS=20, maxIter=10, tolF=1e-6, tolX=1e-6, tolG=1e-6, maxIterCG=6)
        invProb = InvProblem.BaseInvProblem(dmis, reg, opt, beta=1e4)
        inv = Inversion.BaseInversion(invProb)

        self.inv = inv
        self.reg = reg
        self.p =     problem
        self.mesh = mesh
        self.m0 = mSynth
        self.survey = survey
        self.dmis = dmis
Example #7
0
    def test_inv(self):
        reg = Regularization.Tikhonov(self.mesh)
        opt = Optimization.InexactGaussNewton(maxIter=10)
        invProb = InvProblem.BaseInvProblem(self.dmiscobmo, reg, opt)
        directives = [
            Directives.BetaEstimate_ByEig(beta0_ratio=1e-2),
        ]
        inv = Inversion.BaseInversion(invProb, directiveList=directives)
        m0 = self.model.mean() * np.ones_like(self.model)

        mrec = inv.run(m0)
    def setUp(self):

        mesh = Mesh.TensorMesh([20, 20, 20], "CCN")
        sigma = np.ones(mesh.nC) * 1. / 100.
        actind = mesh.gridCC[:, 2] < -0.2
        # actMap = Maps.InjectActiveCells(mesh, actind, 0.)

        xyzM = Utils.ndgrid(
            np.ones_like(mesh.vectorCCx[:-1]) * -0.4,
            np.ones_like(mesh.vectorCCy) * -0.4, np.r_[-0.3])
        xyzN = Utils.ndgrid(mesh.vectorCCx[1:], mesh.vectorCCy, np.r_[-0.3])

        problem = SP.Problem_CC(mesh,
                                sigma=sigma,
                                qMap=Maps.IdentityMap(mesh),
                                Solver=PardisoSolver)
        rx = SP.Rx.Dipole(xyzN, xyzM)
        src = SP.Src.StreamingCurrents([rx],
                                       L=np.ones(mesh.nC),
                                       mesh=mesh,
                                       modelType="CurrentSource")
        survey = SP.Survey([src])
        survey.pair(problem)

        q = np.zeros(mesh.nC)
        inda = Utils.closestPoints(mesh, np.r_[-0.5, 0., -0.8])
        indb = Utils.closestPoints(mesh, np.r_[0.5, 0., -0.8])
        q[inda] = 1.
        q[indb] = -1.

        mSynth = q.copy()
        survey.makeSyntheticData(mSynth)

        # Now set up the problem to do some minimization
        dmis = DataMisfit.l2_DataMisfit(survey)
        reg = Regularization.Simple(mesh)
        opt = Optimization.InexactGaussNewton(maxIterLS=20,
                                              maxIter=10,
                                              tolF=1e-6,
                                              tolX=1e-6,
                                              tolG=1e-6,
                                              maxIterCG=6)
        invProb = InvProblem.BaseInvProblem(dmis, reg, opt, beta=1e-2)
        inv = Inversion.BaseInversion(invProb)

        self.inv = inv
        self.reg = reg
        self.p = problem
        self.mesh = mesh
        self.m0 = mSynth
        self.survey = survey
        self.dmis = dmis
    def setUp(self):

        cs = 12.5
        hx = [(cs, 7, -1.3), (cs, 61), (cs, 7, 1.3)]
        hy = [(cs, 7, -1.3), (cs, 20)]
        mesh = Mesh.TensorMesh([hx, hy], x0="CN")

        # x = np.linspace(-200, 200., 20)
        x = np.linspace(-200, 200., 2)
        M = Utils.ndgrid(x - 12.5, np.r_[0.])
        N = Utils.ndgrid(x + 12.5, np.r_[0.])

        A0loc = np.r_[-150, 0.]
        A1loc = np.r_[-130, 0.]
        B0loc = np.r_[-130, 0.]
        B1loc = np.r_[-110, 0.]

        rx = DC.Rx.Dipole_ky(M, N)
        src0 = DC.Src.Dipole([rx], A0loc, B0loc)
        src1 = DC.Src.Dipole([rx], A1loc, B1loc)
        survey = IP.Survey([src0, src1])

        sigma = np.ones(mesh.nC) * 1.
        problem = IP.Problem2D_CC(mesh,
                                  sigma=sigma,
                                  etaMap=Maps.IdentityMap(mesh),
                                  verbose=False)
        problem.pair(survey)

        mSynth = np.ones(mesh.nC) * 0.1
        survey.makeSyntheticData(mSynth)
        # Now set up the problem to do some minimization
        dmis = DataMisfit.l2_DataMisfit(survey)
        reg = Regularization.Tikhonov(mesh)
        opt = Optimization.InexactGaussNewton(maxIterLS=20,
                                              maxIter=10,
                                              tolF=1e-6,
                                              tolX=1e-6,
                                              tolG=1e-6,
                                              maxIterCG=6)
        invProb = InvProblem.BaseInvProblem(dmis, reg, opt, beta=1e4)
        inv = Inversion.BaseInversion(invProb)

        self.inv = inv
        self.reg = reg
        self.p = problem
        self.mesh = mesh
        self.m0 = mSynth
        self.survey = survey
        self.dmis = dmis
Example #10
0
    def test_inv_mref_setting(self):
        reg1 = Regularization.Tikhonov(self.mesh)
        reg2 = Regularization.Tikhonov(self.mesh)
        reg = reg1 + reg2
        opt = Optimization.InexactGaussNewton(maxIter=10)
        invProb = InvProblem.BaseInvProblem(self.dmiscobmo, reg, opt)
        directives = [
            Directives.BetaEstimate_ByEig(beta0_ratio=1e-2),
        ]
        inv = Inversion.BaseInversion(invProb, directiveList=directives)
        m0 = self.model.mean() * np.ones_like(self.model)

        mrec = inv.run(m0)

        self.assertTrue(np.all(reg1.mref == m0))
        self.assertTrue(np.all(reg2.mref == m0))
Example #11
0
    def setUp(self):

        aSpacing = 2.5
        nElecs = 10

        surveySize = nElecs * aSpacing - aSpacing
        cs = surveySize / nElecs / 4

        mesh = Mesh.TensorMesh(
            [
                [(cs, 10, -1.3), (cs, surveySize / cs), (cs, 10, 1.3)],
                [(cs, 3, -1.3), (cs, 3, 1.3)],
                # [(cs, 5, -1.3), (cs, 10)]
            ],
            'CN')

        srcList = DC.Utils.WennerSrcList(nElecs, aSpacing, in2D=True)
        survey = DC.Survey(srcList)
        problem = DC.Problem3D_N(mesh,
                                 rhoMap=Maps.IdentityMap(mesh),
                                 storeJ=True)
        problem.pair(survey)

        mSynth = np.ones(mesh.nC)
        survey.makeSyntheticData(mSynth)

        # Now set up the problem to do some minimization
        dmis = DataMisfit.l2_DataMisfit(survey)
        reg = Regularization.Tikhonov(mesh)
        opt = Optimization.InexactGaussNewton(maxIterLS=20,
                                              maxIter=10,
                                              tolF=1e-6,
                                              tolX=1e-6,
                                              tolG=1e-6,
                                              maxIterCG=6)
        invProb = InvProblem.BaseInvProblem(dmis, reg, opt, beta=1e4)
        inv = Inversion.BaseInversion(invProb)

        self.inv = inv
        self.reg = reg
        self.p = problem
        self.mesh = mesh
        self.m0 = mSynth
        self.survey = survey
        self.dmis = dmis
    def setUp(self):

        cs = 12.5
        hx = [(cs, 7, -1.3), (cs, 61), (cs, 7, 1.3)]
        hy = [(cs, 7, -1.3), (cs, 20)]
        mesh = Mesh.TensorMesh([hx, hy], x0="CN")
        x = np.linspace(-135, 250., 20)
        M = Utils.ndgrid(x - 12.5, np.r_[0.])
        N = Utils.ndgrid(x + 12.5, np.r_[0.])
        A0loc = np.r_[-150, 0.]
        A1loc = np.r_[-130, 0.]
        rxloc = [np.c_[M, np.zeros(20)], np.c_[N, np.zeros(20)]]
        rx = DC.Rx.Dipole_ky(M, N)
        src0 = DC.Src.Pole([rx], A0loc)
        src1 = DC.Src.Pole([rx], A1loc)
        survey = DC.Survey_ky([src0, src1])
        problem = DC.Problem2D_N(mesh,
                                 mapping=[('rho', Maps.IdentityMap(mesh))])
        problem.pair(survey)

        mSynth = np.ones(mesh.nC) * 1.
        survey.makeSyntheticData(mSynth)

        # Now set up the problem to do some minimization
        dmis = DataMisfit.l2_DataMisfit(survey)
        reg = Regularization.Tikhonov(mesh)
        opt = Optimization.InexactGaussNewton(maxIterLS=20,
                                              maxIter=10,
                                              tolF=1e-6,
                                              tolX=1e-6,
                                              tolG=1e-6,
                                              maxIterCG=6)
        invProb = InvProblem.BaseInvProblem(dmis, reg, opt, beta=1e0)
        inv = Inversion.BaseInversion(invProb)

        self.inv = inv
        self.reg = reg
        self.p = problem
        self.mesh = mesh
        self.m0 = mSynth
        self.survey = survey
        self.dmis = dmis
Example #13
0
 def solve(self):
     # initial values/model
     m0 = numpy.median(-4) * numpy.ones(self.mapping.nP)
     # Data Misfit
     dataMisfit = DataMisfit.l2_DataMisfit(self.survey)
     # Regularization
     regT = Regularization.Simple(self.mesh, indActive=self.activeCellIndices, alpha_s=1e-6, alpha_x=1., alpha_y=1., alpha_z=1.)
     # Optimization Scheme
     opt = Optimization.InexactGaussNewton(maxIter=10)
     # Form the problem
     opt.remember('xc')
     invProb = InvProblem.BaseInvProblem(dataMisfit, regT, opt)
     # Directives for Inversions
     beta = Directives.BetaEstimate_ByEig(beta0_ratio=0.5e+1)
     Target = Directives.TargetMisfit()
     betaSched = Directives.BetaSchedule(coolingFactor=5., coolingRate=2)
     inversion = Inversion.BaseInversion(invProb, directiveList=[beta, Target, betaSched])
     # Run Inversion
     self.invModelOnActiveCells = inversion.run(m0)
     self.invModelOnAllCells = self.givenModelCond * numpy.ones_like(self.givenModelCond)
     self.invModelOnAllCells[self.activeCellIndices] = self.invModelOnActiveCells
     self.invModelOnCoreCells = self.invModelOnAllCells[self.coreMeshCellIndices]
     pass
Example #14
0
def MagneticsDiffSecondaryInv(mesh, model, data, **kwargs):
    """
    Inversion module for MagneticsDiffSecondary

