def mHullImg(self): tl = self.topLeftCorner() retVal = np.zeros((self.height(), self.width(), 3), np.uint8) npimg = self.image.getNumpy()[tl[1]:tl[1]+self.height(), tl[0]:tl[0]+self.width()] mask = self.mHullMask.getGrayNumpy() Image._copyNpwithMask(npimg, retVal, mask) return Image(retVal)
def getImage(self): """ **SUMMARY** Retrieve an Image-object from the camera. If you experience problems with stale frames from the camera's hardware buffer, increase the flushcache number to dequeue multiple frames before retrieval We're working on how to solve this problem. **RETURNS** A SimpleCV Image from the camera. **EXAMPLES** >>> cam = Camera() >>> while True: >>> cam.getImage().show() """ if self.pygame_camera: return Image(self.pygame_buffer.copy()) if (not self.threaded): cv.GrabFrame(self.capture) self.capturetime = time.time() else: self.capturetime = self._threadcapturetime frame = cv.RetrieveFrame(self.capture) newimg = cv.CreateImage(cv.GetSize(frame), cv.IPL_DEPTH_8U, 3) cv.Copy(frame, newimg) return Image(newimg, self)
def reconstruct(self,img): """ This is a "just for fun" method as a sanity check for the BOF codeook. The method takes in an image, extracts each codebook code, and replaces the image at the position with the code. """ retVal = cv.CreateImage((img.width,img.height), cv.IPL_DEPTH_8U, 1) data = self._getPatches(img) p = spsd.cdist(data,self.mCodebook) foo = p.shape[0] codes = np.argmin(p,axis=1) count = 0 wsteps = img.width/self.mPatchSize[0] hsteps = img.height/self.mPatchSize[1] w=self.mPatchSize[0] h=self.mPatchSize[1] length = w*h retVal = Image(retVal) for widx in range(wsteps): for hidx in range(hsteps): x = (widx*self.mPatchSize[0]) y = (hidx*self.mPatchSize[1]) p = codes[count] temp = Image(self.mCodebook[p,:].reshape(self.mPatchSize[0],self.mPatchSize[1])) retVal.blit(temp,pos=(x,y)) count = count + 1 return retVal
def circleDistance(self): """ **SUMMARY** Compare the hull mask to an ideal circle and count the number of pixels that deviate as a fraction of total area of the ideal circle. **RETURNS** The difference, as a percentage, between the hull of our blob and an idealized circle of our blob. """ w = self.mHullMask.width h = self.mHullMask.height idealcircle = Image((w,h)) radius = min(w,h) / 2 idealcircle.dl().circle((w/2, h/2), radius, filled= True, color=Color.WHITE) idealcircle = idealcircle.applyLayers() print self.mHullMask print idealcircle print self.mHullMask.width print self.mHullMask.height print idealcircle.width print idealcircle.height netdiff = (idealcircle - self.mHullMask) + (self.mHullMask - idealcircle) numblack, numwhite = netdiff.histogram(2) return float(numwhite) / (radius * radius * np.pi)
def draw(self, color=Color.RED, width=2, alpha=255): """ **SUMMARY** Draw all the superpixels, in the given color, to the appropriate layer By default, this draws the superpixels boundary. If you provide a width, an outline of the exterior and interior contours is drawn. **PARAMETERS** * *color* -The color to render the blob as a color tuple. * *width* - The width of the drawn blob in pixels, if -1 then filled then the polygon is filled. * *alpha* - The alpha value of the rendered blob 0=transparent 255=opaque. **RETURNS** Image with superpixels drawn on it. **EXAMPLE** >>> image = Image("lenna") >>> sp = image.segmentSuperpixels(300, 20) >>> sp.draw(color=(255, 0, 255), width=5, alpha=128).show() """ img = self.image.copy() self._drawingImage = Image(self.image.getEmpty(3)) _mLayers = [] for sp in self: sp.draw(color=color, width=width, alpha=alpha) self._drawingImage += sp.image.copy() for layer in sp.image._mLayers: _mLayers.append(layer) self._drawingImage._mLayers = copy(_mLayers) return self._drawingImage.copy()
def addImage(self, img): """ Add a single image to the segmentation algorithm """ if (img is None): return if (self.mLastImg == None): if (self.mGrayOnlyMode): self.mLastImg = img.toGray() self.mDiffImg = Image(self.mLastImg.getEmpty(1)) self.mCurrImg = None else: self.mLastImg = img self.mDiffImg = Image(self.mLastImg.getEmpty(3)) self.mCurrImg = None else: if (self.mCurrImg is not None): #catch the first step self.mLastImg = self.mCurrImg if (self.mGrayOnlyMode): self.mColorImg = img self.mCurrImg = img.toGray() else: self.mColorImg = img self.mCurrImg = img cv.AbsDiff(self.mCurrImg.getBitmap(), self.mLastImg.getBitmap(), self.mDiffImg.getBitmap()) return
def addImage(self, img): """ Add a single image to the segmentation algorithm """ if( img is None ): return if( self.mLastImg == None ): if( self.mGrayOnlyMode ): self.mLastImg = img.toGray() self.mDiffImg = Image(self.mLastImg.getEmpty(1)) self.mCurrImg = None else: self.mLastImg = img self.mDiffImg = Image(self.mLastImg.getEmpty(3)) self.mCurrImg = None else: if( self.mCurrImg is not None ): #catch the first step self.mLastImg = self.mCurrImg if( self.mGrayOnlyMode ): self.mColorImg = img self.mCurrImg = img.toGray() else: self.mColorImg = img self.mCurrImg = img self.mDiffImg = Image(cv2.absdiff(self.mCurrImg.getNumpy(), self.mLastImg.getNumpy())) return
def load(self, datafile): """ Load a codebook from file using the datafile. The datafile should point to a local image for the source patch image. """ myFile = open(datafile, 'r') temp = myFile.readline() #print(temp) self.mNumCodes = int(myFile.readline()) #print(self.mNumCodes) w = int(myFile.readline()) h = int(myFile.readline()) self.mPatchSize = (w, h) #print(self.mPatchSize) self.mPadding = int(myFile.readline()) #print(self.mPadding) w = int(myFile.readline()) h = int(myFile.readline()) self.mLayout = (w, h) #print(self.mLayout) imgfname = myFile.readline().strip() #print(imgfname) self.mCodebookImg = Image(imgfname) self.mCodebook = self._img2Codebook(self.mCodebookImg, self.mPatchSize, self.mNumCodes, self.mLayout, self.mPadding) #print(self.mCodebook) return
def reconstruct(self, img): """ This is a "just for fun" method as a sanity check for the BOF codeook. The method takes in an image, extracts each codebook code, and replaces the image at the position with the code. """ retVal = cv.CreateImage((img.width, img.height), cv.IPL_DEPTH_8U, 1) data = self._getPatches(img) p = spsd.cdist(data, self.mCodebook) foo = p.shape[0] codes = np.argmin(p, axis=1) count = 0 wsteps = img.width / self.mPatchSize[0] hsteps = img.height / self.mPatchSize[1] w = self.mPatchSize[0] h = self.mPatchSize[1] length = w * h retVal = Image(retVal) for widx in range(wsteps): for hidx in range(hsteps): x = (widx * self.mPatchSize[0]) y = (hidx * self.mPatchSize[1]) p = codes[count] temp = Image(self.mCodebook[p, :].reshape( self.mPatchSize[0], self.mPatchSize[1])) retVal = retVal.blit(temp, pos=(x, y)) count = count + 1 return retVal
def circleDistance(self): """ **SUMMARY** Compare the hull mask to an ideal circle and count the number of pixels that deviate as a fraction of total area of the ideal circle. **RETURNS** The difference, as a percentage, between the hull of our blob and an idealized circle of our blob. """ w = self.mHullMask.width h = self.mHullMask.height idealcircle = Image((w, h)) radius = min(w, h) / 2 idealcircle.dl().circle((w / 2, h / 2), radius, filled=True, color=Color.WHITE) idealcircle = idealcircle.applyLayers() print self.mHullMask print idealcircle print self.mHullMask.width print self.mHullMask.height print idealcircle.width print idealcircle.height netdiff = (idealcircle - self.mHullMask) + (self.mHullMask - idealcircle) numblack, numwhite = netdiff.histogram(2) return float(numwhite) / (radius * radius * np.pi)
def getImage(self): """ **SUMMARY** Retrieve an Image-object from the virtual camera. **RETURNS** A SimpleCV Image from the camera. **EXAMPLES** >>> cam = VirtualCamera() >>> while True: >>> cam.getImage().show() """ if (self.sourcetype == 'image'): return Image(self.source, self) if (self.sourcetype == 'imageset'): img = self.source[self.counter % len(self.source)] self.counter = self.counter + 1 return img if (self.sourcetype == 'video'): return Image(cv.QueryFrame(self.capture), self)
def mHullImg(self): tl = self.topLeftCorner() retVal = np.zeros((self.height(), self.width(), 3), np.uint8) npimg = self.image.getNumpy()[tl[1]:tl[1] + self.height(), tl[0]:tl[0] + self.width()] mask = self.mHullMask.getGrayNumpy() Image._copyNpwithMask(npimg, retVal, mask) return Image(retVal)
def getImage(self): """ Retrieve the next frame of the video, or just a copy of the image """ if (self.sourcetype == 'image'): return Image(self.source, self) if (self.sourcetype == 'video'): return Image(cv.QueryFrame(self.capture), self)
