Example #1
0
    def _stackFilters(self, flt1):
        """
        **SUMMARY**

        stack two filters of same size. channels don't matter.

        **PARAMETERS**

        * *flt1* - second filter to be stacked

        **RETURNS**

        DFT filter

        """
        if isinstance(self._numpy, type(None)):
            return flt1
        if not self.size() == flt1.size():
            warnings.warn("All the filters must be of same size")
            return None
        numpyflt = self._numpy
        numpyflt1 = flt1._numpy
        flt = np.dstack((numpyflt, numpyflt1))
        stackedfilter = DFT(size=self.size(),
                            numpyarray=flt,
                            channels=self.channels + flt1.channels,
                            type=self._type,
                            frequency=self._freqpass)
        return stackedfilter
Example #2
0
    def _stackFilters(self, flt1):
        """
        **SUMMARY**

        stack two filters of same size. channels don't matter.

        **PARAMETERS**

        * *flt1* - second filter to be stacked

        **RETURNS**

        DFT filter

        """
        if isinstance(self._numpy, type(None)):
            return flt1
        if not self.size() == flt1.size():
            warnings.warn("All the filters must be of same size")
            return None
        numpyflt = self._numpy
        numpyflt1 = flt1._numpy
        flt = np.dstack((numpyflt, numpyflt1))
        stackedfilter = DFT(size=self.size(), numpyarray=flt,
                            channels=self.channels+flt1.channels,
                            type=self._type, frequency=self._freqpass)
        return stackedfilter
Example #3
0
    def createButterworthFilter(self, dia=400, size=(64, 64), order=2, highpass=False):
        """
        **SUMMARY**

        Creates a butterworth filter of given size and order.

        **PARAMETERS**

        * *dia*       - int - diameter of Gaussian filter
                      - list - provide a list of three diameters to create
                               a 3 channel filter
        * *size*      - size of the filter (width, height)
        * *order*     - order of the filter
        * *highpass*: -  bool 
                         True: highpass filter 
                         False: lowpass filter

        **RETURNS**

        DFT filter.

        **EXAMPLE**

        >>> flt = DFT.createButterworthfilter(100, (512, 512), order=3,
                                             highpass=True)
        >>> flt = DFT.createButterworthfilter([100, 120, 140], (512, 512),
                                             order=3, highpass=False)
        >>> img = Image('lenna')
        >>> flt.applyFilter(img).show()
        """
        if isinstance(dia, list):
            if len(dia) != 3 and len(dia) != 1:
                warnings.warn("diameter list must be of size 1 or 3")
                return None
            stackedfilter = DFT()
            for d in dia:
                stackedfilter = stackedfilter._stackFilters(self.createButterworthFilter(d, size, order, highpass))
            image = Image(stackedfilter._numpy)
            retVal = DFT(numpyarray=stackedfilter._numpy, image=image,
                         dia=dia, channels = len(dia), size=size,
                         type=stackedfilter._type, order=order,
                         frequency=stackedfilter._freqpass)
            return retVal
        freqpass = "******"
        sz_x, sz_y = size
        x0 = sz_x/2
        y0 = sz_y/2
        X, Y = np.meshgrid(np.arange(sz_x), np.arange(sz_y))
        D = np.sqrt((X-x0)**2+(Y-y0)**2)
        flt = 255/(1.0 + (D/dia)**(order*2))
        if highpass:
            frequency = "highpass"
            flt = 255 - flt
        img = Image(flt)
        retVal = DFT(size=size, numpyarray=flt, image=img, dia=dia,
                     type="Butterworth", frequency=freqpass)
        return retVal
Example #4
0
 def __add__(self, flt):
     if not isinstance(flt, type(self)):
         warnings.warn("Provide SimpleCV.DFT object")
         return None
     if self.size() != flt.size():
         warnings.warn("Both SimpleCV.DFT object must have the same size")
         return None
     flt_numpy = self._numpy + flt._numpy
     flt_image = Image(flt_numpy)
     retVal = DFT(numpyarray=flt_numpy, image=flt_image, size=flt_image.size())
     return retVal
Example #5
0
    def getNumpy(self):
        """
        **SUMMARY**

        Get the numpy array of the filter

        **RETURNS**

        numpy array of the filter.