    """
    from SimPEG import Optimization, Regularization, Parameters, ObjFunction, Inversion

    prob = Simulation3DDifferential(mesh, survey=data, mu=model)

    miter = kwargs.get("maxIter", 10)

    # Create an optimization program
    opt = Optimization.InexactGaussNewton(maxIter=miter)
    opt.bfgsH0 = Solver(sp.identity(model.nP), flag="D")
    # Create a regularization program
    reg = Regularization.Tikhonov(model)
    # Create an objective function
    beta = Parameters.BetaSchedule(beta0=1e0)
    obj = ObjFunction.BaseObjFunction(prob, reg, beta=beta)
    # Create an inversion object
    inv = Inversion.BaseInversion(obj, opt)

    return inv, reg
Example #15
0
    def setUp(self):

        time = np.logspace(-3, 0, 21)
        n_loc = 5
        wires = Maps.Wires(('eta', n_loc), ('tau', n_loc), ('c', n_loc))
        taumap = Maps.ExpMap(nP=n_loc) * wires.tau
        etamap = Maps.ExpMap(nP=n_loc) * wires.eta
        cmap = Maps.ExpMap(nP=n_loc) * wires.c
        survey = SEMultiSurvey(time=time, locs=np.zeros((n_loc, 3)), n_pulse=0)
        mesh = Mesh.TensorMesh([np.ones(int(n_loc * 3))])
        prob = SEMultiInvProblem(mesh, etaMap=etamap, tauMap=taumap, cMap=cmap)
        prob.pair(survey)

        eta0, tau0, c0 = 0.1, 10., 0.5
        m0 = np.log(np.r_[eta0 * np.ones(n_loc), tau0 * np.ones(n_loc),
                          c0 * np.ones(n_loc)])
        survey.makeSyntheticData(m0)

        # Now set up the problem to do some minimization
        dmis = DataMisfit.l2_DataMisfit(survey)
        reg = regularization.Tikhonov(mesh)
        opt = Optimization.InexactGaussNewton(maxIterLS=20,
                                              maxIter=10,
                                              tolF=1e-6,
                                              tolX=1e-6,
                                              tolG=1e-6,
                                              maxIterCG=6)
        invProb = InvProblem.BaseInvProblem(dmis, reg, opt, beta=0.)
        inv = Inversion.BaseInversion(invProb)

        self.inv = inv
        self.reg = reg
        self.p = prob
        self.survey = survey
        self.m0 = m0
        self.dmis = dmis
        self.mesh = mesh
Example #16
0
def run(plotIt=True, saveFig=False, cleanup=True):
    """
    Run 1D inversions for a single sounding of the RESOLVE and SkyTEM
    bookpurnong data

    :param bool plotIt: show the plots?
    :param bool saveFig: save the figure
    :param bool cleanup: remove the downloaded results
    """
    downloads, directory = download_and_unzip_data()

    resolve = h5py.File(
        os.path.sep.join([directory, "booky_resolve.hdf5"]),
        "r"
    )
    skytem = h5py.File(
        os.path.sep.join([directory, "booky_skytem.hdf5"]),
        "r"
    )
    river_path = resolve["river_path"].value

    # Choose a sounding location to invert
    xloc, yloc = 462100.0, 6196500.0
    rxind_skytem = np.argmin(
        abs(skytem["xy"][:, 0]-xloc)+abs(skytem["xy"][:, 1]-yloc)
    )
    rxind_resolve = np.argmin(
        abs(resolve["xy"][:, 0]-xloc)+abs(resolve["xy"][:, 1]-yloc)
    )

    # Plot both resolve and skytem data on 2D plane
    fig = plt.figure(figsize=(13, 6))
    title = ["RESOLVE In-phase 400 Hz", "SkyTEM High moment 156 $\mu$s"]
    ax1 = plt.subplot(121)
    ax2 = plt.subplot(122)
    axs = [ax1, ax2]
    out_re = Utils.plot2Ddata(
        resolve["xy"], resolve["data"][:, 0], ncontour=100,
        contourOpts={"cmap": "viridis"}, ax=ax1
    )
    vmin, vmax = out_re[0].get_clim()
    cb_re = plt.colorbar(
        out_re[0], ticks=np.linspace(vmin, vmax, 3), ax=ax1,
        fraction=0.046, pad=0.04
    )
    temp_skytem = skytem["data"][:, 5].copy()
    temp_skytem[skytem["data"][:, 5] > 7e-10] = 7e-10
    out_sky = Utils.plot2Ddata(
        skytem["xy"][:, :2], temp_skytem, ncontour=100,
        contourOpts={"cmap": "viridis", "vmax": 7e-10}, ax=ax2
    )
    vmin, vmax = out_sky[0].get_clim()
    cb_sky = plt.colorbar(
        out_sky[0], ticks=np.linspace(vmin, vmax*0.99, 3), ax=ax2,
        format="%.1e", fraction=0.046, pad=0.04
    )
    cb_re.set_label("Bz (ppm)")
    cb_sky.set_label("dB$_z$ / dt (V/A-m$^4$)")

    for i, ax in enumerate(axs):
        xticks = [460000, 463000]
        yticks = [6195000, 6198000, 6201000]
        ax.set_xticks(xticks)
        ax.set_yticks(yticks)
        ax.plot(xloc, yloc, 'wo')
        ax.plot(river_path[:, 0], river_path[:, 1], 'k', lw=0.5)

        ax.set_aspect("equal")
        if i == 1:
            ax.plot(
                skytem["xy"][:, 0], skytem["xy"][:, 1], 'k.',
                alpha=0.02, ms=1
            )
            ax.set_yticklabels([str(" ") for f in yticks])
        else:
            ax.plot(
                resolve["xy"][:, 0], resolve["xy"][:, 1], 'k.', alpha=0.02,
                ms=1
            )
            ax.set_yticklabels([str(f) for f in yticks])
            ax.set_ylabel("Northing (m)")
        ax.set_xlabel("Easting (m)")
        ax.set_title(title[i])
        ax.axis('equal')
    # plt.tight_layout()

    if saveFig is True:
        fig.savefig("resolve_skytem_data.png", dpi=600)

    # ------------------ Mesh ------------------ #
    # Step1: Set 2D cylindrical mesh
    cs, ncx, ncz, npad = 1., 10., 10., 20
    hx = [(cs, ncx), (cs, npad, 1.3)]
    npad = 12
    temp = np.logspace(np.log10(1.), np.log10(12.), 19)
    temp_pad = temp[-1] * 1.3 ** np.arange(npad)
    hz = np.r_[temp_pad[::-1], temp[::-1], temp, temp_pad]
    mesh = Mesh.CylMesh([hx, 1, hz], '00C')
    active = mesh.vectorCCz < 0.

    # Step2: Set a SurjectVertical1D mapping
    # Note: this sets our inversion model as 1D log conductivity
    # below subsurface

    active = mesh.vectorCCz < 0.
    actMap = Maps.InjectActiveCells(mesh, active, np.log(1e-8), nC=mesh.nCz)
    mapping = Maps.ExpMap(mesh) * Maps.SurjectVertical1D(mesh) * actMap
    sig_half = 1e-1
    sig_air = 1e-8
    sigma = np.ones(mesh.nCz)*sig_air
    sigma[active] = sig_half

    # Initial and reference model
    m0 = np.log(sigma[active])

    # ------------------ RESOLVE Forward Simulation ------------------ #
    # Step3: Invert Resolve data

    # Bird height from the surface
    b_height_resolve = resolve["src_elevation"].value
    src_height_resolve = b_height_resolve[rxind_resolve]

    # Set Rx (In-phase and Quadrature)
    rxOffset = 7.86
    bzr = EM.FDEM.Rx.Point_bSecondary(
        np.array([[rxOffset, 0., src_height_resolve]]),
        orientation='z',
        component='real'
    )

    bzi = EM.FDEM.Rx.Point_b(
        np.array([[rxOffset, 0., src_height_resolve]]),
        orientation='z',
        component='imag'
    )

    # Set Source (In-phase and Quadrature)
    frequency_cp = resolve["frequency_cp"].value
    freqs = frequency_cp.copy()
    srcLoc = np.array([0., 0., src_height_resolve])
    srcList = [EM.FDEM.Src.MagDipole([bzr, bzi], freq, srcLoc, orientation='Z')
               for freq in freqs]

    # Set FDEM survey (In-phase and Quadrature)
    survey = EM.FDEM.Survey(srcList)
    prb = EM.FDEM.Problem3D_b(mesh, sigmaMap=mapping, Solver=Solver)
    prb.pair(survey)

    # ------------------ RESOLVE Inversion ------------------ #

    # Primary field
    bp = - mu_0/(4*np.pi*rxOffset**3)

    # Observed data
    cpi_inds = [0, 2, 6, 8, 10]
    cpq_inds = [1, 3, 7, 9, 11]
    dobs_re = np.c_[
        resolve["data"][rxind_resolve, :][cpi_inds],
        resolve["data"][rxind_resolve, :][cpq_inds]
    ].flatten() * bp * 1e-6

    # Uncertainty
    std = np.repeat(np.r_[np.ones(3)*0.1, np.ones(2)*0.15], 2)
    floor = 20 * abs(bp) * 1e-6
    uncert = abs(dobs_re) * std + floor

    # Data Misfit
    survey.dobs = dobs_re
    dmisfit = DataMisfit.l2_DataMisfit(survey)
    dmisfit.W = 1./uncert

    # Regularization
    regMesh = Mesh.TensorMesh([mesh.hz[mapping.maps[-1].indActive]])
    reg = Regularization.Simple(regMesh)

    # Optimization
    opt = Optimization.InexactGaussNewton(maxIter=5)

    # statement of the inverse problem
    invProb = InvProblem.BaseInvProblem(dmisfit, reg, opt)

    # Inversion directives and parameters
    target = Directives.TargetMisfit()  # stop when we hit target misfit
    invProb.beta = 2.
    # betaest = Directives.BetaEstimate_ByEig(beta0_ratio=1e0)
    inv = Inversion.BaseInversion(invProb, directiveList=[target])
    reg.alpha_s = 1e-3
    reg.alpha_x = 1.
    reg.mref = m0.copy()
    opt.LSshorten = 0.5
    opt.remember('xc')

    # run the inversion
    mopt_re = inv.run(m0)
    dpred_re = invProb.dpred

    # ------------------ SkyTEM Forward Simulation ------------------ #
    # Step4: Invert SkyTEM data

    # Bird height from the surface
    b_height_skytem = skytem["src_elevation"].value
    src_height = b_height_skytem[rxind_skytem]
    srcLoc = np.array([[0., 0., src_height]])