def createButterworthFilter(self, dia=400, size=(64, 64), order=2, highpass=False): """ **SUMMARY** Creates a butterworth filter of given size and order. **PARAMETERS** * *dia* - int - diameter of Gaussian filter - list - provide a list of three diameters to create a 3 channel filter * *size* - size of the filter (width, height) * *order* - order of the filter * *highpass*: - bool True: highpass filter False: lowpass filter **RETURNS** DFT filter. **EXAMPLE** >>> flt = DFT.createButterworthfilter(100, (512, 512), order=3, highpass=True) >>> flt = DFT.createButterworthfilter([100, 120, 140], (512, 512), order=3, highpass=False) >>> img = Image('lenna') >>> flt.applyFilter(img).show() """ if isinstance(dia, list): if len(dia) != 3 and len(dia) != 1: warnings.warn("diameter list must be of size 1 or 3") return None stackedfilter = DFT() for d in dia: stackedfilter = stackedfilter._stackFilters(self.createButterworthFilter(d, size, order, highpass)) image = Image(stackedfilter._numpy) retVal = DFT(numpyarray=stackedfilter._numpy, image=image, dia=dia, channels = len(dia), size=size, type=stackedfilter._type, order=order, frequency=stackedfilter._freqpass) return retVal freqpass = "******" sz_x, sz_y = size x0 = sz_x/2 y0 = sz_y/2 X, Y = np.meshgrid(np.arange(sz_x), np.arange(sz_y)) D = np.sqrt((X-x0)**2+(Y-y0)**2) flt = 255/(1.0 + (D/dia)**(order*2)) if highpass: frequency = "highpass" flt = 255 - flt img = Image(flt) retVal = DFT(size=size, numpyarray=flt, image=img, dia=dia, type="Butterworth", frequency=freqpass) return retVal
def mImg(self): #NOTE THAT THIS IS NOT PERFECT - ISLAND WITH A LAKE WITH AN ISLAND WITH A LAKE STUFF retVal = np.zeros((self.height(), self.width(), 3), np.uint8) tl = self.topLeftCorner() npimg = self.image.getNumpy()[tl[1]:tl[1]+self.height(), tl[0]:tl[0]+self.width()] mask = self.mMask.getGrayNumpy() Image._copyNpwithMask(npimg, retVal, mask) return Image(retVal)
def draw(self, color = Color.GREEN, width = -1, alpha = -1, layer = None): """ **SUMMARY** Draw the blob, in the given color, to the appropriate layer By default, this draws the entire blob filled in, with holes. If you provide a width, an outline of the exterior and interior contours is drawn. **PARAMETERS** * *color* -The color to render the blob as a color tuple. * *alpha* - The alpha value of the rendered blob 0=transparent 255=opaque. * *width* - The width of the drawn blob in pixels, if -1 then filled then the polygon is filled. * *layer* - A source layer, if layer is not None, the blob is rendered to the layer versus the source image. **RETURNS** This method either works on the original source image, or on the drawing layer provided. The method does not modify object itself. **EXAMPLE** >>> img = Image("lenna") >>> blobs = img.findBlobs() >>> blobs[-2].draw(color=Color.PUCE,width=-1,alpha=128) >>> img.show() """ if not layer: layer = self.image.dl() if width == -1: #copy the mask into 3 channels and multiply by the appropriate color maskred = cv.CreateImage(cv.GetSize(self.mMask._getGrayscaleBitmap()), cv.IPL_DEPTH_8U, 1) maskgrn = cv.CreateImage(cv.GetSize(self.mMask._getGrayscaleBitmap()), cv.IPL_DEPTH_8U, 1) maskblu = cv.CreateImage(cv.GetSize(self.mMask._getGrayscaleBitmap()), cv.IPL_DEPTH_8U, 1) maskbit = cv.CreateImage(cv.GetSize(self.mMask._getGrayscaleBitmap()), cv.IPL_DEPTH_8U, 3) cv.ConvertScale(self.mMask._getGrayscaleBitmap(), maskred, color[0] / 255.0) cv.ConvertScale(self.mMask._getGrayscaleBitmap(), maskgrn, color[1] / 255.0) cv.ConvertScale(self.mMask._getGrayscaleBitmap(), maskblu, color[2] / 255.0) cv.Merge(maskblu, maskgrn, maskred, None, maskbit) masksurface = Image(maskbit).getPGSurface() masksurface.set_colorkey(Color.BLACK) if alpha != -1: masksurface.set_alpha(alpha) layer._mSurface.blit(masksurface, self.topLeftCorner()) #KAT HERE else: self.drawOutline(color, alpha, width, layer) self.drawHoles(color, alpha, width, layer)
def mImg(self): #NOTE THAT THIS IS NOT PERFECT - ISLAND WITH A LAKE WITH AN ISLAND WITH A LAKE STUFF retVal = np.zeros((self.height(), self.width(), 3), np.uint8) tl = self.topLeftCorner() npimg = self.image.getNumpy()[tl[1]:tl[1] + self.height(), tl[0]:tl[0] + self.width()] mask = self.mMask.getGrayNumpy() Image._copyNpwithMask(npimg, retVal, mask) return Image(retVal)
def __add__(self, flt): if not isinstance(flt, type(self)): warnings.warn("Provide SimpleCV.DFT object") return None if self.size() != flt.size(): warnings.warn("Both SimpleCV.DFT object must have the same size") return None flt_numpy = self._numpy + flt._numpy flt_image = Image(flt_numpy) retVal = DFT(numpyarray=flt_numpy, image=flt_image, size=flt_image.size()) return retVal
def circleDistance(self): """ Compare the hull mask to an ideal circle and count the number of pixels that deviate as a fraction of total area of the ideal circle """ idealcircle = Image((self.width(), self.height())) radius = min(self.width(), self.height()) / 2 idealcircle.dl().circle((self.width()/2, self.height()/2), radius, filled= True, color=Color.WHITE) idealcircle = idealcircle.applyLayers() netdiff = (idealcircle - self.mHullMask) + (self.mHullMask - idealcircle) numblack, numwhite = netdiff.histogram(2) return float(numwhite) / (radius * radius * np.pi)
def _segmentSuperpixels(self): img = self.new_clusters limit = np.max(img) superpixels = Superpixels() for label in range(limit+1): clusterimg = Image(255*(img == label).astype(np.uint8)) blobs = clusterimg.findBlobs() if blobs is None: continue blob = blobs[-1] blob.image = self.image & clusterimg superpixels.append(blob) return superpixels
def addImage(self, img): """ Add a single image to the segmentation algorithm """ if (img is None): return self.mColorImg = img if (self.mModelImg == None): self.mModelImg = Image( np.zeros((img.height, img.width, 3)).astype(np.float32)) self.mDiffImg = Image( np.zeros((img.height, img.width, 3)).astype(np.float32)) else: # do the difference self.mDiffImg = Image( cv2.absdiff(self.mModelImg.getNumpy(), self.mDiffImg.getNumpy())) #update the model npimg = np.zeros((img.height, img.width, 3)).astype(np.float32) npimg = self.mModelImg.getFPNumpy() cv2.accumulateWeighted(img.getFPNumpy(), npimg, self.mAlpha) print npimg self.mModelImg = Image(npimg) #cv.RunningAvg(img.getFPMatrix(),self.mModelImg.getBitmap(),self.mAlpha) self.mReady = True return
def getFullHullMaskedImage(self): """ Get the full size image with the masked to the blob """ tl = self.topLeftCorner() retVal = np.zeros((self.image.height, self.image.width, 3), np.uint8) npimgcrop = self.image.getNumpy()[tl[1]:tl[1]+self.height(), tl[0]:tl[0]+self.width()] mask = self.mHullMask.getGrayNumpy() retValcrop = retVal[tl[1]:tl[1]+self.height(), tl[0]:tl[0]+self.width()] Image._copyNpwithMask(npimgcrop, retValcrop, mask) retVal[tl[1]:tl[1]+self.height(), tl[0]:tl[0]+self.width()] = retValcrop return Image(retVal)
def getFullEdgeImage(self): """ Get the edge image within the full size image. """ retVal = np.zeros((self.image.height, self.image.width, 3), np.uint8) cv2.polylines(retVal, self.mContour, 1, (255, 255, 255)) return Image(retVal)
def getDepth(self): depth = freenect.sync_get_depth()[0] np.clip(depth, 0, 2**10 - 1, depth) depth >>= 2 depth = depth.astype(np.uint8).transpose() return Image(depth, self)
def _trainPath(self, path, className, subset, disp, verbose): count = 0 files = [] for ext in IMAGE_FORMATS: files.extend(glob.glob(os.path.join(path, ext))) if (subset > 0): nfiles = min(subset, len(files)) else: nfiles = len(files) badFeat = False for i in range(nfiles): infile = files[i] if verbose: print "Opening file: " + infile img = Image(infile) featureVector = [] for extractor in self.mFeatureExtractors: feats = extractor.extract(img) if (feats is not None): featureVector.extend(feats) else: badFeat = True if (badFeat): badFeat = False continue featureVector.extend([className]) self.mDataSetRaw.append(featureVector) text = 'Training: ' + className self._WriteText(disp, img, text, Color.WHITE) count = count + 1 del img return count
def undistort(self, image_or_2darray): """ If given an image, apply the undistortion given my the camera's matrix and return the result If given a 1xN 2D cvmat or a 2xN numpy array, it will un-distort points of measurement and return them in the original coordinate system. """ if(type(self._calibMat) != cv.cvmat or type(self._distCoeff) != cv.cvmat ): warnings.warn("FrameSource.undistort: This operation requires calibration, please load the calibration matrix") return None if (type(image_or_2darray) == InstanceType and image_or_2darray.__class__ == Image): inImg = image_or_2darray # we have an image retVal = inImg.getEmpty() cv.Undistort2(inImg.getBitmap(), retVal, self._calibMat, self._distCoeff) return Image(retVal) else: mat = '' if (type(image_or_2darray) == cv.cvmat): mat = image_or_2darray else: arr = cv.fromarray(np.array(image_or_2darray)) mat = cv.CreateMat(cv.GetSize(arr)[1], 1, cv.CV_64FC2) cv.Merge(arr[:, 0], arr[:, 1], None, None, mat) upoints = cv.CreateMat(cv.GetSize(mat)[1], 1, cv.CV_64FC2) cv.UndistortPoints(mat, upoints, self._calibMat, self._distCoeff) #undistorted.x = (x* focalX + principalX); #undistorted.y = (y* focalY + principalY); return (np.array(upoints[:, 0]) *\ [self.getCameraMatrix()[0, 0], self.getCameraMatrix()[1, 1]] +\ [self.getCameraMatrix()[0, 2], self.getCameraMatrix()[1, 2]])[:, 0]