        **EXAMPLE**

        >>> notch = DFT.createNotchFilter(dia1=200, cen=(200, 200),
                                          size=(512, 512), type="highpass")
        >>> notch.getNumpy()
        """
        if isinstance(self._numpy, type(None)):
            if isinstance(self._image, type(None)):
                warnings.warn("Filter doesn't contain any image")
            self._numpy = self._image.getNumpy()
        return self._numpy
Example #6
0
    def getNumpy(self):
        """
        **SUMMARY**

        Get the numpy array of the filter

        **RETURNS**

        numpy array of the filter.

        **EXAMPLE**

        >>> notch = DFT.createNotchFilter(dia1=200, cen=(200, 200),
                                          size=(512, 512), type="highpass")
        >>> notch.getNumpy()
        """
        if isinstance(self._numpy, type(None)):
            if isinstance(self._image, type(None)):
                warnings.warn("Filter doesn't contain any image")
            self._numpy = self._image.getNumpy()
        return self._numpy
Example #7
0
    def stackFilters(self, flt1, flt2):
        """
        **SUMMARY**

        Stack three signle channel filters of the same size to create
        a 3 channel filter.

        **PARAMETERS**

        * *flt1* - second filter to be stacked
        * *flt2* - thrid filter to be stacked

        **RETURNS**

        DFT filter

        **EXAMPLE**

        >>> flt1 = DFT.createGaussianFilter(dia=200, size=(380, 240))
        >>> flt2 = DFT.createGaussianFilter(dia=100, size=(380, 240))
        >>> flt2 = DFT.createGaussianFilter(dia=70, size=(380, 240))
        >>> flt = flt1.stackFilters(flt2, flt3) # 3 channel filter
        """
        if not (self.channels == 1 and flt1.channels == 1
                and flt2.channels == 1):
            warnings.warn("Filters must have only 1 channel")
            return None
        if not (self.size() == flt1.size() and self.size() == flt2.size()):
            warnings.warn("All the filters must be of same size")
            return None
        numpyflt = self._numpy
        numpyflt1 = flt1._numpy
        numpyflt2 = flt2._numpy
        flt = np.dstack((numpyflt, numpyflt1, numpyflt2))
        img = Image(flt)
        stackedfilter = DFT(size=self.size(),
                            numpyarray=flt,
                            image=img,
                            channels=3)
        return stackedfilter
Example #8
0
    def getImage(self):
        """
        **SUMMARY**

        Get the SimpleCV Image of the filter

        **RETURNS**

        Image of the filter.

        **EXAMPLE**

        >>> notch = DFT.createNotchFilter(dia1=200, cen=(200, 200),
                                          size=(512, 512), type="highpass")
        >>> notch.getImage().show()
        """
        print self._image
        if isinstance(self._image, type(None)):
            if isinstance(self._numpy, type(None)):
                warnings.warn("Filter doesn't contain any image")
            self._image = Image(self._numpy.astype(np.uint8))
        return self._image
Example #9
0
    def applyFilter(self, image, grayscale=False):
        """
        **SUMMARY**

        Apply the DFT filter to given image.

        **PARAMETERS**

        * *image*     - SimpleCV.Image image
        * *grayscale* - if this value is True we perfrom the operation on the 
                        DFT of the gray version of the image and the result is
                        gray image. If grayscale is true we perform the 
                        operation on each channel and the recombine them to
                        create the result.

        **RETURNS**

        Filtered Image.

        **EXAMPLE**

        >>> notch = DFT.createNotchFilter(dia1=200, cen=(200, 200),
                                          size=(512, 512), type="highpass")
        >>> img = Image('lenna')
        >>> notch.applyFilter(img).show()
        """

        if self.width == 0 or self.height == 0:
            warnings.warn("Empty Filter. Returning the image.")
            return image
        w, h = image.size()
        if grayscale:
            image = image.toGray()
            print self._numpy.dtype, "gray"
        fltImg = Image(self._numpy)
        if fltImg.size() != image.size():
            fltImg = fltImg.resize(w, h)
        filteredImage = image.applyDFTFilter(fltImg, grayscale)
        return filteredImage
Example #10
0
    def getImage(self):
        """
        **SUMMARY**

        Get the SimpleCV Image of the filter

        **RETURNS**

        Image of the filter.