    # Radius of the source loop
    area = skytem["area"].value
    radius = np.sqrt(area/np.pi)
    rxLoc = np.array([[radius, 0., src_height]])

    # Parameters for current waveform
    t0 = skytem["t0"].value
    times = skytem["times"].value
    waveform_skytem = skytem["waveform"].value
    offTime = t0
    times_off = times - t0

    # Note: we are Using theoretical VTEM waveform,
    # but effectively fits SkyTEM waveform
    peakTime = 1.0000000e-02
    a = 3.

    dbdt_z = EM.TDEM.Rx.Point_dbdt(
        locs=rxLoc, times=times_off[:-3]+offTime, orientation='z'
    )  # vertical db_dt

    rxList = [dbdt_z]  # list of receivers
    srcList = [
        EM.TDEM.Src.CircularLoop(
            rxList, loc=srcLoc, radius=radius,
            orientation='z',
            waveform=EM.TDEM.Src.VTEMWaveform(
                    offTime=offTime, peakTime=peakTime, a=3.
                )
        )
    ]
    # solve the problem at these times
    timeSteps = [
        (peakTime/5, 5), ((offTime-peakTime)/5, 5),
        (1e-5, 5), (5e-5, 5), (1e-4, 10), (5e-4, 15)
    ]
    prob = EM.TDEM.Problem3D_e(
        mesh, timeSteps=timeSteps, sigmaMap=mapping, Solver=Solver
    )
    survey = EM.TDEM.Survey(srcList)
    prob.pair(survey)

    src = srcList[0]
    rx = src.rxList[0]
    wave = []
    for time in prob.times:
        wave.append(src.waveform.eval(time))
    wave = np.hstack(wave)
    out = survey.dpred(m0)

    # plot the waveform
    fig = plt.figure(figsize=(5, 3))
    times_off = times-t0
    plt.plot(waveform_skytem[:, 0], waveform_skytem[:, 1], 'k.')
    plt.plot(prob.times, wave, 'k-', lw=2)
    plt.legend(("SkyTEM waveform", "Waveform (fit)"), fontsize=10)
    for t in rx.times:
        plt.plot(np.ones(2)*t, np.r_[-0.03, 0.03], 'k-')
    plt.ylim(-0.1, 1.1)
    plt.grid(True)
    plt.xlabel("Time (s)")
    plt.ylabel("Normalized current")

    if saveFig:
        fig.savefig("skytem_waveform", dpi=200)

    # Observed data
    dobs_sky = skytem["data"][rxind_skytem, :-3] * area

    # ------------------ SkyTEM Inversion ------------------ #
    # Uncertainty
    std = 0.12
    floor = 7.5e-12
    uncert = abs(dobs_sky) * std + floor

    # Data Misfit
    survey.dobs = -dobs_sky
    dmisfit = DataMisfit.l2_DataMisfit(survey)
    uncert = 0.12*abs(dobs_sky) + 7.5e-12
    dmisfit.W = Utils.sdiag(1./uncert)

    # Regularization
    regMesh = Mesh.TensorMesh([mesh.hz[mapping.maps[-1].indActive]])
    reg = Regularization.Simple(regMesh)

    # Optimization
    opt = Optimization.InexactGaussNewton(maxIter=5)

    # statement of the inverse problem
    invProb = InvProblem.BaseInvProblem(dmisfit, reg, opt)

    # Directives and Inversion Parameters
    target = Directives.TargetMisfit()
    # betaest = Directives.BetaEstimate_ByEig(beta0_ratio=1e0)
    invProb.beta = 20.
    inv = Inversion.BaseInversion(invProb, directiveList=[target])
    reg.alpha_s = 1e-1
    reg.alpha_x = 1.
    opt.LSshorten = 0.5
    opt.remember('xc')
    reg.mref = mopt_re  # Use RESOLVE model as a reference model

    # run the inversion
    mopt_sky = inv.run(m0)
    dpred_sky = invProb.dpred

    # Plot the figure from the paper
    plt.figure(figsize=(12, 8))

    fs = 13  # fontsize
    matplotlib.rcParams['font.size'] = fs

    ax0 = plt.subplot2grid((2, 2), (0, 0), rowspan=2)
    ax1 = plt.subplot2grid((2, 2), (0, 1))
    ax2 = plt.subplot2grid((2, 2), (1, 1))

    # Recovered Models
    sigma_re = np.repeat(np.exp(mopt_re), 2, axis=0)
    sigma_sky = np.repeat(np.exp(mopt_sky), 2, axis=0)
    z = np.repeat(mesh.vectorCCz[active][1:], 2, axis=0)
    z = np.r_[mesh.vectorCCz[active][0], z, mesh.vectorCCz[active][-1]]

    ax0.semilogx(sigma_re, z, 'k', lw=2, label="RESOLVE")
    ax0.semilogx(sigma_sky, z, 'b', lw=2, label="SkyTEM")
    ax0.set_ylim(-50, 0)
    # ax0.set_xlim(5e-4, 1e2)
    ax0.grid(True)
    ax0.set_ylabel("Depth (m)")
    ax0.set_xlabel("Conducivity (S/m)")
    ax0.legend(loc=3)
    ax0.set_title("(a) Recovered Models")

    # RESOLVE Data
    ax1.loglog(
        frequency_cp, dobs_re.reshape((5, 2))[:, 0]/bp*1e6, 'k-',
        label="Obs (real)"
    )
    ax1.loglog(
        frequency_cp, dobs_re.reshape((5, 2))[:, 1]/bp*1e6, 'k--',
        label="Obs (imag)"
    )
    ax1.loglog(
        frequency_cp, dpred_re.reshape((5, 2))[:, 0]/bp*1e6, 'k+', ms=10,
        markeredgewidth=2., label="Pred (real)"
    )
    ax1.loglog(
        frequency_cp, dpred_re.reshape((5, 2))[:, 1]/bp*1e6, 'ko', ms=6,
        markeredgecolor='k', markeredgewidth=0.5, label="Pred (imag)"
    )
    ax1.set_title("(b) RESOLVE")
    ax1.set_xlabel("Frequency (Hz)")
    ax1.set_ylabel("Bz (ppm)")
    ax1.grid(True)
    ax1.legend(loc=3, fontsize=11)

    # SkyTEM data
    ax2.loglog(times_off[3:]*1e6, dobs_sky/area, 'b-', label="Obs")
    ax2.loglog(
        times_off[3:]*1e6, -dpred_sky/area, 'bo', ms=4,
        markeredgecolor='k', markeredgewidth=0.5, label="Pred"
    )
    ax2.set_xlim(times_off.min()*1e6*1.2, times_off.max()*1e6*1.1)

    ax2.set_xlabel("Time ($\mu s$)")
    ax2.set_ylabel("dBz / dt (V/A-m$^4$)")
    ax2.set_title("(c) SkyTEM High-moment")
    ax2.grid(True)
    ax2.legend(loc=3)

    a3 = plt.axes([0.86, .33, .1, .09], facecolor=[0.8, 0.8, 0.8, 0.6])
    a3.plot(prob.times*1e6, wave, 'k-')
    a3.plot(
        rx.times*1e6, np.zeros_like(rx.times), 'k|', markeredgewidth=1,
        markersize=12
    )
    a3.set_xlim([prob.times.min()*1e6*0.75, prob.times.max()*1e6*1.1])
    a3.set_title('(d) Waveform', fontsize=11)
    a3.set_xticks([prob.times.min()*1e6, t0*1e6, prob.times.max()*1e6])
    a3.set_yticks([])
    # a3.set_xticklabels(['0', '2e4'])
    a3.set_xticklabels(['-1e4', '0', '1e4'])

    plt.tight_layout()

    if saveFig:
        plt.savefig("booky1D_time_freq.png", dpi=600)

    if plotIt:
        plt.show()

    if cleanup:
        print( os.path.split(directory)[:-1])
        os.remove(
            os.path.sep.join(
                directory.split()[:-1] + ["._bookpurnong_inversion"]
            )
        )
        os.remove(downloads)
        shutil.rmtree(directory)
Example #17
0
def run(plotIt=True):
    """
    1D FDEM Mu Inversion
    ====================

    1D inversion of Magnetic Susceptibility from FDEM data assuming a fixed
    electrical conductivity

    """

    # Set up cylindrically symmeric mesh
    cs, ncx, ncz, npad = 10., 15, 25, 13  # padded cyl mesh
    hx = [(cs, ncx), (cs, npad, 1.3)]
    hz = [(cs, npad, -1.3), (cs, ncz), (cs, npad, 1.3)]
    mesh = Mesh.CylMesh([hx, 1, hz], '00C')

    # Geologic Parameters model
    layerz = np.r_[-100., -50.]
    layer = (mesh.vectorCCz >= layerz[0]) & (mesh.vectorCCz <= layerz[1])
    active = mesh.vectorCCz < 0.

    # Electrical Conductivity
    sig_half = 1e-2  # Half-space conductivity
    sig_air = 1e-8  # Air conductivity
    sig_layer = 1e-2  # Layer conductivity
    sigma = np.ones(mesh.nCz) * sig_air
    sigma[active] = sig_half
    sigma[layer] = sig_layer

    # mur - relative magnetic permeability
    mur_half = 1.
    mur_air = 1.
    mur_layer = 2.
    mur = np.ones(mesh.nCz) * mur_air
    mur[active] = mur_half
    mur[layer] = mur_layer

    mtrue = mur[active]

    # Maps
    actMap = Maps.InjectActiveCells(mesh, active, mur_air, nC=mesh.nCz)
    surj1Dmap = Maps.SurjectVertical1D(mesh)
    murMap = Maps.MuRelative(mesh)

    # Mapping
    muMap = murMap * surj1Dmap * actMap

    # ----- FDEM problem & survey -----
    rxlocs = Utils.ndgrid([np.r_[10.], np.r_[0], np.r_[30.]])
    bzr = FDEM.Rx.Point_bSecondary(rxlocs, 'z', 'real')
    # bzi = FDEM.Rx.Point_bSecondary(rxlocs, 'z', 'imag')

    freqs = np.linspace(2000, 10000, 10)  #np.logspace(3, 4, 10)
    srcLoc = np.array([0., 0., 30.])