def getBackground(self): """ **SUMMARY** Get Background of the Image. For more info read http://opencvpython.blogspot.in/2012/07/background-extraction-using-running.html **PARAMETERS** No Parameters **RETURNS** Image - SimpleCV.ImageClass.Image **EXAMPLE** >>> while (some_condition): ... img1 = cam.getImage() ... ts = img1.track("camshift", ts1, img, bb) ... img = img1 >>> ts.getBackground().show() """ imgs = self.trackImages(cv2_numpy=True) f = imgs[0] avg = np.float32(f) for img in imgs[1:]: f = img cv2.accumulateWeighted(f,avg,0.01) res = cv2.convertScaleAbs(avg) return Image(res, cv2image=True)
def generate(self, imgdirs, numcodes=128, sz=(11, 11), imgs_per_dir=50, img_layout=(8, 16), padding=0, verbose=True): """ This method builds the bag of features codebook from a list of directories with images in them. Each directory should be broken down by image class. imgdirs = This list of directories. patchsz = the dimensions of each codebook patch numcodes = the number of different patches in the codebook. imglayout = the shape of the resulting image in terms of patches padding = the pixel padding of each patch in the resulting image. imgs_per_dir = this method can use a specified number of images per directory i.e. min(#imgs_in_dir,imgs_per_dir) verbose = print output Once the method has completed it will save the results to a local file using the file name codebook.png WARNING: THIS METHOD WILL TAKE FOREVER """ self.mPadding = padding self.mLayout = img_layout self.mNumCodes = numcodes self.mPatchSize = sz rawFeatures = np.zeros(sz[0] * sz[1]) #fakeout numpy so we can use vstack for path in imgdirs: fcount = 0 files = [] for ext in IMAGE_FORMATS: files.extend(glob.glob(os.path.join(path, ext))) nimgs = min(len(files), imgs_per_dir) for i in range(nimgs): infile = files[i] if verbose: print(path + " " + str(i) + " of " + str(imgs_per_dir)) print "Opening file: " + infile img = Image(infile) newFeat = self._getPatches(img, sz) if verbose: print " Got " + str(len(newFeat)) + " features." rawFeatures = np.vstack((rawFeatures, newFeat)) del img rawFeatures = rawFeatures[ 1:, :] # pop the fake value we put on the top if verbose: print "==================================" print "Got " + str(len(rawFeatures)) + " features " print "Doing K-Means .... this will take a long time" self.mCodebook = self._makeCodebook(rawFeatures, self.mNumCodes) self.mCodebookImg = self._codebook2Img(self.mCodebook, self.mPatchSize, self.mNumCodes, self.mLayout, self.mPadding) self.mCodebookImg.save('codebook.png')
def mMask(self): #NOTE THAT THIS IS NOT PERFECT - ISLAND WITH A LAKE WITH AN ISLAND WITH A LAKE STUFF #cv.FillPoly(bmp,[[(0,0),(100,0),(100,100),(0,100)],[(10,10),(90,10),(90,90),(10,90)]], (0,0,0),8) #gettin fancy # cv.FillPoly(bmp,[[(0,0),(100,0),(100,100),(0,100)],[(10,10),(40,10),(40,90),(10,90)],[(20,20),(30,20),(30,80),(20,80)],[(50,10),(90,10),(90,90),(50,90)]], (0,0,0),8) # TODO: FIX THIS SO THAT THE INTERIOR CONTOURS GET SHIFTED AND DRAWN #Alas - OpenCV does not provide an offset in the fillpoly method for #the cv bindings (only cv2 -- which I am trying to avoid). Have to #manually do the offset for the ROI shift. retVal = cv.CreateImage((self.width(),self.height()),cv.IPL_DEPTH_8U,1) cv.Zero(retVal) l,t = self.topLeftCorner() # construct the exterior contour - these are tuples cv.FillPoly(retVal,[[(p[0] - l, p[1] - t) for p in self.mContour]],(255,255,255),8) #construct the hole contoursb holes = [] if self.mHoleContour is not None: for h in self.mHoleContour: # -- these are lists holes.append([(h2[0]-l,h2[1]-t) for h2 in h]) cv.FillPoly(retVal,holes,(0,0,0),8) return Image(retVal)
def invert(self): """ **SUMMARY** Invert the filter. All values will be subtracted from 255. **RETURNS** Inverted Filter **EXAMPLE** >>> flt = DFT.createGaussianFilter() >>> invertflt = flt.invert() """ flt = self._numpy flt = 255 - flt img = Image(flt) invertedfilter = DFT(numpyarray=flt, image=img, size=self.size(), type=self._type) invertedfilter._updateParams(self) return invertedfilter
def getDepth(self): """ **SUMMARY** This method returns the Kinect depth image. **RETURNS** The Kinect's depth camera image as a grayscale image. **EXAMPLE** >>> k = Kinect() >>> while True: >>> d = k.getDepth() >>> img = k.getImage() >>> result = img.sideBySide(d) >>> result.show() """ depth = freenect.sync_get_depth()[0] self.capturetime = time.time() np.clip(depth, 0, 2**10 - 1, depth) depth >>= 2 depth = depth.astype(np.uint8).transpose() return Image(depth, self)
def load(self,datafile): """ Load a codebook from file using the datafile. The datafile should point to a local image for the source patch image. """ myFile = open(datafile, 'r') temp = myFile.readline() #print(temp) self.mNumCodes = int(myFile.readline()) #print(self.mNumCodes) w = int(myFile.readline()) h = int(myFile.readline()) self.mPatchSize = (w,h) #print(self.mPatchSize) self.mPadding = int(myFile.readline()) #print(self.mPadding) w = int(myFile.readline()) h = int(myFile.readline()) self.mLayout = (w,h) #print(self.mLayout) imgfname = myFile.readline().strip() #print(imgfname) self.mCodebookImg = Image(imgfname) self.mCodebook = self._img2Codebook(self.mCodebookImg, self.mPatchSize, self.mNumCodes, self.mLayout, self.mPadding) #print(self.mCodebook) return
def colorWithClusterMeans(self): """ **SUMMARY** This function colors each superpixel with its mean color and return an image. **RETURNS** Image with superpixles drawn in its mean color. **EXAMPLE** >>> image = Image("lenna") >>> sp = image.segmentSuperpixels(300, 20) >>> sp.colorWithClusterMeans().show() """ if type(self.clusterMeanImage) != type(None): return self.clusterMeanImage self.clusterMeanImage = Image(self.image.getEmpty(3)) _mLayers = [] for sp in self: color = tuple(reversed(sp.meanColor())) sp.draw(color=color, width=-1) self.clusterMeanImage += sp.image.copy() for layer in sp.image._mLayers: _mLayers.append(layer) self.clusterMeanImage._mLayers = copy(_mLayers) return self.clusterMeanImage
def getHullEdgeImage(self): retVal = cv.CreateImage((self.width(), self.height()), cv.IPL_DEPTH_8U, 3) cv.Zero(retVal) tl = self.topLeftCorner() translate = [(cs[0] - tl[0], cs[1] - tl[1]) for cs in self.mConvexHull] cv.PolyLine(retVal, [translate], 1, (255, 255, 255)) return Image(retVal)
def _floatToInt(self,input): """ convert a 32bit floating point cv array to an int array """ temp = cv.CreateImage((input.width,input.height), cv.IPL_DEPTH_8U, 3) cv.Convert(input.getBitmap(),temp) return Image(temp)
def rectangleDistance(self): """ This compares the hull mask to the bounding rectangle. Returns the area of the blob's hull as a fraction of the bounding rectangle """ blackcount, whitecount = Image(self.mHullMask).histogram(2) return abs(1.0 - float(whitecount) / (self.minRectWidth() * self.minRectHeight()))
def write_images(model_path, fgvc_data_dir, images_nos, options): if options.crop: # read box information box_info = {} with open(path.join(fgvc_data_dir, 'images_box.txt')) as ibf: for line in ibf: result = line.split() img_no, coords = result[0], map(int, result[1:]) box_info[img_no] = coords for image_no in images_nos: image_file = '%s.%s' % (image_no, FGVC_IMAGE_SUFFIX) img = Image(path.join(fgvc_data_dir, 'images', image_file)) if options.crop: # although FGVC pages says the orgin is (1,1) # still there's some coordinates in box have 0 value # so don't do adjustment - 1px difference should be OK x1, y1, x2, y2 = box_info[image_no] img = img.crop(x1, y1, x2, y2) else: # remove out banner img = img.crop(0, 0, img.width, img.height-FGVC_BANNER_HEIGHT) if options.reduce_color_space: img = reduce_color_space(img, fast=True) if options.grayscale: img = img.grayscale() # normalize to width img = img.resize(NORMALIZED_WIDTH, int(img.height*1.0*NORMALIZED_WIDTH/img.width)) img.save(path.join(model_path, image_file))
def getEdgeImage(self): """ Get the edge image for the outer contour (no inner holes) """ retVal = np.zeros((self.height(), self.width(), 3), np.uint8) l, t = self.topLeftCorner() translate = [cs - (l, t) for cs in self.mContour] cv2.polylines(retVal, np.array(translate), 1, (255, 255, 255)) return Image(retVal)
def getFullHullMask(self): """ Get the full sized image hull mask """ tl = self.topLeftCorner() retVal = np.zeros((self.image.height, self.image.width), np.uint8) mask = self.mHullMask.getGrayNumpy() retVal[tl[1]:tl[1] + self.height(), tl[0]:tl[0] + self.width()] = mask return Image(retVal)
def _getBlobAsImage(self, colornp, bb, mask): """ Return an image that contains just pixels defined by the blob sequence. """ #print "need to do mask and copy too. sigh. check" img = colornp[bb[0]:bb[0] + bb[2], bb[1]:bb[1] + bb[3]] retVal = np.zeros((bb[3], bb[2], 3), np.uint8) Image._copyNpWithMask(img, retVal, mask) return (Image(retVal))