        **EXAMPLE**

        >>> notch = DFT.createNotchFilter(dia1=200, cen=(200, 200),
                                          size=(512, 512), type="highpass")
        >>> notch.getImage().show()
        """
        print self._image
        if isinstance(self._image, type(None)):
            if isinstance(self._numpy, type(None)):
                warnings.warn("Filter doesn't contain any image")
            self._image = Image(self._numpy.astype(np.uint8))
        return self._image
Example #11
0
    def applyFilter(self, image, grayscale=False):
        """
        **SUMMARY**

        Apply the DFT filter to given image.

        **PARAMETERS**

        * *image*     - SimpleCV.Image image
        * *grayscale* - if this value is True we perfrom the operation on the 
                        DFT of the gray version of the image and the result is
                        gray image. If grayscale is true we perform the 
                        operation on each channel and the recombine them to
                        create the result.

        **RETURNS**

        Filtered Image.

        **EXAMPLE**

        >>> notch = DFT.createNotchFilter(dia1=200, cen=(200, 200),
                                          size=(512, 512), type="highpass")
        >>> img = Image('lenna')
        >>> notch.applyFilter(img).show()
        """

        if self.width == 0 or self.height == 0:
            warnings.warn("Empty Filter. Returning the image.")
            return image
        w, h = image.size()
        if grayscale:
            image = image.toGray()
            print self._numpy.dtype, "gray"
        fltImg = Image(self._numpy)
        if fltImg.size() != image.size():
            fltImg = fltImg.resize(w, h)
        filteredImage = image.applyDFTFilter(fltImg, grayscale)
        return filteredImage
Example #12
0
    def stackFilters(self, flt1, flt2):
        """
        **SUMMARY**

        Stack three signle channel filters of the same size to create
        a 3 channel filter.

        **PARAMETERS**

        * *flt1* - second filter to be stacked
        * *flt2* - thrid filter to be stacked

        **RETURNS**

        DFT filter

        **EXAMPLE**

        >>> flt1 = DFT.createGaussianFilter(dia=200, size=(380, 240))
        >>> flt2 = DFT.createGaussianFilter(dia=100, size=(380, 240))
        >>> flt2 = DFT.createGaussianFilter(dia=70, size=(380, 240))
        >>> flt = flt1.stackFilters(flt2, flt3) # 3 channel filter
        """
        if not(self.channels == 1 and flt1.channels == 1 and flt2.channels == 1):
            warnings.warn("Filters must have only 1 channel")
            return None
        if not (self.size() == flt1.size() and self.size() == flt2.size()):
            warnings.warn("All the filters must be of same size")
            return None
        numpyflt = self._numpy
        numpyflt1 = flt1._numpy
        numpyflt2 = flt2._numpy
        flt = np.dstack((numpyflt, numpyflt1, numpyflt2))
        img = Image(flt)
        stackedfilter = DFT(size=self.size(), numpyarray=flt, image=img, channels=3)
        return stackedfilter
Example #13
0
    def createNotchFilter(self,
                          dia1,
                          dia2=None,
                          cen=None,
                          size=(64, 64),
                          type="lowpass"):
        """
        **SUMMARY**

        Creates a disk shaped notch filter of given diameter at given center.

        **PARAMETERS**

        * *dia1*       -  int - diameter of the disk shaped notch
                       - list - provide a list of three diameters to create
                               a 3 channel filter
        * *dia2*       -  int - outer diameter of the disk shaped notch
                                used for bandpass filter
                       - list - provide a list of three diameters to create
                               a 3 channel filter
        * *cen*        - tuple (x, y) center of the disk shaped notch
                         if not provided, it will be at the center of the 
                         filter
        * *size*       - size of the filter (width, height)
        * *type*:      - lowpass or highpass filter