    print('min skin depth = ', 500. / np.sqrt(freqs.max() * sig_half),
          'max skin depth = ', 500. / np.sqrt(freqs.min() * sig_half))
    print('max x ', mesh.vectorCCx.max(), 'min z ', mesh.vectorCCz.min(),
          'max z ', mesh.vectorCCz.max())

    srcList = [
        FDEM.Src.MagDipole([bzr], freq, srcLoc, orientation='Z')
        for freq in freqs
    ]

    surveyFD = FDEM.Survey(srcList)
    prbFD = FDEM.Problem3D_b(mesh,
                             sigma=surj1Dmap * sigma,
                             muMap=muMap,
                             Solver=Solver)
    prbFD.pair(surveyFD)
    std = 0.03
    surveyFD.makeSyntheticData(mtrue, std)
    surveyFD.eps = np.linalg.norm(surveyFD.dtrue) * 1e-6

    # FDEM inversion
    np.random.seed(13472)
    dmisfit = DataMisfit.l2_DataMisfit(surveyFD)
    regMesh = Mesh.TensorMesh([mesh.hz[muMap.maps[-1].indActive]])
    reg = Regularization.Simple(regMesh)
    opt = Optimization.InexactGaussNewton(maxIterCG=10)
    invProb = InvProblem.BaseInvProblem(dmisfit, reg, opt)

    # Inversion Directives    betaest = Directives.BetaEstimate_ByEig(beta0_ratio=2.)

    beta = Directives.BetaSchedule(coolingFactor=4, coolingRate=3)
    betaest = Directives.BetaEstimate_ByEig(beta0_ratio=2.)
    target = Directives.TargetMisfit()
    directiveList = [beta, betaest, target]

    inv = Inversion.BaseInversion(invProb, directiveList=directiveList)
    m0 = mur_half * np.ones(mtrue.size)
    reg.alpha_s = 2e-2
    reg.alpha_x = 1.
    prbFD.counter = opt.counter = Utils.Counter()
    opt.remember('xc')
    moptFD = inv.run(m0)

    dpredFD = surveyFD.dpred(moptFD)

    if plotIt:
        fig, ax = plt.subplots(1, 3, figsize=(10, 6))

        fs = 13  # fontsize
        matplotlib.rcParams['font.size'] = fs

        # Plot the conductivity model
        ax[0].semilogx(sigma[active], mesh.vectorCCz[active], 'k-', lw=2)
        ax[0].set_ylim(-500, 0)
        ax[0].set_xlim(5e-3, 1e-1)

        ax[0].set_xlabel('Conductivity (S/m)', fontsize=fs)
        ax[0].set_ylabel('Depth (m)', fontsize=fs)
        ax[0].grid(which='both',
                   color='k',
                   alpha=0.5,
                   linestyle='-',
                   linewidth=0.2)
        ax[0].legend(['Conductivity Model'], fontsize=fs, loc=4)

        # Plot the permeability model
        ax[1].plot(mur[active], mesh.vectorCCz[active], 'k-', lw=2)
        ax[1].plot(moptFD, mesh.vectorCCz[active], 'b-', lw=2)
        ax[1].set_ylim(-500, 0)
        ax[1].set_xlim(0.5, 2.1)

        ax[1].set_xlabel('Relative Permeability', fontsize=fs)
        ax[1].set_ylabel('Depth (m)', fontsize=fs)
        ax[1].grid(which='both',
                   color='k',
                   alpha=0.5,
                   linestyle='-',
                   linewidth=0.2)
        ax[1].legend(['True', 'Predicted'], fontsize=fs, loc=4)

        # plot the data misfits - negative b/c we choose positive to be in the
        # direction of primary

        ax[2].plot(freqs, -surveyFD.dobs, 'k-', lw=2)
        # ax[2].plot(freqs, -surveyFD.dobs[1::2], 'k--', lw=2)

        ax[2].loglog(freqs, -dpredFD, 'bo', ms=6)
        # ax[2].loglog(freqs, -dpredFD[1::2], 'b+', markeredgewidth=2., ms=10)

        # Labels, gridlines, etc
        ax[2].grid(which='both', alpha=0.5, linestyle='-', linewidth=0.2)
        ax[2].grid(which='both', alpha=0.5, linestyle='-', linewidth=0.2)

        ax[2].set_xlabel('Frequency (Hz)', fontsize=fs)
        ax[2].set_ylabel('Vertical magnetic field (-T)', fontsize=fs)

        # ax[2].legend(("Obs", "Pred"), fontsize=fs)
        ax[2].legend(("z-Obs (real)", "z-Pred (real)"), fontsize=fs)
        ax[2].set_xlim(freqs.max(), freqs.min())

        ax[0].set_title("(a) Conductivity Model", fontsize=fs)
        ax[1].set_title("(b) $\mu_r$ Model", fontsize=fs)
        ax[2].set_title("(c) FDEM observed vs. predicted", fontsize=fs)
        # ax[2].set_title("(c) TDEM observed vs. predicted", fontsize=fs)

        plt.tight_layout(pad=1.5)
Example #18
0
def run(plotIt=True):

    cs, ncx, ncz, npad = 5., 25, 15, 15
    hx = [(cs, ncx), (cs, npad, 1.3)]
    hz = [(cs, npad, -1.3), (cs, ncz), (cs, npad, 1.3)]
    mesh = Mesh.CylMesh([hx, 1, hz], '00C')

    layerz = -100.

    active = mesh.vectorCCz < 0.
    layer = (mesh.vectorCCz < 0.) & (mesh.vectorCCz >= layerz)
    actMap = Maps.InjectActiveCells(mesh, active, np.log(1e-8), nC=mesh.nCz)
    mapping = Maps.ExpMap(mesh) * Maps.SurjectVertical1D(mesh) * actMap
    sig_half = 2e-2
    sig_air = 1e-8
    sig_layer = 1e-2
    sigma = np.ones(mesh.nCz) * sig_air
    sigma[active] = sig_half
    sigma[layer] = sig_layer
    mtrue = np.log(sigma[active])

    if plotIt:
        fig, ax = plt.subplots(1, 1, figsize=(3, 6))
        plt.semilogx(sigma[active], mesh.vectorCCz[active])
        ax.set_ylim(-500, 0)
        ax.set_xlim(1e-3, 1e-1)
        ax.set_xlabel('Conductivity (S/m)', fontsize=14)
        ax.set_ylabel('Depth (m)', fontsize=14)
        ax.grid(color='k', alpha=0.5, linestyle='dashed', linewidth=0.5)

    rxOffset = 10.
    bzi = EM.FDEM.Rx.Point_b(np.array([[rxOffset, 0., 1e-3]]),
                             orientation='z',
                             component='imag')

    freqs = np.logspace(1, 3, 10)
    srcLoc = np.array([0., 0., 10.])

    srcList = [
        EM.FDEM.Src.MagDipole([bzi], freq, srcLoc, orientation='Z')
        for freq in freqs
    ]

    survey = EM.FDEM.Survey(srcList)
    prb = EM.FDEM.Problem3D_b(mesh, sigmaMap=mapping, Solver=Solver)
    prb.pair(survey)

    std = 0.05
    survey.makeSyntheticData(mtrue, std)

    survey.std = std
    survey.eps = np.linalg.norm(survey.dtrue) * 1e-5

    if plotIt:
        fig, ax = plt.subplots(1, 1, figsize=(6, 6))
        ax.semilogx(freqs, survey.dtrue[:freqs.size], 'b.-')
        ax.semilogx(freqs, survey.dobs[:freqs.size], 'r.-')
        ax.legend(('Noisefree', '$d^{obs}$'), fontsize=16)
        ax.set_xlabel('Time (s)', fontsize=14)
        ax.set_ylabel('$B_z$ (T)', fontsize=16)
        ax.set_xlabel('Time (s)', fontsize=14)
        ax.grid(color='k', alpha=0.5, linestyle='dashed', linewidth=0.5)

    dmisfit = DataMisfit.l2_DataMisfit(survey)
    regMesh = Mesh.TensorMesh([mesh.hz[mapping.maps[-1].indActive]])
    reg = Regularization.Tikhonov(regMesh)
    opt = Optimization.InexactGaussNewton(maxIter=6)
    invProb = InvProblem.BaseInvProblem(dmisfit, reg, opt)

    # Create an inversion object
    beta = Directives.BetaSchedule(coolingFactor=5, coolingRate=2)
    betaest = Directives.BetaEstimate_ByEig(beta0_ratio=1e0)
    inv = Inversion.BaseInversion(invProb, directiveList=[beta, betaest])
    m0 = np.log(np.ones(mtrue.size) * sig_half)
    reg.alpha_s = 1e-3
    reg.alpha_x = 1.
    prb.counter = opt.counter = Utils.Counter()
    opt.LSshorten = 0.5
    opt.remember('xc')

    mopt = inv.run(m0)

    if plotIt:
        fig, ax = plt.subplots(1, 1, figsize=(3, 6))
        plt.semilogx(sigma[active], mesh.vectorCCz[active])
        plt.semilogx(np.exp(mopt), mesh.vectorCCz[active])
        ax.set_ylim(-500, 0)
        ax.set_xlim(1e-3, 1e-1)
        ax.set_xlabel('Conductivity (S/m)', fontsize=14)
        ax.set_ylabel('Depth (m)', fontsize=14)
        ax.grid(color='k', alpha=0.5, linestyle='dashed', linewidth=0.5)
        plt.legend(['$\sigma_{true}$', '$\sigma_{pred}$'], loc='best')
    def setUp(self):

        cs = 25.
        hx = [(cs, 0, -1.3), (cs, 21), (cs, 0, 1.3)]
        hy = [(cs, 0, -1.3), (cs, 21), (cs, 0, 1.3)]
        hz = [(cs, 0, -1.3), (cs, 20), (cs, 0, 1.3)]
        mesh = Mesh.TensorMesh([hx, hy, hz], x0="CCC")
        blkind0 = Utils.ModelBuilder.getIndicesSphere(
            np.r_[-100., -100., -200.], 75., mesh.gridCC
        )
        blkind1 = Utils.ModelBuilder.getIndicesSphere(
            np.r_[100., 100., -200.], 75., mesh.gridCC
        )
        sigma = np.ones(mesh.nC)*1e-2
        airind = mesh.gridCC[:, 2] > 0.
        sigma[airind] = 1e-8
        eta = np.zeros(mesh.nC)
        tau = np.ones_like(sigma) * 1.
        c = np.ones_like(sigma) * 0.5

        eta[blkind0] = 0.1
        eta[blkind1] = 0.1
        tau[blkind0] = 0.1
        tau[blkind1] = 0.01

        actmapeta = Maps.InjectActiveCells(mesh, ~airind, 0.)
        actmaptau = Maps.InjectActiveCells(mesh, ~airind, 1.)
        actmapc = Maps.InjectActiveCells(mesh, ~airind, 1.)