def addImage(self, img): """ Add a single image to the segmentation algorithm """ if( img is None ): return self.mColorImg = img if( self.mModelImg == None ): self.mModelImg = Image(cv.CreateImage((img.width,img.height), cv.IPL_DEPTH_32F, 3)) self.mDiffImg = Image(cv.CreateImage((img.width,img.height), cv.IPL_DEPTH_32F, 3)) else: # do the difference cv.AbsDiff(self.mModelImg.getBitmap(),img.getFPMatrix(),self.mDiffImg.getBitmap()) #update the model cv.RunningAvg(img.getFPMatrix(),self.mModelImg.getBitmap(),self.mAlpha) self.mReady = True return
def draw(self, color = Color.GREEN, alpha=-1, width=-1, layer=None): """ Draw the blob, in the given color, to the appropriate layer By default, this draws the entire blob filled in, with holes. If you provide a width, an outline of the exterior and interior contours is drawn. color = The color to render the blob. alpha = The alpha value of the rendered blob. width = The width of the drawn blob in pixels, if -1 then filled then the polygon is filled. layer = if layer is not None, the blob is rendered to the layer versus the source image. Parameters: color - Color object or Color tuple alpha - Int width - Int layer - DrawingLayer """ if not layer: layer = self.image.dl() if width == -1: #copy the mask into 3 channels and multiply by the appropriate color maskred = cv.CreateImage(cv.GetSize(self.mMask), cv.IPL_DEPTH_8U, 1) maskgrn = cv.CreateImage(cv.GetSize(self.mMask), cv.IPL_DEPTH_8U, 1) maskblu = cv.CreateImage(cv.GetSize(self.mMask), cv.IPL_DEPTH_8U, 1) maskbit = cv.CreateImage(cv.GetSize(self.mMask), cv.IPL_DEPTH_8U, 3) cv.ConvertScale(self.mMask, maskred, color[0] / 255.0) cv.ConvertScale(self.mMask, maskgrn, color[1] / 255.0) cv.ConvertScale(self.mMask, maskblu, color[2] / 255.0) cv.Merge(maskblu, maskgrn, maskred, None, maskbit) masksurface = Image(maskbit).getPGSurface() masksurface.set_colorkey(Color.BLACK) if alpha != -1: masksurface.set_alpha(alpha) layer._mSurface.blit(masksurface, self.points[0]) else: self.drawOutline(color, alpha, width, layer) self.drawHoles(color, alpha, width, layer)
def _codebook2Img(self, cb, patchsize, count, patch_arrangement, spacersz): """ cb = the codebook patchsize = the patch size (ususally 11x11) count = total codes patch_arrangement = how are the patches grided in the image (eg 128 = (8x16) 256=(16x16) ) spacersz = the number of pixels between patches """ w = (patchsize[0]*patch_arrangement[0])+((patch_arrangement[0]+1)*spacersz) h = (patchsize[1]*patch_arrangement[1])+((patch_arrangement[1]+1)*spacersz) bm = np.zeros((h, w), np.uint8) img = Image(bm) count = 0 for widx in range(patch_arrangement[0]): for hidx in range(patch_arrangement[1]): x = (widx*patchsize[0])+((widx+1)*spacersz) y = (hidx*patchsize[1])+((hidx+1)*spacersz) temp = Image(cb[count,:].reshape(patchsize[0],patchsize[1])) img.blit(temp,pos=(x,y)) count = count + 1 return img
def rotate(self,angle): """ Rotate the blob given the angle in degrees most of the blob elements will be rotated, not however this will "break" drawing back to the original image. To draw the blob create a new layer and draw to that layer. Parameters: angle - Int or Float """ #FIXME: This function should return a blob theta = 2*np.pi*(angle/360.0) mode = "" point =(self.x,self.y) self.mImg = self.mImg.rotate(angle,mode,point) #this is a bit of a hack, but it saves a lot of code #I left masks as bitmaps grrrr tempMask = Image(self.mMask) self.mMask = tempMask.rotate(angle,mode,point).getBitmap() tempMask = Image(self.mHullMask) self.mHullMask = tempMask.rotate(angle,mode,point).getBitmap() #self.mMask.rotate(theta,"",(self.x,self.y)) #self.mHullMask.rotate(theta,"",(self.x,self.y)) self.mContour = map(lambda x: (x[0]*np.cos(theta)-x[1]*np.sin(theta), x[0]*np.sin(theta)+x[1]*np.cos(theta)), self.mContour) self.mConvexHull = map(lambda x: (x[0]*np.cos(theta)-x[1]*np.sin(theta), x[0]*np.sin(theta)+x[1]*np.cos(theta)), self.mConvexHull) if( self.mHoleContour is not None): for h in self.mHoleContour: h = map(lambda x: (x[0]*np.cos(theta)-x[1]*np.sin(theta), x[0]*np.sin(theta)+x[1]*np.cos(theta)), h)
def applyFilter(self, image, grayscale=False): """ **SUMMARY** Apply the DFT filter to given image. **PARAMETERS** * *image* - SimpleCV.Image image * *grayscale* - if this value is True we perfrom the operation on the DFT of the gray version of the image and the result is gray image. If grayscale is true we perform the operation on each channel and the recombine them to create the result. **RETURNS** Filtered Image. **EXAMPLE** >>> notch = DFT.createNotchFilter(dia1=200, cen=(200, 200), size=(512, 512), type="highpass") >>> img = Image('lenna') >>> notch.applyFilter(img).show() """ if self.width == 0 or self.height == 0: warnings.warn("Empty Filter. Returning the image.") return image w, h = image.size() if grayscale: image = image.toGray() print self._numpy.dtype, "gray" fltImg = Image(self._numpy) if fltImg.size() != image.size(): fltImg = fltImg.resize(w, h) filteredImage = image.applyDFTFilter(fltImg, grayscale) return filteredImage
def addImage(self, img): """ Add a single image to the segmentation algorithm """ if( img is None ): return self.mColorImg = img if( self.mModelImg == None ): self.mModelImg = Image(np.zeros((img.height, img.width, 3)).astype(np.float32)) self.mDiffImg = Image(np.zeros((img.height, img.width, 3)).astype(np.float32)) else: # do the difference self.mDiffImg = Image(cv2.absdiff(self.mModelImg.getNumpy(), self.mDiffImg.getNumpy())) #update the model npimg = np.zeros((img.height, img.width, 3)).astype(np.float32) npimg = self.mModelImg.getFPNumpy() cv2.accumulateWeighted(img.getFPNumpy(), npimg, self.mAlpha) print npimg self.mModelImg = Image(npimg) #cv.RunningAvg(img.getFPMatrix(),self.mModelImg.getBitmap(),self.mAlpha) self.mReady = True return
def getImage(self): """ **SUMMARY** Get the SimpleCV Image of the filter **RETURNS** Image of the filter. **EXAMPLE** >>> notch = DFT.createNotchFilter(dia1=200, cen=(200, 200), size=(512, 512), type="highpass") >>> notch.getImage().show() """ if isinstance(self._image, type(None)): if isinstance(self._numpy, type(None)): warnings.warn("Filter doesn't contain any image") self._image = Image(self._numpy) return self._image
class RunningSegmentation(SegmentationBase): """ RunningSegmentation performs segmentation using a running background model. This model uses an accumulator which performs a running average of previous frames where: accumulator = ((1-alpha)input_image)+((alpha)accumulator) """ mError = False mAlpha = 0.1 mThresh = 10 mModelImg = None mDiffImg = None mCurrImg = None mBlobMaker = None mGrayOnly = True mReady = False def __init__(self, alpha=0.7, thresh=(20,20,20)): """ Create an running background difference. alpha - the update weighting where: accumulator = ((1-alpha)input_image)+((alpha)accumulator) threshold - the foreground background difference threshold. """ self.mError = False self.mReady = False self.mAlpha = alpha self.mThresh = thresh self.mModelImg = None self.mDiffImg = None self.mColorImg = None self.mBlobMaker = BlobMaker() def addImage(self, img): """ Add a single image to the segmentation algorithm """ if( img is None ): return self.mColorImg = img if( self.mModelImg == None ): self.mModelImg = Image(np.zeros((img.height, img.width, 3)).astype(np.float32)) self.mDiffImg = Image(np.zeros((img.height, img.width, 3)).astype(np.float32)) else: # do the difference self.mDiffImg = Image(cv2.absdiff(self.mModelImg.getNumpy(), self.mDiffImg.getNumpy())) #update the model npimg = np.zeros((img.height, img.width, 3)).astype(np.float32) npimg = self.mModelImg.getFPNumpy() cv2.accumulateWeighted(img.getFPNumpy(), npimg, self.mAlpha) print npimg self.mModelImg = Image(npimg) #cv.RunningAvg(img.getFPMatrix(),self.mModelImg.getBitmap(),self.mAlpha) self.mReady = True return def isReady(self): """ Returns true if the camera has a segmented image ready. """ return self.mReady def isError(self): """ Returns true if the segmentation system has detected an error. Eventually we'll consruct a syntax of errors so this becomes more expressive """ return self.mError #need to make a generic error checker def resetError(self): """ Clear the previous error. """ self.mError = false return def reset(self): """ Perform a reset of the segmentation systems underlying data. """ self.mModelImg = None self.mDiffImg = None def getRawImage(self): """ Return the segmented image with white representing the foreground and black the background. """ return self._floatToInt(self.mDiffImg) def getSegmentedImage(self, whiteFG=True): """ Return the segmented image with white representing the foreground and black the background. """ retVal = None img = self._floatToInt(self.mDiffImg) if( whiteFG ): retVal = img.binarize(thresh=self.mThresh) else: retVal = img.binarize(thresh=self.mThresh).invert() return retVal def getSegmentedBlobs(self): """ return the segmented blobs from the fg/bg image """ retVal = [] if( self.mColorImg is not None and self.mDiffImg is not None ): eightBit = self._floatToInt(self.mDiffImg) retVal = self.mBlobMaker.extractFromBinary(eightBit.binarize(thresh=self.mThresh),self.mColorImg) return retVal def _floatToInt(self,inputimg): """ convert a 32bit floating point cv array to an int array """ temp = inputimg.getNumpy() temp = temp * 255.0 temp = temp.astype(np.uint8) #temp = cv.CreateImage((input.width,input.height), cv.IPL_DEPTH_8U, 3) #cv.Convert(input.getBitmap(),temp) return Image(temp) def __getstate__(self): mydict = self.__dict__.copy() self.mBlobMaker = None self.mModelImg = None self.mDiffImg = None del mydict['mBlobMaker'] del mydict['mModelImg'] del mydict['mDiffImg'] return mydict def __setstate__(self, mydict): self.__dict__ = mydict self.mBlobMaker = BlobMaker()