        **RETURNS**
        DFT notch filter

        **EXAMPLE**

        >>> notch = DFT.createNotchFilter(dia1=200, cen=(200, 200),
                                          size=(512, 512), type="highpass")
        >>> notch = DFT.createNotchFilter(dia1=200, dia2=300, cen=(200, 200),
                                          size=(512, 512))
        >>> img = Image('lenna')
        >>> notch.applyFilter(img).show()
        """
        if isinstance(dia1, list):
            if len(dia1) != 3 and len(dia1) != 1:
                warnings.warn("diameter list must be of size 1 or 3")
                return None

            if isinstance(dia2, list):
                if len(dia2) != 3 and len(dia2) != 1:
                    warnings.warn("diameter list must be of size 3 or 1")
                    return None
                if len(dia2) == 1:
                    dia2 = [dia2[0]] * len(dia1)
            else:
                dia2 = [dia2] * len(dia1)

            if isinstance(cen, list):
                if len(cen) != 3 and len(cen) != 1:
                    warnings.warn("center list must be of size 3 or 1")
                    return None
                if len(cen) == 1:
                    cen = [cen[0]] * len(dia1)
            else:
                cen = [cen] * len(dia1)

            stackedfilter = DFT()
            for d1, d2, c in zip(dia1, dia2, cen):
                stackedfilter = stackedfilter._stackFilters(
                    self.createNotchFilter(d1, d2, c, size, type))
            image = Image(stackedfilter._numpy)
            retVal = DFT(numpyarray=stackedfilter._numpy,
                         image=image,
                         dia=dia1 + dia2,
                         channels=len(dia1),
                         size=size,
                         type=stackedfilter._type,
                         frequency=stackedfilter._freqpass)
            return retVal

        w, h = size
        if cen is None:
            cen = (w / 2, h / 2)
        a, b = cen
        y, x = np.ogrid[-a:w - a, -b:h - b]
        r = dia1 / 2
        mask = x * x + y * y <= r * r
        flt = np.ones((w, h))
        flt[mask] = 255
        if type == "highpass":
            flt = 255 - flt
        if dia2 is not None:
            a, b = cen
            y, x = np.ogrid[-a:w - a, -b:h - b]
            r = dia2 / 2
            mask = x * x + y * y <= r * r
            flt1 = np.ones((w, h))
            flt1[mask] = 255
            flt1 = 255 - flt1
            flt = flt + flt1
            np.clip(flt, 0, 255)
            type = "bandpass"
        img = Image(flt)
        notchfilter = DFT(size=size,
                          numpyarray=flt,
                          image=img,
                          dia=dia1,
                          type="Notch",
                          frequency=type)
        return notchfilter
Example #14
0
    def createHighpassFilter(self, xCutoff, yCutoff=None, size=(64, 64)):
        """
        **SUMMARY**

        Creates a highpass filter of given size and order.

        **PARAMETERS**

        * *xCutoff*       - int - horizontal cut off frequency
                          - list - provide a list of three cut off frequencies
                                   to create a 3 channel filter
        * *yCutoff*       - int - vertical cut off frequency
                          - list - provide a list of three cut off frequencies
                                   to create a 3 channel filter
        * *size*      - size of the filter (width, height)

        **RETURNS**

        DFT filter.

        **EXAMPLE**

        >>> flt = DFT.createHighpassFilter(xCutoff=75, size=(320, 280))

        >>> flt = DFT.createHighpassFilter(xCutoff=[75], size=(320, 280))

        >>> flt = DFT.createHighpassFilter(xCutoff=[75, 100, 120],
                                           size=(320, 280))

        >>> flt = DFT.createHighpassFilter(xCutoff=75, yCutoff=35, 
                                           size=(320, 280))

        >>> flt = DFT.createHighpassFilter(xCutoff=[75], yCutoff=[35],
                                           size=(320, 280))

        >>> flt = DFT.createHighpassFilter(xCutoff=[75, 100, 125], yCutoff=35,
                                           size=(320, 280))
        >>> # yCutoff will be [35, 35, 35]

        >>> flt = DFT.createHighpassFilter(xCutoff=[75, 113, 124],
                                           yCutoff=[35, 45, 90],
                                           size=(320, 280))

        >>> img = Image('lenna')
        >>> flt.applyFilter(img).show()
        """
        if isinstance(xCutoff, list):
            if len(xCutoff) != 3 and len(xCutoff) != 1:
                warnings.warn("xCutoff list must be of size 3 or 1")
                return None
            if isinstance(yCutoff, list):
                if len(yCutoff) != 3 and len(yCutoff) != 1:
                    warnings.warn("yCutoff list must be of size 3 or 1")
                    return None
                if len(yCutoff) == 1:
                    yCutoff = [yCutoff[0]] * len(xCutoff)
            else:
                yCutoff = [yCutoff] * len(xCutoff)
            stackedfilter = DFT()
            for xfreq, yfreq in zip(xCutoff, yCutoff):
                stackedfilter = stackedfilter._stackFilters(
                    self.createHighpassFilter(xfreq, yfreq, size))
            image = Image(stackedfilter._numpy)
            retVal = DFT(numpyarray=stackedfilter._numpy,
                         image=image,
                         xCutoffHigh=xCutoff,
                         yCutoffHigh=yCutoff,
                         channels=len(xCutoff),
                         size=size,
                         type=stackedfilter._type,
                         order=self._order,
                         frequency=stackedfilter._freqpass)
            return retVal