        x = mesh.vectorCCx[(mesh.vectorCCx > -155.) & (mesh.vectorCCx < 155.)]
        y = mesh.vectorCCy[(mesh.vectorCCy > -155.) & (mesh.vectorCCy < 155.)]
        Aloc = np.r_[-200., 0., 0.]
        Bloc = np.r_[200., 0., 0.]
        M = Utils.ndgrid(x-25., y, np.r_[0.])
        N = Utils.ndgrid(x+25., y, np.r_[0.])

        times = np.arange(10)*1e-3 + 1e-3
        rx = SIP.Rx.Dipole(M, N, times)
        src = SIP.Src.Dipole([rx], Aloc, Bloc)
        survey = SIP.Survey([src])

        wires = Maps.Wires(('eta', actmapeta.nP), ('taui', actmaptau.nP), ('c', actmapc.nP))
        problem = SIP.Problem3D_N(
            mesh,
            sigma=sigma,
            etaMap=actmapeta*wires.eta,
            tauiMap=actmaptau*wires.taui,
            cMap=actmapc*wires.c,
            actinds=~airind,
            storeJ = True,
            verbose=False
        )

        problem.Solver = Solver
        problem.pair(survey)
        mSynth = np.r_[eta[~airind], 1./tau[~airind], c[~airind]]
        survey.makeSyntheticData(mSynth)
        # Now set up the problem to do some minimization
        dmis = DataMisfit.l2_DataMisfit(survey)
        dmis = DataMisfit.l2_DataMisfit(survey)
        reg_eta = Regularization.Simple(mesh, mapping=wires.eta, indActive=~airind)
        reg_taui = Regularization.Simple(mesh, mapping=wires.taui, indActive=~airind)
        reg_c = Regularization.Simple(mesh, mapping=wires.c, indActive=~airind)
        reg = reg_eta + reg_taui + reg_c
        opt = Optimization.InexactGaussNewton(
            maxIterLS=20, maxIter=10, tolF=1e-6,
            tolX=1e-6, tolG=1e-6, maxIterCG=6
        )
        invProb = InvProblem.BaseInvProblem(dmis, reg, opt, beta=1e4)
        inv = Inversion.BaseInversion(invProb)

        self.inv = inv
        self.reg = reg
        self.p = problem
        self.mesh = mesh
        self.m0 = mSynth
        self.survey = survey
        self.dmis = dmis
def run(plotIt=True,
        survey_type="dipole-dipole",
        rho_background=1e3,
        rho_block=1e2,
        block_x0=100,
        block_dx=10,
        block_y0=-10,
        block_dy=5):

    np.random.seed(1)
    # Initiate I/O class for DC
    IO = DC.IO()
    # Obtain ABMN locations

    xmin, xmax = 0., 200.
    ymin, ymax = 0., 0.
    zmin, zmax = 0, 0
    endl = np.array([[xmin, ymin, zmin], [xmax, ymax, zmax]])
    # Generate DC survey object
    survey = DC.Utils.gen_DCIPsurvey(endl,
                                     survey_type=survey_type,
                                     dim=2,
                                     a=10,
                                     b=10,
                                     n=10)
    survey.getABMN_locations()
    survey = IO.from_ambn_locations_to_survey(survey.a_locations,
                                              survey.b_locations,
                                              survey.m_locations,
                                              survey.n_locations,
                                              survey_type,
                                              data_dc_type='volt')

    # Obtain 2D TensorMesh
    mesh, actind = IO.set_mesh()
    # Flat topography
    actind = Utils.surface2ind_topo(mesh, np.c_[mesh.vectorCCx,
                                                mesh.vectorCCx * 0.])
    survey.drapeTopo(mesh, actind, option="top")
    # Use Exponential Map: m = log(rho)
    actmap = Maps.InjectActiveCells(mesh,
                                    indActive=actind,
                                    valInactive=np.log(1e8))
    parametric_block = Maps.ParametricBlock(mesh, slopeFact=1e2)
    mapping = Maps.ExpMap(mesh) * parametric_block
    # Set true model
    # val_background,val_block, block_x0, block_dx, block_y0, block_dy
    mtrue = np.r_[np.log(1e3), np.log(10), 100, 10, -20, 10]

    # Set initial model
    m0 = np.r_[np.log(rho_background),
               np.log(rho_block), block_x0, block_dx, block_y0, block_dy]
    rho = mapping * mtrue
    rho0 = mapping * m0
    # Show the true conductivity model
    fig = plt.figure(figsize=(12, 3))
    ax = plt.subplot(111)
    temp = rho.copy()
    temp[~actind] = np.nan
    out = mesh.plotImage(temp,
                         grid=False,
                         ax=ax,
                         gridOpts={'alpha': 0.2},
                         clim=(10, 1000),
                         pcolorOpts={
                             "cmap": "viridis",
                             "norm": colors.LogNorm()
                         })
    ax.plot(survey.electrode_locations[:, 0], survey.electrode_locations[:, 1],
            'k.')
    ax.set_xlim(IO.grids[:, 0].min(), IO.grids[:, 0].max())
    ax.set_ylim(-IO.grids[:, 1].max(), IO.grids[:, 1].min())
    cb = plt.colorbar(out[0])
    cb.set_label("Resistivity (ohm-m)")
    ax.set_aspect('equal')
    ax.set_title("True resistivity model")
    plt.show()
    # Show the true conductivity model
    fig = plt.figure(figsize=(12, 3))
    ax = plt.subplot(111)
    temp = rho0.copy()
    temp[~actind] = np.nan
    out = mesh.plotImage(temp,
                         grid=False,
                         ax=ax,
                         gridOpts={'alpha': 0.2},
                         clim=(10, 1000),
                         pcolorOpts={
                             "cmap": "viridis",
                             "norm": colors.LogNorm()
                         })
    ax.plot(survey.electrode_locations[:, 0], survey.electrode_locations[:, 1],
            'k.')
    ax.set_xlim(IO.grids[:, 0].min(), IO.grids[:, 0].max())
    ax.set_ylim(-IO.grids[:, 1].max(), IO.grids[:, 1].min())
    cb = plt.colorbar(out[0])
    cb.set_label("Resistivity (ohm-m)")
    ax.set_aspect('equal')
    ax.set_title("Initial resistivity model")
    plt.show()

    # Generate 2.5D DC problem
    # "N" means potential is defined at nodes
    prb = DC.Problem2D_N(mesh, rhoMap=mapping, storeJ=True, Solver=Solver)
    # Pair problem with survey
    try:
        prb.pair(survey)
    except:
        survey.unpair()
        prb.pair(survey)

    # Make synthetic DC data with 5% Gaussian noise
    dtrue = survey.makeSyntheticData(mtrue, std=0.05, force=True)

    # Show apparent resisitivty pseudo-section
    IO.plotPseudoSection(data=survey.dobs / IO.G,
                         data_type='apparent_resistivity')

    # Show apparent resisitivty histogram
    fig = plt.figure()
    out = hist(survey.dobs / IO.G, bins=20)
    plt.show()
    # Set uncertainty
    # floor
    eps = 10**(-3.2)
    # percentage
    std = 0.05
    dmisfit = DataMisfit.l2_DataMisfit(survey)
    uncert = abs(survey.dobs) * std + eps
    dmisfit.W = 1. / uncert

    # Map for a regularization
    mesh_1d = Mesh.TensorMesh([parametric_block.nP])
    # Related to inversion
    reg = Regularization.Simple(mesh_1d, alpha_x=0.)
    opt = Optimization.InexactGaussNewton(maxIter=10)
    invProb = InvProblem.BaseInvProblem(dmisfit, reg, opt)
    beta = Directives.BetaSchedule(coolingFactor=5, coolingRate=2)
    betaest = Directives.BetaEstimate_ByEig(beta0_ratio=1e0)
    target = Directives.TargetMisfit()
    updateSensW = Directives.UpdateSensitivityWeights()
    update_Jacobi = Directives.UpdatePreconditioner()
    invProb.beta = 0.
    inv = Inversion.BaseInversion(invProb, directiveList=[target])
    prb.counter = opt.counter = Utils.Counter()
    opt.LSshorten = 0.5
    opt.remember('xc')

    # Run inversion
    mopt = inv.run(m0)

    # Convert obtained inversion model to resistivity
    # rho = M(m), where M(.) is a mapping

    rho_est = mapping * mopt
    rho_true = rho.copy()
    # show recovered conductivity
    vmin, vmax = rho.min(), rho.max()
    fig, ax = plt.subplots(2, 1, figsize=(20, 6))
    out1 = mesh.plotImage(rho_true,
                          clim=(10, 1000),
                          pcolorOpts={
                              "cmap": "viridis",
                              "norm": colors.LogNorm()
                          },
                          ax=ax[0])
    out2 = mesh.plotImage(rho_est,
                          clim=(10, 1000),
                          pcolorOpts={
                              "cmap": "viridis",
                              "norm": colors.LogNorm()
                          },
                          ax=ax[1])
    out = [out1, out2]
    for i in range(2):
        ax[i].plot(survey.electrode_locations[:, 0],
                   survey.electrode_locations[:, 1], 'kv')
        ax[i].set_xlim(IO.grids[:, 0].min(), IO.grids[:, 0].max())
        ax[i].set_ylim(-IO.grids[:, 1].max(), IO.grids[:, 1].min())
        cb = plt.colorbar(out[i][0], ax=ax[i])
        cb.set_label("Resistivity ($\Omega$m)")
        ax[i].set_xlabel("Northing (m)")
        ax[i].set_ylabel("Elevation (m)")
        ax[i].set_aspect('equal')
    ax[0].set_title("True resistivity model")
    ax[1].set_title("Recovered resistivity model")
    plt.tight_layout()
    plt.show()
Example #21
0
    def setUp(self, parallel=True):
        time = np.logspace(-6, -3, 21)
        hz = get_vertical_discretization_time(time,
                                              facter_tmax=0.5,
                                              factor_tmin=10.)
        time_input_currents = wave.current_times[-7:]
        input_currents = wave.currents[-7:]

        n_sounding = 10
        dx = 20.
        hx = np.ones(n_sounding) * dx
        mesh = Mesh.TensorMesh([hx, hz], x0='00')
        inds = mesh.gridCC[:, 1] < 25
        inds_1 = mesh.gridCC[:, 1] < 50
        sigma = np.ones(mesh.nC) * 1. / 100.
        sigma[inds_1] = 1. / 10.
        sigma[inds] = 1. / 50.
        sigma_em1d = sigma.reshape(mesh.vnC, order='F').flatten()
        mSynth = np.log(sigma_em1d)

        x = mesh.vectorCCx
        y = np.zeros_like(x)
        z = np.ones_like(x) * 30.
        rx_locations = np.c_[x, y, z]
        src_locations = np.c_[x, y, z]
        topo = np.c_[x, y, z - 30.].astype(float)

        n_sounding = rx_locations.shape[0]

        rx_type_global = np.array(["dBzdt"], dtype=str).repeat(n_sounding,
                                                               axis=0)
        field_type_global = np.array(['secondary'],
                                     dtype=str).repeat(n_sounding, axis=0)
        wave_type_global = np.array(['general'], dtype=str).repeat(n_sounding,
                                                                   axis=0)

        time_global = [time for i in range(n_sounding)]

        src_type_global = np.array(["CircularLoop"],
                                   dtype=str).repeat(n_sounding, axis=0)
        a_global = np.array([13.], dtype=float).repeat(n_sounding, axis=0)
        input_currents_global = [input_currents for i in range(n_sounding)]
        time_input_currents_global = [
            time_input_currents for i in range(n_sounding)
        ]

        mapping = Maps.ExpMap(mesh)

        survey = GlobalEM1DSurveyTD(
            rx_locations=rx_locations,
            src_locations=src_locations,
            topo=topo,
            time=time_global,
            src_type=src_type_global,
            rx_type=rx_type_global,
            field_type=field_type_global,
            wave_type=wave_type_global,
            a=a_global,
            input_currents=input_currents_global,
            time_input_currents=time_input_currents_global)

        problem = GlobalEM1DProblemTD(mesh,
                                      sigmaMap=mapping,
                                      hz=hz,
                                      parallel=parallel,
                                      n_cpu=5)
        problem.pair(survey)

        survey.makeSyntheticData(mSynth)