class BOFFeatureExtractor(object): """ For a discussion of bag of features please see: http://en.wikipedia.org/wiki/Bag_of_words_model_in_computer_vision Initialize the bag of features extractor. This assumes you don't have the feature codebook pre-computed. patchsz = the dimensions of each codebook patch numcodes = the number of different patches in the codebook. imglayout = the shape of the resulting image in terms of patches padding = the pixel padding of each patch in the resulting image. """ mPatchSize = (11,11) mNumCodes = 128 mPadding = 0 mLayout = (8,16) mCodebookImg = None mCodebook = None def __init__(self,patchsz=(11,11),numcodes=128,imglayout=(8,16),padding=0): self.mPadding = padding self.mLayout = imglayout self.mPatchSize = patchsz self.mNumCodes = numcodes def generate(self,imgdirs,numcodes=128,sz=(11,11),imgs_per_dir=50,img_layout=(8,16),padding=0, verbose=True): """ This method builds the bag of features codebook from a list of directories with images in them. Each directory should be broken down by image class. imgdirs = This list of directories. patchsz = the dimensions of each codebook patch numcodes = the number of different patches in the codebook. imglayout = the shape of the resulting image in terms of patches padding = the pixel padding of each patch in the resulting image. imgs_per_dir = this method can use a specified number of images per directory i.e. min(#imgs_in_dir,imgs_per_dir) verbose = print output Once the method has completed it will save the results to a local file using the file name codebook.png WARNING: THIS METHOD WILL TAKE FOREVER """ self.mPadding = padding self.mLayout = img_layout self.mNumCodes = numcodes self.mPatchSize = sz rawFeatures = np.zeros(sz[0]*sz[1])#fakeout numpy so we can use vstack for path in imgdirs: fcount = 0 files = [] for ext in IMAGE_FORMATS: files.extend(glob.glob( os.path.join(path, ext))) nimgs = min(len(files),imgs_per_dir) for i in range(nimgs): infile = files[i] if verbose: print(path+" "+str(i)+" of "+str(imgs_per_dir)) print "Opening file: " + infile img = Image(infile) newFeat = self._getPatches(img,sz) if verbose: print " Got " + str(len(newFeat)) + " features." rawFeatures = np.vstack((rawFeatures,newFeat)) del img rawFeatures = rawFeatures[1:,:] # pop the fake value we put on the top if verbose: print "==================================" print "Got " + str(len(rawFeatures)) + " features " print "Doing K-Means .... this will take a long time" self.mCodebook = self._makeCodebook(rawFeatures,self.mNumCodes) self.mCodebookImg = self._codebook2Img(self.mCodebook,self.mPatchSize,self.mNumCodes,self.mLayout,self.mPadding) self.mCodebookImg.save('codebook.png') def extractPatches(self, img, sz=(11,11) ): """ Get patches from a single images. This is an external access method. The user will need to maintain the list of features. See the generate method as a guide to doing this by hand. Sz is the image patch size. """ return self._getPatches(img,sz) def makeCodebook(self, featureStack,ncodes=128): """ This method will return the centroids of the k-means analysis of a large number of images. Ncodes is the number of centroids to find. """ return self._makeCodebook(featureStack,ncodes) def _makeCodebook(self,data,ncodes=128): """ Do the k-means ... this is slow as as shit """ [centroids, membership] = cluster.kmeans2(data,ncodes, minit='points') return(centroids) def _img2Codebook(self, img, patchsize, count, patch_arrangement, spacersz): """ img = the image patchsize = the patch size (ususally 11x11) count = total codes patch_arrangement = how are the patches grided in the image (eg 128 = (8x16) 256=(16x16) ) spacersz = the number of pixels between patches """ img = img.toHLS() lmat = cv.CreateImage((img.width,img.height), cv.IPL_DEPTH_8U, 1) patch = cv.CreateImage(patchsize,cv.IPL_DEPTH_8U,1) cv.Split(img.getBitmap(),None,lmat,None,None) w = patchsize[0] h = patchsize[1] length = w*h retVal = np.zeros(length) for widx in range(patch_arrangement[0]): for hidx in range(patch_arrangement[1]): x = (widx*patchsize[0])+((widx+1)*spacersz) y = (hidx*patchsize[1])+((hidx+1)*spacersz) cv.SetImageROI(lmat,(x,y,w,h)) cv.Copy(lmat,patch) cv.ResetImageROI(lmat) retVal = np.vstack((retVal,np.array(patch[:,:]).reshape(length))) retVal = retVal[1:,:] return retVal def _codebook2Img(self, cb, patchsize, count, patch_arrangement, spacersz): """ cb = the codebook patchsize = the patch size (ususally 11x11) count = total codes patch_arrangement = how are the patches grided in the image (eg 128 = (8x16) 256=(16x16) ) spacersz = the number of pixels between patches """ w = (patchsize[0]*patch_arrangement[0])+((patch_arrangement[0]+1)*spacersz) h = (patchsize[1]*patch_arrangement[1])+((patch_arrangement[1]+1)*spacersz) bm = cv.CreateImage((w,h), cv.IPL_DEPTH_8U, 1) cv.Zero(bm) img = Image(bm) count = 0 for widx in range(patch_arrangement[0]): for hidx in range(patch_arrangement[1]): x = (widx*patchsize[0])+((widx+1)*spacersz) y = (hidx*patchsize[1])+((hidx+1)*spacersz) temp = Image(cb[count,:].reshape(patchsize[0],patchsize[1])) img.blit(temp,pos=(x,y)) count = count + 1 return img def _getPatches(self,img,sz): #retVal = [] # may need to go to np.array img2 = img.toHLS() lmat = cv.CreateImage((img.width,img.height), cv.IPL_DEPTH_8U, 1) patch = cv.CreateImage(self.mPatchSize,cv.IPL_DEPTH_8U,1) cv.Split(img2.getBitmap(),None,lmat,None,None) wsteps = img2.width/sz[0] hsteps = img2.height/sz[1] w=sz[0] h=sz[1] length = w*h retVal = np.zeros(length) for widx in range(wsteps): for hidx in range(hsteps): x = (widx*sz[0]) y = (hidx*sz[1]) cv.SetImageROI(lmat,(x,y,w,h)) cv.EqualizeHist(lmat,patch) #cv.Copy(lmat,patch) cv.ResetImageROI(lmat) retVal = np.vstack((retVal,np.array(patch[:,:]).reshape(length))) #retVal.append() retVal = retVal[1:,:] # pop the fake value we put on top of the stack return retVal def load(self,datafile): """ Load a codebook from file using the datafile. The datafile should point to a local image for the source patch image. """ myFile = open(datafile, 'r') temp = myFile.readline() #print(temp) self.mNumCodes = int(myFile.readline()) #print(self.mNumCodes) w = int(myFile.readline()) h = int(myFile.readline()) self.mPatchSize = (w,h) #print(self.mPatchSize) self.mPadding = int(myFile.readline()) #print(self.mPadding) w = int(myFile.readline()) h = int(myFile.readline()) self.mLayout = (w,h) #print(self.mLayout) imgfname = myFile.readline().strip() #print(imgfname) self.mCodebookImg = Image(imgfname) self.mCodebook = self._img2Codebook(self.mCodebookImg, self.mPatchSize, self.mNumCodes, self.mLayout, self.mPadding) #print(self.mCodebook) return def save(self,imgfname,datafname): """ Save the bag of features codebook and data set to a local file. """ myFile = open(datafname,'w') myFile.write("BOF Codebook Data\n") myFile.write(str(self.mNumCodes)+"\n") myFile.write(str(self.mPatchSize[0])+"\n") myFile.write(str(self.mPatchSize[1])+"\n") myFile.write(str(self.mPadding)+"\n") myFile.write(str(self.mLayout[0])+"\n") myFile.write(str(self.mLayout[1])+"\n") myFile.write(imgfname+"\n") myFile.close() if(self.mCodebookImg is None): self._codebook2Img(self.mCodebook,self.mPatchSize,self.mNumCodes,self.mLayout,self.mPadding) self.mCodebookImg.save(imgfname) return def __getstate__(self): if(self.mCodebookImg is None): self._codebook2Img(self.mCodebook,self.mPatchSize,self.mNumCodes,self.mLayout,self.mPadding) mydict = self.__dict__.copy() del mydict['mCodebook'] return mydict def __setstate__(self, mydict): self.__dict__ = mydict self.mCodebook = self._img2Codebook(self.mCodebookImg, self.mPatchSize, self.mNumCodes, self.mLayout, self.mPadding) def extract(self, img): """ This method extracts a bag of features histogram for the input image using the provided codebook. The result are the bin counts for each codebook code. """ data = self._getPatches(img) p = spsd.cdist(data,self.mCodebook) codes = np.argmin(p,axis=1) [retVal,foo] = np.histogram(codes,self.mNumCodes,normed=True,range=(0,self.mNumCodes-1)) return retVal def reconstruct(self,img): """ This is a "just for fun" method as a sanity check for the BOF codeook. The method takes in an image, extracts each codebook code, and replaces the image at the position with the code. """ retVal = cv.CreateImage((img.width,img.height), cv.IPL_DEPTH_8U, 1) data = self._getPatches(img) p = spsd.cdist(data,self.mCodebook) foo = p.shape[0] codes = np.argmin(p,axis=1) count = 0 wsteps = img.width/self.mPatchSize[0] hsteps = img.height/self.mPatchSize[1] w=self.mPatchSize[0] h=self.mPatchSize[1] length = w*h retVal = Image(retVal) for widx in range(wsteps): for hidx in range(hsteps): x = (widx*self.mPatchSize[0]) y = (hidx*self.mPatchSize[1]) p = codes[count] temp = Image(self.mCodebook[p,:].reshape(self.mPatchSize[0],self.mPatchSize[1])) retVal.blit(temp,pos=(x,y)) count = count + 1 return retVal def getFieldNames(self): """ This method gives the names of each field in the feature vector in the order in which they are returned. For example, 'xpos' or 'width' """ retVal = [] for widx in range(self.mLayout[0]): for hidx in range(self.mLayout[1]): temp = "CB_R"+str(widx)+"_C"+str(hidx) retVal.append(temp) return retVal def getNumFields(self): """ This method returns the total number of fields in the feature vector. """ return self.mNumCodes
class DFT: """ **SUMMARY** The DFT class is the refactored class to crate DFT filters which can be used to filter images by applying Digital Fourier Transform. This is a factory class to create various DFT filters. **PARAMETERS** Any of the following parameters can be supplied to create a simple DFT object. * *width* - width of the filter * *height* - height of the filter * *channels* - number of channels of the filter * *size* - size of the filter (width, height) * *_numpy* - numpy array of the filter * *_image* - SimpleCV.Image of the filter * *_dia* - diameter of the filter (applicable for gaussian, butterworth, notch) * *_type* - Type of the filter * *_order* - order of the butterworth filter * *_freqpass* - frequency of the filter (lowpass, highpass, bandpass) * *_xCutoffLow* - Lower horizontal cut off frequency for lowpassfilter * *_yCutoffLow* - Lower vertical cut off frequency for lowpassfilter * *_xCutoffHigh* - Upper horizontal cut off frequency for highpassfilter * *_yCutoffHigh* - Upper vertical cut off frequency for highassfilter **EXAMPLE** >>> gauss = DFT.createGaussianFilter(dia=40, size=(512,512)) >>> dft = DFT() >>> butterworth = dft.createButterworthFilter(dia=300, order=2, size=(300, 300)) """ width = 0 height = 0 channels = 1 _numpy = None _image = None _dia = 0 _type = "" _order = 0 _freqpass = "" _xCutoffLow = 0 _yCutoffLow = 0 _xCutoffHigh = 0 _yCutoffHigh = 0 def __init__(self, **kwargs): for key in kwargs: if key == 'width': self.width = kwargs[key] elif key == 'height': self.height = kwargs[key] elif key == 'channels': self.channels = kwargs[key] elif key == 'size': self.width, self.height = kwargs[key] elif key == 'numpyarray': self._numpy = kwargs[key] elif key == 'image': self._image = kwargs[key] elif key == 'dia': self._dia = kwargs[key] elif key == 'type': self._type = kwargs[key] elif key == 'order': self._order = kwargs[key] elif key == 'frequency': self._freqpass = kwargs[key] elif key == 'xCutoffLow': self._xCutoffLow = kwargs[key] elif key == 'yCutoffLow': self._yCutoffLow = kwargs[key] elif key == 'xCutoffHigh': self._xCutoffHigh = kwargs[key] elif key == 'yCutoffHigh': self._yCutoffHigh = kwargs[key] def __repr__(self): return "<SimpleCV.DFT Object: %s %s filter of size:(%d, %d) and channels: %d>" %(self._type, self._freqpass, self.width, self.height, self.channels) def __add__(self, flt): if not isinstance(flt, type(self)): warnings.warn("Provide SimpleCV.DFT object") return None if self.size() != flt.size(): warnings.warn("Both SimpleCV.DFT object must have the same size") return None flt_numpy = self._numpy + flt._numpy flt_image = Image(flt_numpy) retVal = DFT(numpyarray=flt_numpy, image=flt_image, size=flt_image.size()) return retVal def __invert__(self, flt): return self.invert() def _updateParams(self, flt): self.channels = flt.channels self._dia = flt._dia self._type = flt._type self._order = flt._order self._freqpass = flt._freqpass self._xCutoffLow = flt._xCutoffLow self._yCutoffLow = flt._yCutoffLow self._xCutoffHigh = flt._xCutoffHigh self._yCutoffHigh = flt._yCutoffHigh def invert(self): """ **SUMMARY** Invert the filter. All values will be subtracted from 255. **RETURNS** Inverted Filter **EXAMPLE** >>> flt = DFT.createGaussianFilter() >>> invertflt = flt.invert() """ flt = self._numpy flt = 255 - flt img = Image(flt) invertedfilter = DFT(numpyarray=flt, image=img, size=self.size(), type=self._type) invertedfilter._updateParams(self) return invertedfilter @classmethod def createGaussianFilter(self, dia=400, size=(64, 64), highpass=False): """ **SUMMARY** Creates a gaussian filter of given size. **PARAMETERS** * *dia* - int - diameter of Gaussian filter - list - provide a list of three diameters to create a 3 channel filter * *size* - size of the filter (width, height) * *highpass*: - bool True: highpass filter False: lowpass filter **RETURNS** DFT filter. **EXAMPLE** >>> gauss = DFT.createGaussianfilter(200, (512, 512), highpass=True) >>> gauss = DFT.createGaussianfilter([100, 120, 140], (512, 512), highpass=False) >>> img = Image('lenna') >>> gauss.applyFilter(img).show() """ if isinstance(dia, list): if len(dia) != 3 and len(dia) != 1: warnings.warn("diameter list must be of size 1 or 3") return None stackedfilter = DFT() for d in dia: stackedfilter = stackedfilter._stackFilters(self.createGaussianFilter(d, size, highpass)) image = Image(stackedfilter._numpy) retVal = DFT(numpyarray=stackedfilter._numpy, image=image, dia=dia, channels = len(dia), size=size, type="Gaussian", frequency=stackedfilter._freqpass) return retVal freqpass = "******" sz_x, sz_y = size x0 = sz_x/2 y0 = sz_y/2 X, Y = np.meshgrid(np.arange(sz_x), np.arange(sz_y)) D = np.sqrt((X-x0)**2+(Y-y0)**2) flt = 255*np.exp(-0.5*(D/dia)**2) if highpass: flt = 255 - flt freqpass = "******" img = Image(flt) retVal = DFT(size=size, numpyarray=flt, image=img, dia=dia, type="Gaussian", frequency=freqpass) return retVal @classmethod def createButterworthFilter(self, dia=400, size=(64, 64), order=2, highpass=False): """ **SUMMARY** Creates a butterworth filter of given size and order. **PARAMETERS** * *dia* - int - diameter of Gaussian filter - list - provide a list of three diameters to create a 3 channel filter * *size* - size of the filter (width, height) * *order* - order of the filter * *highpass*: - bool True: highpass filter False: lowpass filter **RETURNS** DFT filter. **EXAMPLE** >>> flt = DFT.createButterworthfilter(100, (512, 512), order=3, highpass=True) >>> flt = DFT.createButterworthfilter([100, 120, 140], (512, 512), order=3, highpass=False) >>> img = Image('lenna') >>> flt.applyFilter(img).show() """ if isinstance(dia, list): if len(dia) != 3 and len(dia) != 1: warnings.warn("diameter list must be of size 1 or 3") return None stackedfilter = DFT() for d in dia: stackedfilter = stackedfilter._stackFilters(self.createButterworthFilter(d, size, order, highpass)) image = Image(stackedfilter._numpy) retVal = DFT(numpyarray=stackedfilter._numpy, image=image, dia=dia, channels = len(dia), size=size, type=stackedfilter._type, order=order, frequency=stackedfilter._freqpass) return retVal freqpass = "******" sz_x, sz_y = size x0 = sz_x/2 y0 = sz_y/2 X, Y = np.meshgrid(np.arange(sz_x), np.arange(sz_y)) D = np.sqrt((X-x0)**2+(Y-y0)**2) flt = 255/(1.0 + (D/dia)**(order*2)) if highpass: frequency = "highpass" flt = 255 - flt img = Image(flt) retVal = DFT(size=size, numpyarray=flt, image=img, dia=dia, type="Butterworth", frequency=freqpass) return retVal @classmethod def createLowpassFilter(self, xCutoff, yCutoff=None, size=(64, 64)): """ **SUMMARY** Creates a lowpass filter of given size and order. **PARAMETERS** * *xCutoff* - int - horizontal cut off frequency - list - provide a list of three cut off frequencies to create a 3 channel filter * *yCutoff* - int - vertical cut off frequency - list - provide a list of three cut off frequencies to create a 3 channel filter * *size* - size of the filter (width, height) **RETURNS** DFT filter. **EXAMPLE** >>> flt = DFT.createLowpassFilter(xCutoff=75, size=(320, 280)) >>> flt = DFT.createLowpassFilter(xCutoff=[75], size=(320, 280)) >>> flt = DFT.createLowpassFilter(xCutoff=[75, 100, 120], size=(320, 280)) >>> flt = DFT.createLowpassFilter(xCutoff=75, yCutoff=35, size=(320, 280)) >>> flt = DFT.createLowpassFilter(xCutoff=[75], yCutoff=[35], size=(320, 280)) >>> flt = DFT.createLowpassFilter(xCutoff=[75, 100, 125], yCutoff=35, size=(320, 280)) >>> # yCutoff will be [35, 35, 35] >>> flt = DFT.createLowpassFilter(xCutoff=[75, 113, 124], yCutoff=[35, 45, 90], size=(320, 280)) >>> img = Image('lenna') >>> flt.applyFilter(img).show() """ if isinstance(xCutoff, list): if len(xCutoff) != 3 and len(xCutoff) != 1: warnings.warn("xCutoff list must be of size 3 or 1") return None if isinstance(yCutoff, list): if len(yCutoff) != 3 and len(yCutoff) != 1: warnings.warn("yCutoff list must be of size 3 or 1") return