        # Now set up the problem to do some minimization
        dmis = DataMisfit.l2_DataMisfit(survey)
        reg = Regularization.Tikhonov(mesh)
        opt = Optimization.InexactGaussNewton(maxIterLS=20,
                                              maxIter=10,
                                              tolF=1e-6,
                                              tolX=1e-6,
                                              tolG=1e-6,
                                              maxIterCG=6)
        invProb = InvProblem.BaseInvProblem(dmis, reg, opt, beta=0.)
        inv = Inversion.BaseInversion(invProb)
        self.inv = inv
        self.reg = reg
        self.p = problem
        self.mesh = mesh
        self.m0 = mSynth
        self.survey = survey
        self.dmis = dmis
Example #22
0
    problem.unpair()
    problem.pair(survey_r)

    d = survey_r.dpred(mtrue)
    survey_r.dobs = d
    survey_r.std = np.ones_like(d) * 0.05

    print '# of data: ', survey_r.dobs.shape

    regmesh = mesh
    dmis = DataMisfit.l2_DataMisfit(survey_r)
    reg = Regularization.Tikhonov(
        regmesh)  #,mapping = mapping)#,indActive=actind)
    reg.mref = miter
    opt = Optimization.InexactGaussNewton(maxIter=InnerIt, tolX=1e-6)
    opt.remember('xc')
    invProb = InvProblem.BaseInvProblem(dmis, reg, opt)
    #beta = Directives.BetaEstimate_ByEig(beta0= 10.,beta0_ratio=1e0)
    reg.alpha_s = 1e-6
    invProb.beta = beta
    #betaSched = Directives.BetaSchedule(coolingFactor=5, coolingRate=2)
    #sav0 = Directives.SaveEveryIteration()
    #sav1 = Directives.SaveModelEveryIteration()
    sav2 = Directives.SaveOutputDictEveryIteration()
    inv = Inversion.BaseInversion(
        invProb, directiveList=[sav2])  #[beta,betaSched])#sav0,sav1,

    msimple = inv.run(miter)
    beta = invProb.beta
    if np.mod(it + 1, coolingRate) == 0:
def run(plotIt=True, survey_type="dipole-dipole", p=0., qx=2., qz=2.):
    np.random.seed(1)
    # Initiate I/O class for DC
    IO = DC.IO()
    # Obtain ABMN locations

    xmin, xmax = 0., 200.
    ymin, ymax = 0., 0.
    zmin, zmax = 0, 0
    endl = np.array([[xmin, ymin, zmin], [xmax, ymax, zmax]])
    # Generate DC survey object
    survey = DC.Utils.gen_DCIPsurvey(endl,
                                     survey_type=survey_type,
                                     dim=2,
                                     a=10,
                                     b=10,
                                     n=10)
    survey.getABMN_locations()
    survey = IO.from_ambn_locations_to_survey(survey.a_locations,
                                              survey.b_locations,
                                              survey.m_locations,
                                              survey.n_locations,
                                              survey_type,
                                              data_dc_type='volt')

    # Obtain 2D TensorMesh
    mesh, actind = IO.set_mesh()
    topo, mesh1D = DC.Utils.genTopography(mesh, -10, 0, its=100)
    actind = Utils.surface2ind_topo(mesh, np.c_[mesh1D.vectorCCx, topo])
    survey.drapeTopo(mesh, actind, option="top")

    # Build a conductivity model
    blk_inds_c = Utils.ModelBuilder.getIndicesSphere(np.r_[60., -25.], 12.5,
                                                     mesh.gridCC)
    blk_inds_r = Utils.ModelBuilder.getIndicesSphere(np.r_[140., -25.], 12.5,
                                                     mesh.gridCC)
    layer_inds = mesh.gridCC[:, 1] > -5.
    sigma = np.ones(mesh.nC) * 1. / 100.
    sigma[blk_inds_c] = 1. / 10.
    sigma[blk_inds_r] = 1. / 1000.
    sigma[~actind] = 1. / 1e8
    rho = 1. / sigma

    # Show the true conductivity model
    if plotIt:
        fig = plt.figure(figsize=(12, 3))
        ax = plt.subplot(111)
        temp = rho.copy()
        temp[~actind] = np.nan
        out = mesh.plotImage(temp,
                             grid=True,
                             ax=ax,
                             gridOpts={'alpha': 0.2},
                             clim=(10, 1000),
                             pcolorOpts={
                                 "cmap": "viridis",
                                 "norm": colors.LogNorm()
                             })
        ax.plot(survey.electrode_locations[:, 0],
                survey.electrode_locations[:, 1], 'k.')
        ax.set_xlim(IO.grids[:, 0].min(), IO.grids[:, 0].max())
        ax.set_ylim(-IO.grids[:, 1].max(), IO.grids[:, 1].min())
        cb = plt.colorbar(out[0])
        cb.set_label("Resistivity (ohm-m)")
        ax.set_aspect('equal')
        plt.show()

    # Use Exponential Map: m = log(rho)
    actmap = Maps.InjectActiveCells(mesh,
                                    indActive=actind,
                                    valInactive=np.log(1e8))
    mapping = Maps.ExpMap(mesh) * actmap

    # Generate mtrue
    mtrue = np.log(rho[actind])

    # Generate 2.5D DC problem
    # "N" means potential is defined at nodes
    prb = DC.Problem2D_N(mesh,
                         rhoMap=mapping,
                         storeJ=True,
                         Solver=Solver,
                         verbose=True)
    # Pair problem with survey
    try:
        prb.pair(survey)
    except:
        survey.unpair()
        prb.pair(survey)

    # Make synthetic DC data with 5% Gaussian noise
    dtrue = survey.makeSyntheticData(mtrue, std=0.05, force=True)

    IO.data_dc = dtrue
    # Show apparent resisitivty pseudo-section
    if plotIt:
        IO.plotPseudoSection(data=survey.dobs / IO.G,
                             data_type='apparent_resistivity')

    # Show apparent resisitivty histogram
    if plotIt:
        fig = plt.figure()
        out = hist(survey.dobs / IO.G, bins=20)
        plt.xlabel("Apparent Resisitivty ($\Omega$m)")
        plt.show()

    # Set initial model based upon histogram
    m0 = np.ones(actmap.nP) * np.log(100.)

    # Set uncertainty
    # floor
    eps = 10**(-3.2)
    # percentage
    std = 0.05
    dmisfit = DataMisfit.l2_DataMisfit(survey)
    uncert = abs(survey.dobs) * std + eps
    dmisfit.W = 1. / uncert

    # Map for a regularization
    regmap = Maps.IdentityMap(nP=int(actind.sum()))

    # Related to inversion
    reg = Regularization.Sparse(mesh,
                                indActive=actind,
                                mapping=regmap,
                                gradientType='components')
    #     gradientType = 'components'
    reg.norms = np.c_[p, qx, qz, 0.]
    IRLS = Directives.Update_IRLS(maxIRLSiter=20,
                                  minGNiter=1,
                                  betaSearch=False,
                                  fix_Jmatrix=True)

    opt = Optimization.InexactGaussNewton(maxIter=40)
    invProb = InvProblem.BaseInvProblem(dmisfit, reg, opt)
    beta = Directives.BetaSchedule(coolingFactor=5, coolingRate=2)
    betaest = Directives.BetaEstimate_ByEig(beta0_ratio=1e0)
    target = Directives.TargetMisfit()
    update_Jacobi = Directives.UpdatePreconditioner()
    inv = Inversion.BaseInversion(invProb, directiveList=[betaest, IRLS])
    prb.counter = opt.counter = Utils.Counter()
    opt.LSshorten = 0.5
    opt.remember('xc')

    # Run inversion
    mopt = inv.run(m0)

    rho_est = mapping * mopt
    rho_est_l2 = mapping * invProb.l2model
    rho_est[~actind] = np.nan
    rho_est_l2[~actind] = np.nan
    rho_true = rho.copy()
    rho_true[~actind] = np.nan

    # show recovered conductivity
    if plotIt:
        vmin, vmax = rho.min(), rho.max()
        fig, ax = plt.subplots(3, 1, figsize=(20, 9))
        out1 = mesh.plotImage(rho_true,
                              clim=(10, 1000),
                              pcolorOpts={
                                  "cmap": "viridis",
                                  "norm": colors.LogNorm()
                              },
                              ax=ax[0])
        out2 = mesh.plotImage(rho_est_l2,
                              clim=(10, 1000),
                              pcolorOpts={
                                  "cmap": "viridis",
                                  "norm": colors.LogNorm()
                              },
                              ax=ax[1])
        out3 = mesh.plotImage(rho_est,
                              clim=(10, 1000),
                              pcolorOpts={
                                  "cmap": "viridis",
                                  "norm": colors.LogNorm()
                              },
                              ax=ax[2])

        out = [out1, out2, out3]
        titles = ["True", "L2", ("L%d, Lx%d, Lz%d") % (p, qx, qz)]
        for i in range(3):
            ax[i].plot(survey.electrode_locations[:, 0],
                       survey.electrode_locations[:, 1], 'kv')
            ax[i].set_xlim(IO.grids[:, 0].min(), IO.grids[:, 0].max())
            ax[i].set_ylim(-IO.grids[:, 1].max(), IO.grids[:, 1].min())
            cb = plt.colorbar(out[i][0], ax=ax[i])
            cb.set_label("Resistivity ($\Omega$m)")
            ax[i].set_xlabel("Northing (m)")
            ax[i].set_ylabel("Elevation (m)")
            ax[i].set_aspect('equal')
            ax[i].set_title(titles[i])
        plt.tight_layout()
        plt.show()
def run(plotIt=True, saveFig=False):