None if len(yCutoff) == 1: yCutoff = [yCutoff[0]]*len(xCutoff) else: yCutoff = [yCutoff]*len(xCutoff) stackedfilter = DFT() for xfreq, yfreq in zip(xCutoff, yCutoff): stackedfilter = stackedfilter._stackFilters(self.createLowpassFilter(xfreq, yfreq, size)) image = Image(stackedfilter._numpy) retVal = DFT(numpyarray=stackedfilter._numpy, image=image, xCutoffLow=xCutoff, yCutoffLow=yCutoff, channels=len(xCutoff), size=size, type=stackedfilter._type, order=self._order, frequency=stackedfilter._freqpass) return retVal w, h = size xCutoff = np.clip(int(xCutoff), 0, w/2) if yCutoff is None: yCutoff = xCutoff yCutoff = np.clip(int(yCutoff), 0, h/2) flt = np.zeros((w, h)) flt[0:xCutoff, 0:yCutoff] = 255 flt[0:xCutoff, h-yCutoff:h] = 255 flt[w-xCutoff:w, 0:yCutoff] = 255 flt[w-xCutoff:w, h-yCutoff:h] = 255 img = Image(flt) lowpassFilter = DFT(size=size, numpyarray=flt, image=img, type="Lowpass", xCutoffLow=xCutoff, yCutoffLow=yCutoff, frequency="lowpass") return lowpassFilter @classmethod def createHighpassFilter(self, xCutoff, yCutoff=None, size=(64, 64)): """ **SUMMARY** Creates a highpass filter of given size and order. **PARAMETERS** * *xCutoff* - int - horizontal cut off frequency - list - provide a list of three cut off frequencies to create a 3 channel filter * *yCutoff* - int - vertical cut off frequency - list - provide a list of three cut off frequencies to create a 3 channel filter * *size* - size of the filter (width, height) **RETURNS** DFT filter. **EXAMPLE** >>> flt = DFT.createHighpassFilter(xCutoff=75, size=(320, 280)) >>> flt = DFT.createHighpassFilter(xCutoff=[75], size=(320, 280)) >>> flt = DFT.createHighpassFilter(xCutoff=[75, 100, 120], size=(320, 280)) >>> flt = DFT.createHighpassFilter(xCutoff=75, yCutoff=35, size=(320, 280)) >>> flt = DFT.createHighpassFilter(xCutoff=[75], yCutoff=[35], size=(320, 280)) >>> flt = DFT.createHighpassFilter(xCutoff=[75, 100, 125], yCutoff=35, size=(320, 280)) >>> # yCutoff will be [35, 35, 35] >>> flt = DFT.createHighpassFilter(xCutoff=[75, 113, 124], yCutoff=[35, 45, 90], size=(320, 280)) >>> img = Image('lenna') >>> flt.applyFilter(img).show() """ if isinstance(xCutoff, list): if len(xCutoff) != 3 and len(xCutoff) != 1: warnings.warn("xCutoff list must be of size 3 or 1") return None if isinstance(yCutoff, list): if len(yCutoff) != 3 and len(yCutoff) != 1: warnings.warn("yCutoff list must be of size 3 or 1") return None if len(yCutoff) == 1: yCutoff = [yCutoff[0]]*len(xCutoff) else: yCutoff = [yCutoff]*len(xCutoff) stackedfilter = DFT() for xfreq, yfreq in zip(xCutoff, yCutoff): stackedfilter = stackedfilter._stackFilters( self.createHighpassFilter(xfreq, yfreq, size)) image = Image(stackedfilter._numpy) retVal = DFT(numpyarray=stackedfilter._numpy, image=image, xCutoffHigh=xCutoff, yCutoffHigh=yCutoff, channels=len(xCutoff), size=size, type=stackedfilter._type, order=self._order, frequency=stackedfilter._freqpass) return retVal lowpass = self.createLowpassFilter(xCutoff, yCutoff, size) w, h = lowpass.size() flt = lowpass._numpy flt = 255 - flt img = Image(flt) highpassFilter = DFT(size=size, numpyarray=flt, image=img, type="Highpass", xCutoffHigh=xCutoff, yCutoffHigh=yCutoff, frequency="highpass") return highpassFilter @classmethod def createBandpassFilter(self, xCutoffLow, xCutoffHigh, yCutoffLow=None, yCutoffHigh=None, size=(64, 64)): """ **SUMMARY** Creates a banf filter of given size and order. **PARAMETERS** * *xCutoffLow* - int - horizontal lower cut off frequency - list - provide a list of three cut off frequencies * *xCutoffHigh* - int - horizontal higher cut off frequency - list - provide a list of three cut off frequencies * *yCutoffLow* - int - vertical lower cut off frequency - list - provide a list of three cut off frequencies * *yCutoffHigh* - int - verical higher cut off frequency - list - provide a list of three cut off frequencies to create a 3 channel filter * *size* - size of the filter (width, height) **RETURNS** DFT filter. **EXAMPLE** >>> flt = DFT.createBandpassFilter(xCutoffLow=75, xCutoffHigh=190, size=(320, 280)) >>> flt = DFT.createBandpassFilter(xCutoffLow=[75], xCutoffHigh=[190], size=(320, 280)) >>> flt = DFT.createBandpassFilter(xCutoffLow=[75, 120, 132], xCutoffHigh=[190, 210, 234], size=(320, 280)) >>> flt = DFT.createBandpassFilter(xCutoffLow=75, xCutoffHigh=190, yCutoffLow=60, yCutoffHigh=210, size=(320, 280)) >>> flt = DFT.createBandpassFilter(xCutoffLow=[75], xCutoffHigh=[190], yCutoffLow=[60], yCutoffHigh=[210], size=(320, 280)) >>> flt = DFT.createBandpassFilter(xCutoffLow=[75, 120, 132], xCutoffHigh=[190, 210, 234], yCutoffLow=[70, 110, 112], yCutoffHigh=[180, 220, 220], size=(320, 280)) >>> img = Image('lenna') >>> flt.applyFilter(img).show() """ lowpass = self.createLowpassFilter(xCutoffLow, yCutoffLow, size) highpass = self.createHighpassFilter(xCutoffHigh, yCutoffHigh, size) lowpassnumpy = lowpass._numpy highpassnumpy = highpass._numpy bandpassnumpy = lowpassnumpy + highpassnumpy bandpassnumpy = np.clip(bandpassnumpy, 0, 255) img = Image(bandpassnumpy) bandpassFilter = DFT(size=size, image=img, numpyarray=bandpassnumpy, type="bandpass", xCutoffLow=xCutoffLow, yCutoffLow=yCutoffLow, xCutoffHigh=xCutoffHigh, yCutoffHigh=yCutoffHigh, frequency="bandpass", channels=lowpass.channels) return bandpassFilter @classmethod def createNotchFilter(self, dia1, dia2=None, cen=None, size=(64, 64), type="lowpass"): """ **SUMMARY** Creates a disk shaped notch filter of given diameter at given center. **PARAMETERS** * *dia1* - int - diameter of the disk shaped notch - list - provide a list of three diameters to create a 3 channel filter * *dia2* - int - outer diameter of the disk shaped notch used for bandpass filter - list - provide a list of three diameters to create a 3 channel filter * *cen* - tuple (x, y) center of the disk shaped notch if not provided, it will be at the center of the filter * *size* - size of the filter (width, height) * *type*: - lowpass or highpass filter **RETURNS** DFT notch filter **EXAMPLE** >>> notch = DFT.createNotchFilter(dia1=200, cen=(200, 200), size=(512, 512), type="highpass") >>> notch = DFT.createNotchFilter(dia1=200, dia2=300, cen=(200, 200), size=(512, 512)) >>> img = Image('lenna') >>> notch.applyFilter(img).show() """ if isinstance(dia1, list): if len(dia1) != 3 and len(dia1) != 1: warnings.warn("diameter list must be of size 1 or 3") return None if isinstance(dia2, list): if len(dia2) != 3 and len(dia2) != 1: warnings.warn("diameter list must be of size 3 or 1") return None if len(dia2) == 1: dia2 = [dia2[0]]*len(dia1) else: dia2 = [dia2]*len(dia1) if isinstance(cen, list): if len(cen) != 3 and len(cen) != 1: warnings.warn("center list must be of size 3 or 1") return None if len(cen) == 1: cen = [cen[0]]*len(dia1) else: cen = [cen]*len(dia1) stackedfilter = DFT() for d1, d2, c in zip(dia1, dia2, cen): stackedfilter = stackedfilter._stackFilters(self.createNotchFilter(d1, d2, c, size, type)) image = Image(stackedfilter._numpy) retVal = DFT(numpyarray=stackedfilter._numpy, image=image, dia=dia1+dia2, channels = len(dia1), size=size, type=stackedfilter._type, frequency=stackedfilter._freqpass) return retVal w, h = size if cen is None: cen = (w/2, h/2) a, b = cen y, x = np.ogrid[-a:w-a, -b:h-b] r = dia1/2 mask = x*x + y*y <= r*r flt = np.ones((w, h)) flt[mask] = 255 if type == "highpass": flt = 255-flt if dia2 is not None: a, b = cen y, x = np.ogrid[-a:w-a, -b:h-b] r = dia2/2 mask = x*x + y*y <= r*r flt1 = np.ones((w, h)) flt1[mask] = 255 flt1 = 255 - flt1 flt = flt + flt1 np.clip(flt, 0, 255) type = "bandpass" img = Image(flt) notchfilter = DFT(size=size, numpyarray=flt, image=img, dia=dia1, type="Notch", frequency=type) return notchfilter def applyFilter(self, image, grayscale=False): """ **SUMMARY** Apply the DFT filter to given image. **PARAMETERS** * *image* - SimpleCV.Image image * *grayscale* - if this value is True we perfrom the operation on the DFT of the gray version of the image and the result is gray image. If grayscale is true we perform the operation on each channel and the recombine them to create the result. **RETURNS** Filtered Image. **EXAMPLE** >>> notch = DFT.createNotchFilter(dia1=200, cen=(200, 200), size=(512, 512), type="highpass") >>> img = Image('lenna') >>> notch.applyFilter(img).show() """ if self.width == 0 or self.height == 0: warnings.warn("Empty Filter. Returning the image.") return image w, h = image.size() if grayscale: image = image.toGray() fltImg = self._image if fltImg.size() != image.size(): fltImg = fltImg.resize(w, h) filteredImage = image.applyDFTFilter(fltImg) return filteredImage def getImage(self): """ **SUMMARY** Get the SimpleCV Image of the filter **RETURNS** Image of the filter. **EXAMPLE** >>> notch = DFT.createNotchFilter(dia1=200, cen=(200, 200), size=(512, 512), type="highpass") >>> notch.getImage().show() """ if isinstance(self._image, type(None)): if isinstance(self._numpy, type(None)): warnings.warn("Filter doesn't contain any image") self._image = Image(self._numpy) return self._image def getNumpy(self): """ **SUMMARY** Get the numpy array of the filter **RETURNS** numpy array of the filter. **EXAMPLE** >>> notch = DFT.createNotchFilter(dia1=200, cen=(200, 200), size=(512, 512), type="highpass") >>> notch.getNumpy() """ if isinstance(self._numpy, type(None)): if isinstance(self._image, type(None)): warnings.warn("Filter doesn't contain any image") self._numpy = self._image.getNumpy() return self._numpy def getOrder(self): """ **SUMMARY** Get order of the butterworth filter **RETURNS** order of the butterworth filter **EXAMPLE** >>> flt = DFT.createButterworthFilter(order=4) >>> print flt.getOrder() """ return self._order def size(self): """ **SUMMARY** Get size of the filter **RETURNS** tuple of (width, height) **EXAMPLE** >>> flt = DFT.createGaussianFilter(size=(380, 240)) >>> print flt.size() """ return (self.width, self.height) def getDia(self): """ **SUMMARY** Get diameter of the filter **RETURNS** diameter of the filter **EXAMPLE** >>> flt = DFT.createGaussianFilter(dia=200, size=(380, 240)) >>> print flt.getDia() """ return self._dia def getType(self): """ **SUMMARY** Get type of the filter **RETURNS** type of the filter **EXAMPLE** >>> flt = DFT.createGaussianFilter(dia=200, size=(380, 240)) >>> print flt.getType() # Gaussian """ return self._type def stackFilters(self, flt1, flt2): """ **SUMMARY** Stack three signle channel filters of the same size to create a 3 channel filter. **PARAMETERS** * *flt1* - second filter to be stacked * *flt2* - thrid filter to be stacked **RETURNS** DFT filter **EXAMPLE** >>> flt1 = DFT.createGaussianFilter(dia=200, size=(380, 240)) >>> flt2 = DFT.createGaussianFilter(dia=100, size=(380, 240)) >>> flt2 = DFT.createGaussianFilter(dia=70, size=(380, 240)) >>> flt = flt1.stackFilters(flt2, flt3) # 3 channel filter """ if not(self.channels == 1 and flt1.channels == 1 and flt2.channels == 1): warnings.warn("Filters must have only 1 channel") return None if not (self.size() == flt1.size() and self.size() == flt2.size()): warnings.warn("All the filters must be of same size") return None numpyflt = self._numpy numpyflt1 = flt1._numpy numpyflt2 = flt2._numpy flt = np.dstack((numpyflt, numpyflt1, numpyflt2)) img = Image(flt) stackedfilter = DFT(size=self.size(), numpyarray=flt, image=img, channels=3) return stackedfilter def _stackFilters(self, flt1): """ **SUMMARY** stack two filters of same size. channels don't matter. **PARAMETERS** * *flt1* - second filter to be stacked **RETURNS** DFT filter """ if isinstance(self._numpy, type(None)): return flt1 if not self.size() == flt1.size(): warnings.warn("All the filters must be of same size") return None numpyflt = self._numpy numpyflt1 = flt1._numpy flt = np.dstack((numpyflt, numpyflt1)) stackedfilter = DFT(size=self.size(), numpyarray=flt, channels=self.channels+flt1.channels, type=self._type, frequency=self._freqpass) return stackedfilter
class DiffSegmentation(SegmentationBase): """ This method will do image segmentation by looking at the difference between two frames. grayOnly - use only gray images. threshold - The value at which we consider the color difference to be significant enough to be foreground imagery. The general usage is >>> segmentor = DiffSegmentation() >>> cam = Camera() >>> while(1): >>> segmentor.addImage(cam.getImage()) >>> if(segmentor.isReady()): >>> img = segmentor.getSegmentedImage() """ mError = False mLastImg = None mCurrImg = None mDiffImg = None mColorImg = None mGrayOnlyMode = True mThreshold = 10 mBlobMaker = None def __init__(self, grayOnly=False, threshold = (10,10,10) ): self.mGrayOnlyMode = grayOnly self.mThreshold = threshold self.mError = False self.mCurrImg = None self.mLastImg = None self.mDiffImg = None self.mColorImg = None self.mBlobMaker = BlobMaker() def addImage(self, img): """ Add a single image to the segmentation algorithm """ if( img is None ): return if( self.mLastImg == None ): if( self.mGrayOnlyMode ): self.mLastImg = img.toGray() self.mDiffImg = Image(self.mLastImg.getEmpty(1)) self.mCurrImg = None else: self.mLastImg = img self.mDiffImg = Image(self.mLastImg.getEmpty(3)) self.mCurrImg = None else: if( self.mCurrImg is not None ): #catch the first step self.mLastImg = self.mCurrImg if( self.mGrayOnlyMode ): self.mColorImg = img self.mCurrImg = img.toGray() else: self.mColorImg = img self.mCurrImg = img self.mDiffImg = Image(cv2.absdiff(self.mCurrImg.getNumpy(), self.mLastImg.getNumpy())) return def isReady(self): """ Returns true if the camera has a segmented image ready. """ if( self.mDiffImg is None ): return False else: return True def isError(self): """ Returns true if the segmentation system has detected an error. Eventually we'll consruct a syntax of errors so this becomes more expressive """ return self.mError #need to make a generic error checker def resetError(self): """ Clear the previous error. """ self.mError = False return def reset(self): """ Perform a reset of the segmentation systems underlying data. """ self.mCurrImg = None self.mLastImg = None self.mDiffImg = None def getRawImage(self): """ Return the segmented image with white representing the foreground and black the background. """ return self.mDiffImg def getSegmentedImage(self, whiteFG=True): """ Return the segmented image with white representing the foreground and black the background. """ retVal = None if( whiteFG ): retVal = self.mDiffImg.binarize(thresh=self.mThreshold) else: retVal = self.mDiffImg.binarize(thresh=self.mThreshold).invert() return retVal def getSegmentedBlobs(self): """ return the segmented blobs from the fg/bg image """ retVal = [] if( self.mColorImg is not None and self.mDiffImg is not None ): retVal = self.mBlobMaker.extractFromBinary(self.mDiffImg.binarize(thresh=self.mThreshold),self.mColorImg) return retVal def __getstate__(self): mydict = self.__dict__.copy() self.mBlobMaker = None del mydict['mBlobMaker'] return mydict def __setstate__(self, mydict): self.__dict__ = mydict self.mBlobMaker = BlobMaker()
class Superpixels(FeatureSet): """ ** SUMMARY ** Superpixels is a class extended from FeatureSet which is a class extended from Python's list. So, it has all the properties of a list as well as all the properties of FeatureSet. Each object of this list is a Blob corresponding to the superpixel. ** EXAMPLE ** >>> image = Image("lenna") >>> sp = image.segmentSuperpixels(300, 20) >>> sp.show() >>> sp.centers() """ def __init__(self): self._drawingImage = None self.clusterMeanImage = None pass def append(self, blob): list.append(self, blob) #if len(self) != 1: #self.image += blob.image.copy() @LazyProperty def image(self): img = None for sp in self: if img is None: img = sp.image else: img += sp.image return img def draw(self, color=Color.RED, width=2, alpha=255): """ **SUMMARY** Draw all the superpixels, in the given color, to the appropriate layer By default, this draws the superpixels boundary. If you provide a width, an outline of the exterior and interior contours is drawn. **PARAMETERS** * *color* -The color to render the blob as a color tuple. * *width* - The width of the drawn blob in pixels, if -1 then filled then the polygon is filled. * *alpha* - The alpha value of the rendered blob 0=transparent 255=opaque. **RETURNS** Image with superpixels drawn on it. **EXAMPLE** >>> image = Image("lenna") >>> sp = image.segmentSuperpixels(300, 20) >>> sp.draw(color=(255, 0, 255), width=5, alpha=128).show() """ img = self.image.copy() self._drawingImage = Image(self.image.getEmpty(3)) _mLayers = [] for sp in self: sp.draw(color=color, width=width, alpha=alpha) self._drawingImage += sp.image.copy() for layer in sp.image._mLayers: _mLayers.append(layer) self._drawingImage._mLayers = copy(_mLayers) return self._drawingImage.copy() def show(self, color=Color.RED, width=2, alpha=255): """ **SUMMARY** This function automatically draws the superpixels on the drawing image and shows it. ** RETURNS ** None ** EXAMPLE ** >>> image = Image("lenna") >>> sp = image.segmentSuperpixels(300, 20) >>> sp.show(color=(255, 0, 255), width=5, alpha=128) """ if type(self._drawingImage) == type(None): self.draw(color=color, width=width, alpha=alpha) self._drawingImage.show() def colorWithClusterMeans(self): """ **SUMMARY** This function colors each superpixel with its mean color and return an image. **RETURNS** Image with superpixles drawn in its mean color. **EXAMPLE** >>> image = Image("lenna") >>> sp = image.segmentSuperpixels(300, 20) >>> sp.colorWithClusterMeans().show() """ if type(self.clusterMeanImage) != type(None): return self.clusterMeanImage self.clusterMeanImage = Image(self.image.getEmpty(3)) _mLayers = [] for sp in self: color = tuple(reversed(sp.meanColor())) sp.draw(color=color, width=-1) self.clusterMeanImage += sp.image.copy() for layer in sp.image._mLayers: _mLayers.append(layer) self.clusterMeanImage._mLayers = copy(_mLayers) return self.clusterMeanImage