    # Set up cylindrically symmeric mesh
    cs, ncx, ncz, npad = 10., 15, 25, 13  # padded cyl mesh
    hx = [(cs, ncx), (cs, npad, 1.3)]
    hz = [(cs, npad, -1.3), (cs, ncz), (cs, npad, 1.3)]
    mesh = Mesh.CylMesh([hx, 1, hz], '00C')

    # Conductivity model
    layerz = np.r_[-200., -100.]
    layer = (mesh.vectorCCz >= layerz[0]) & (mesh.vectorCCz <= layerz[1])
    active = mesh.vectorCCz < 0.
    sig_half = 1e-2  # Half-space conductivity
    sig_air = 1e-8  # Air conductivity
    sig_layer = 5e-2  # Layer conductivity
    sigma = np.ones(mesh.nCz) * sig_air
    sigma[active] = sig_half
    sigma[layer] = sig_layer

    # Mapping
    actMap = Maps.InjectActiveCells(mesh, active, np.log(1e-8), nC=mesh.nCz)
    mapping = Maps.ExpMap(mesh) * Maps.SurjectVertical1D(mesh) * actMap
    mtrue = np.log(sigma[active])

    # ----- FDEM problem & survey ----- #
    rxlocs = Utils.ndgrid([np.r_[50.], np.r_[0], np.r_[0.]])
    bzr = FDEM.Rx.Point_bSecondary(rxlocs, 'z', 'real')
    bzi = FDEM.Rx.Point_bSecondary(rxlocs, 'z', 'imag')

    freqs = np.logspace(2, 3, 5)
    srcLoc = np.array([0., 0., 0.])

    print('min skin depth = ', 500. / np.sqrt(freqs.max() * sig_half),
          'max skin depth = ', 500. / np.sqrt(freqs.min() * sig_half))
    print('max x ', mesh.vectorCCx.max(), 'min z ', mesh.vectorCCz.min(),
          'max z ', mesh.vectorCCz.max())

    srcList = [
        FDEM.Src.MagDipole([bzr, bzi], freq, srcLoc, orientation='Z')
        for freq in freqs
    ]

    surveyFD = FDEM.Survey(srcList)
    prbFD = FDEM.Problem3D_b(mesh, sigmaMap=mapping, Solver=Solver)
    prbFD.pair(surveyFD)
    std = 0.03
    surveyFD.makeSyntheticData(mtrue, std)
    surveyFD.eps = np.linalg.norm(surveyFD.dtrue) * 1e-5

    # FDEM inversion
    np.random.seed(1)
    dmisfit = DataMisfit.l2_DataMisfit(surveyFD)
    regMesh = Mesh.TensorMesh([mesh.hz[mapping.maps[-1].indActive]])
    reg = Regularization.Simple(regMesh)
    opt = Optimization.InexactGaussNewton(maxIterCG=10)
    invProb = InvProblem.BaseInvProblem(dmisfit, reg, opt)

    # Inversion Directives
    beta = Directives.BetaSchedule(coolingFactor=4, coolingRate=3)
    betaest = Directives.BetaEstimate_ByEig(beta0_ratio=2.)
    target = Directives.TargetMisfit()
    directiveList = [beta, betaest, target]

    inv = Inversion.BaseInversion(invProb, directiveList=directiveList)
    m0 = np.log(np.ones(mtrue.size) * sig_half)
    reg.alpha_s = 5e-1
    reg.alpha_x = 1.
    prbFD.counter = opt.counter = Utils.Counter()
    opt.remember('xc')
    moptFD = inv.run(m0)

    # TDEM problem
    times = np.logspace(-4, np.log10(2e-3), 10)
    print('min diffusion distance ',
          1.28 * np.sqrt(times.min() / (sig_half * mu_0)),
          'max diffusion distance ',
          1.28 * np.sqrt(times.max() / (sig_half * mu_0)))
    rx = TDEM.Rx.Point_b(rxlocs, times, 'z')
    src = TDEM.Src.MagDipole(
        [rx],
        waveform=TDEM.Src.StepOffWaveform(),
        loc=srcLoc  # same src location as FDEM problem
    )

    surveyTD = TDEM.Survey([src])
    prbTD = TDEM.Problem3D_b(mesh, sigmaMap=mapping, Solver=Solver)
    prbTD.timeSteps = [(5e-5, 10), (1e-4, 10), (5e-4, 10)]
    prbTD.pair(surveyTD)

    std = 0.03
    surveyTD.makeSyntheticData(mtrue, std)
    surveyTD.std = std
    surveyTD.eps = np.linalg.norm(surveyTD.dtrue) * 1e-5

    # TDEM inversion
    dmisfit = DataMisfit.l2_DataMisfit(surveyTD)
    regMesh = Mesh.TensorMesh([mesh.hz[mapping.maps[-1].indActive]])
    reg = Regularization.Simple(regMesh)
    opt = Optimization.InexactGaussNewton(maxIterCG=10)
    invProb = InvProblem.BaseInvProblem(dmisfit, reg, opt)

    # directives
    beta = Directives.BetaSchedule(coolingFactor=4, coolingRate=3)
    betaest = Directives.BetaEstimate_ByEig(beta0_ratio=2.)
    target = Directives.TargetMisfit()
    directiveList = [beta, betaest, target]

    inv = Inversion.BaseInversion(invProb, directiveList=directiveList)
    m0 = np.log(np.ones(mtrue.size) * sig_half)
    reg.alpha_s = 5e-1
    reg.alpha_x = 1.
    prbTD.counter = opt.counter = Utils.Counter()
    opt.remember('xc')
    moptTD = inv.run(m0)

    # Plot the results
    if plotIt:
        plt.figure(figsize=(10, 8))
        ax0 = plt.subplot2grid((2, 2), (0, 0), rowspan=2)
        ax1 = plt.subplot2grid((2, 2), (0, 1))
        ax2 = plt.subplot2grid((2, 2), (1, 1))

        fs = 13  # fontsize
        matplotlib.rcParams['font.size'] = fs

        # Plot the model
        ax0.semilogx(sigma[active],
                     mesh.vectorCCz[active],
                     'k-',
                     lw=2,
                     label="True")
        ax0.semilogx(np.exp(moptFD),
                     mesh.vectorCCz[active],
                     'bo',
                     ms=6,
                     markeredgecolor='k',
                     markeredgewidth=0.5,
                     label="FDEM")
        ax0.semilogx(np.exp(moptTD),
                     mesh.vectorCCz[active],
                     'r*',
                     ms=10,
                     markeredgecolor='k',
                     markeredgewidth=0.5,
                     label="TDEM")
        ax0.set_ylim(-700, 0)
        ax0.set_xlim(5e-3, 1e-1)

        ax0.set_xlabel('Conductivity (S/m)', fontsize=fs)
        ax0.set_ylabel('Depth (m)', fontsize=fs)
        ax0.grid(which='both',
                 color='k',
                 alpha=0.5,
                 linestyle='-',
                 linewidth=0.2)
        ax0.legend(fontsize=fs, loc=4)

        # plot the data misfits - negative b/c we choose positive to be in the
        # direction of primary

        ax1.plot(freqs, -surveyFD.dobs[::2], 'k-', lw=2, label="Obs (real)")
        ax1.plot(freqs, -surveyFD.dobs[1::2], 'k--', lw=2, label="Obs (imag)")

        dpredFD = surveyFD.dpred(moptTD)
        ax1.loglog(freqs,
                   -dpredFD[::2],
                   'bo',
                   ms=6,
                   markeredgecolor='k',
                   markeredgewidth=0.5,
                   label="Pred (real)")
        ax1.loglog(freqs,
                   -dpredFD[1::2],
                   'b+',
                   ms=10,
                   markeredgewidth=2.,
                   label="Pred (imag)")

        ax2.loglog(times, surveyTD.dobs, 'k-', lw=2, label='Obs')
        ax2.loglog(times,
                   surveyTD.dpred(moptTD),
                   'r*',
                   ms=10,
                   markeredgecolor='k',
                   markeredgewidth=0.5,
                   label='Pred')
        ax2.set_xlim(times.min() - 1e-5, times.max() + 1e-4)

        # Labels, gridlines, etc
        ax2.grid(which='both', alpha=0.5, linestyle='-', linewidth=0.2)
        ax1.grid(which='both', alpha=0.5, linestyle='-', linewidth=0.2)

        ax1.set_xlabel('Frequency (Hz)', fontsize=fs)
        ax1.set_ylabel('Vertical magnetic field (-T)', fontsize=fs)

        ax2.set_xlabel('Time (s)', fontsize=fs)
        ax2.set_ylabel('Vertical magnetic field (T)', fontsize=fs)

        ax2.legend(fontsize=fs, loc=3)
        ax1.legend(fontsize=fs, loc=3)
        ax1.set_xlim(freqs.max() + 1e2, freqs.min() - 1e1)

        ax0.set_title("(a) Recovered Models", fontsize=fs)
        ax1.set_title("(b) FDEM observed vs. predicted", fontsize=fs)
        ax2.set_title("(c) TDEM observed vs. predicted", fontsize=fs)

        plt.tight_layout(pad=1.5)

        if saveFig is True:
            plt.savefig('example1.png', dpi=600)
Example #25
0
####################

# Initial Model
m0 = np.median(ln_sigback) * np.ones(mapping.nP)
# Data Misfit
dmis = DataMisfit.l2_DataMisfit(survey)
# Regularization
regT = Regularization.Simple(mesh,
                             indActive=actind,
                             alpha_s=1e-6,
                             alpha_x=1.,
                             alpha_y=1.,
                             alpha_z=1.)

# Optimization Scheme
opt = Optimization.InexactGaussNewton(maxIter=10)

# Form the problem
opt.remember('xc')
invProb = InvProblem.BaseInvProblem(dmis, regT, opt)

# Directives for Inversions
beta = Directives.BetaEstimate_ByEig(beta0_ratio=1e+1)
Target = Directives.TargetMisfit()
betaSched = Directives.BetaSchedule(coolingFactor=5., coolingRate=2)

inv = Inversion.BaseInversion(invProb, directiveList=[beta, Target, betaSched])
# Run Inversion
minv = inv.run(m0)

# Final Plot
Example #26
0
    def run_inversion_cg(
        self,
        maxIter=60,
        m0=0.0,
        mref=0.0,
        percentage=5,
        floor=0.1,
        chifact=1,
        beta0_ratio=1.0,
        coolingFactor=1,
        coolingRate=1,
        alpha_s=1.0,
        alpha_x=1.0,
        use_target=False,
    ):
        survey, prob = self.get_problem_survey()
        survey.eps = percentage
        survey.std = floor
        survey.dobs = self.data.copy()
        self.uncertainty = percentage * abs(survey.dobs) * 0.01 + floor

        m0 = np.ones(self.M) * m0
        mref = np.ones(self.M) * mref
        reg = Regularization.Tikhonov(
            self.mesh, alpha_s=alpha_s, alpha_x=alpha_x, mref=mref
        )
        dmis = DataMisfit.l2_DataMisfit(survey)
        dmis.W = 1.0 / self.uncertainty

        opt = Optimization.InexactGaussNewton(maxIter=maxIter, maxIterCG=20)
        opt.remember("xc")
        opt.tolG = 1e-10
        opt.eps = 1e-10
        invProb = InvProblem.BaseInvProblem(dmis, reg, opt)
        save = Directives.SaveOutputEveryIteration()
        beta_schedule = Directives.BetaSchedule(
            coolingFactor=coolingFactor, coolingRate=coolingRate
        )
        target = Directives.TargetMisfit(chifact=chifact)

        if use_target:
            directives = [
                Directives.BetaEstimate_ByEig(beta0_ratio=beta0_ratio),
                beta_schedule,
                target,
                save,
            ]
        else:
            directives = [
                Directives.BetaEstimate_ByEig(beta0_ratio=beta0_ratio),
                beta_schedule,
                save,
            ]
        inv = Inversion.BaseInversion(invProb, directiveList=directives)
        mopt = inv.run(m0)
        model = opt.recall("xc")
        model.append(mopt)
        pred = []
        for m in model:
            pred.append(survey.dpred(m))
        return model, pred, save
Example #27
0
problem = DC.Problem3D_CC(mesh, sigmaMap=mapping)
problem.pair(survey)
problem.Solver = PardisoSolver

survey.dpred(mtrue)
survey.makeSyntheticData(mtrue, std=0.05, force=True)

print '# of data: ', survey.dobs.shape

#Simple Inversion
regmesh = mesh
m0 = (-5.) * np.ones(mapping.nP)
dmis = DataMisfit.l2_DataMisfit(survey)
reg = Regularization.Tikhonov(regmesh)  #,mapping = mapping)#,indActive=actind)
reg.mref = m0
opt = Optimization.InexactGaussNewton(maxIter=20, tolX=1e-6)
opt.remember('xc')
invProb = InvProblem.BaseInvProblem(dmis, reg, opt)
beta = Directives.BetaEstimate_ByEig(beta0=10., beta0_ratio=1e0)
reg.alpha_s = 1e-2
#beta = 0.
#invProb.beta = beta
betaSched = Directives.BetaSchedule(coolingFactor=5, coolingRate=2)
#sav0 = Directives.SaveEveryIteration()
#sav1 = Directives.SaveModelEveryIteration()
sav2 = Directives.SaveOutputDictEveryIteration()
inv = Inversion.BaseInversion(invProb, directiveList=[sav2, beta,
                                                      betaSched])  #sav0,sav1,

mtest = np.load('../Update_W_each_3it_5s_rademacher/finalresult.npy')
print "check misfit with W: ", dmis.eval(mtest) / survey.nD
Example #28
0
def run(plotIt=False):

    O = np.r_[-1.2, -1.]
    D = np.r_[10., 10.]
    x = np.r_[0., 1.]
    y = np.r_[0., 1.]
    print('length:', StraightRay.lengthInCell(O, D, x, y, plotIt=plotIt))
    O = np.r_[0, -1.]
    D = np.r_[1., 1.] * 1.5
    print('length:', StraightRay.lengthInCell(O,
                                              D,
                                              x * 2,
                                              y * 2,
                                              plotIt=plotIt))

    nC = 20
    M = Mesh.TensorMesh([nC, nC])
    y = np.linspace(0., 1., nC / 2)
    rlocs = np.c_[y * 0 + M.vectorCCx[-1], y]
    rx = StraightRay.Rx(rlocs, None)

    srcList = [
        StraightRay.Src(loc=np.r_[M.vectorCCx[0], yi], rxList=[rx]) for yi in y
    ]

    survey = StraightRay.Survey(srcList)
    problem = StraightRay.Problem(M, slownessMap=Maps.IdentityMap(M))
    problem.pair(survey)

    s = Utils.mkvc(Utils.ModelBuilder.randomModel(M.vnC)) + 1.
    survey.dobs = survey.dpred(s)
    survey.std = 0.01

    # Create an optimization program

    reg = Regularization.Tikhonov(M)
    dmis = DataMisfit.l2_DataMisfit(survey)
    opt = Optimization.InexactGaussNewton(maxIter=40)
    opt.remember('xc')
    invProb = InvProblem.BaseInvProblem(dmis, reg, opt)
    beta = Directives.BetaSchedule()
    betaest = Directives.BetaEstimate_ByEig()
    inv = Inversion.BaseInversion(invProb, directiveList=[beta, betaest])

    # Start the inversion with a model of zeros, and run the inversion
    m0 = np.ones(M.nC) * 1.5
    mopt = inv.run(m0)

    if plotIt is True:
        fig, ax = plt.subplots(1, 2, figsize=(8, 4))
        ax[1].plot(survey.dobs)
        ax[1].plot(survey.dpred(m0), 's')
        ax[1].plot(survey.dpred(mopt), 'o')
        ax[1].legend(['dobs', 'starting dpred', 'dpred'])
        M.plotImage(s, ax=ax[0])
        survey.plot(ax=ax[0])
        ax[0].set_title('survey')

        plt.tight_layout()

    if plotIt is True:
        fig, ax = plt.subplots(1, 3, figsize=(12, 4))
        plt.colorbar(M.plotImage(m0, ax=ax[0])[0], ax=ax[0])
        plt.colorbar(M.plotImage(mopt, ax=ax[1])[0], ax=ax[1])
        plt.colorbar(M.plotImage(s, ax=ax[2])[0], ax=ax[2])

        ax[0].set_title('Starting Model')
        ax[1].set_title('Recovered Model')
        ax[2].set_title('True Model')

        plt.tight_layout()
def resolve_1Dinversions(mesh,
                         dobs,
                         src_height,
                         freqs,
                         m0,
                         mref,
                         mapping,
                         std=0.08,
                         floor=1e-14,
                         rxOffset=7.86):
    """
    Perform a single 1D inversion for a RESOLVE sounding for Horizontal
    Coplanar Coil data (both real and imaginary).

    :param discretize.CylMesh mesh: mesh used for the forward simulation
    :param numpy.array dobs: observed data
    :param float src_height: height of the source above the ground
    :param numpy.array freqs: frequencies
    :param numpy.array m0: starting model
    :param numpy.array mref: reference model
    :param Maps.IdentityMap mapping: mapping that maps the model to electrical conductivity
    :param float std: percent error used to construct the data misfit term
    :param float floor: noise floor used to construct the data misfit term
    :param float rxOffset: offset between source and receiver.
    """

    # ------------------- Forward Simulation ------------------- #
    # set up the receivers
    bzr = EM.FDEM.Rx.Point_bSecondary(np.array([[rxOffset, 0., src_height]]),
                                      orientation='z',
                                      component='real')

    bzi = EM.FDEM.Rx.Point_b(np.array([[rxOffset, 0., src_height]]),
                             orientation='z',
                             component='imag')

    # source location
    srcLoc = np.array([0., 0., src_height])
    srcList = [
        EM.FDEM.Src.MagDipole([bzr, bzi], freq, srcLoc, orientation='Z')
        for freq in freqs
    ]

    # construct a forward simulation
    survey = EM.FDEM.Survey(srcList)
    prb = EM.FDEM.Problem3D_b(mesh, sigmaMap=mapping, Solver=PardisoSolver)
    prb.pair(survey)

    # ------------------- Inversion ------------------- #
    # data misfit term
    survey.dobs = dobs
    dmisfit = DataMisfit.l2_DataMisfit(survey)
    uncert = abs(dobs) * std + floor
    dmisfit.W = 1. / uncert

    # regularization
    regMesh = Mesh.TensorMesh([mesh.hz[mapping.maps[-1].indActive]])
    reg = Regularization.Simple(regMesh)
    reg.mref = mref

    # optimization
    opt = Optimization.InexactGaussNewton(maxIter=10)

    # statement of the inverse problem
    invProb = InvProblem.BaseInvProblem(dmisfit, reg, opt)

    # Inversion directives and parameters
    target = Directives.TargetMisfit()
    inv = Inversion.BaseInversion(invProb, directiveList=[target])

    invProb.beta = 2.  # Fix beta in the nonlinear iterations
    reg.alpha_s = 1e-3
    reg.alpha_x = 1.
    prb.counter = opt.counter = Utils.Counter()
    opt.LSshorten = 0.5
    opt.remember('xc')

    # run the inversion
    mopt = inv.run(m0)
    return mopt, invProb.dpred, survey.dobs
m0 = mref.copy()
#sigma0 = np.ones(mesh_2d.nC) * 1e-3
#sigma0[blk1] = 1.
#m0 = np.log(sigma0[actind])

from SimPEG import (EM, Mesh, Maps, DataMisfit, Regularization,
                    Optimization, InvProblem, Inversion, Directives, Utils)
survey.dobs = dobs_dbdtz
survey.std = 0.05
survey.eps = 1e-14
dmisfit = DataMisfit.l2_DataMisfit(survey)
reg = Regularization.Tikhonov(
    mesh_2d, alpha_s=1./mesh_2d.hx.min()**2, alpha_x=1., alpha_y=1.,
    indActive=actind
)
opt = Optimization.InexactGaussNewton(maxIter=20, LSshorten=0.5)
opt.remember('xc')
invProb = InvProblem.BaseInvProblem(dmisfit, reg, opt)
# Create an inversion object
beta = Directives.BetaSchedule(coolingFactor=5, coolingRate=3)
betaest = Directives.BetaEstimate_ByEig(beta0_ratio=1.)
target=Directives.TargetMisfit()
save_model = Directives.SaveModelEveryIteration()
save = Directives.SaveOutputEveryIteration()

inv = Inversion.BaseInversion(invProb, directiveList=[beta, betaest, target, save_model, save])
prb.counter = opt.counter = Utils.Counter()
reg.mref = mref
mopt = inv.run(m0)

np.save('mopt', mopt)