        lowpass = self.createLowpassFilter(xCutoff, yCutoff, size)
        w, h = lowpass.size()
        flt = lowpass._numpy
        flt = 255 - flt
        img = Image(flt)
        highpassFilter = DFT(size=size,
                             numpyarray=flt,
                             image=img,
                             type="Highpass",
                             xCutoffHigh=xCutoff,
                             yCutoffHigh=yCutoff,
                             frequency="highpass")
        return highpassFilter
Example #15
0
    def createNotchFilter(self, dia1, dia2=None, cen=None, size=(64, 64), type="lowpass"):
        """
        **SUMMARY**

        Creates a disk shaped notch filter of given diameter at given center.

        **PARAMETERS**

        * *dia1*       -  int - diameter of the disk shaped notch
                       - list - provide a list of three diameters to create
                               a 3 channel filter
        * *dia2*       -  int - outer diameter of the disk shaped notch
                                used for bandpass filter
                       - list - provide a list of three diameters to create
                               a 3 channel filter
        * *cen*        - tuple (x, y) center of the disk shaped notch
                         if not provided, it will be at the center of the 
                         filter
        * *size*       - size of the filter (width, height)
        * *type*:      - lowpass or highpass filter

        **RETURNS**
        DFT notch filter

        **EXAMPLE**

        >>> notch = DFT.createNotchFilter(dia1=200, cen=(200, 200),
                                          size=(512, 512), type="highpass")
        >>> notch = DFT.createNotchFilter(dia1=200, dia2=300, cen=(200, 200),
                                          size=(512, 512))
        >>> img = Image('lenna')
        >>> notch.applyFilter(img).show()
        """
        if isinstance(dia1, list):
            if len(dia1) != 3 and len(dia1) != 1:
                warnings.warn("diameter list must be of size 1 or 3")
                return None

            if isinstance(dia2, list):
                if len(dia2) != 3 and len(dia2) != 1:
                    warnings.warn("diameter list must be of size 3 or 1")
                    return None
                if len(dia2) == 1:
                    dia2 = [dia2[0]]*len(dia1)
            else:
                dia2 = [dia2]*len(dia1)

            if isinstance(cen, list):
                if len(cen) != 3 and len(cen) != 1:
                    warnings.warn("center list must be of size 3 or 1")
                    return None
                if len(cen) == 1:
                    cen = [cen[0]]*len(dia1)
            else:
                cen = [cen]*len(dia1)

            stackedfilter = DFT()
            for d1, d2, c in zip(dia1, dia2, cen):
                stackedfilter = stackedfilter._stackFilters(self.createNotchFilter(d1, d2, c, size, type))
            image = Image(stackedfilter._numpy)
            retVal = DFT(numpyarray=stackedfilter._numpy, image=image,
                         dia=dia1+dia2, channels = len(dia1), size=size,
                         type=stackedfilter._type,
                         frequency=stackedfilter._freqpass)
            return retVal

        w, h = size
        if cen is None:
            cen = (w/2, h/2)
        a, b = cen
        y, x = np.ogrid[-a:w-a, -b:h-b]
        r = dia1/2
        mask = x*x + y*y <= r*r
        flt = np.ones((w, h))
        flt[mask] = 255
        if type == "highpass":
            flt = 255-flt
        if dia2 is not None:
            a, b = cen
            y, x = np.ogrid[-a:w-a, -b:h-b]
            r = dia2/2
            mask = x*x + y*y <= r*r
            flt1 = np.ones((w, h))
            flt1[mask] = 255
            flt1 = 255 - flt1
            flt = flt + flt1
            np.clip(flt, 0, 255)
            type = "bandpass"
        img = Image(flt)
        notchfilter = DFT(size=size, numpyarray=flt, image=img, dia=dia1,
                          type="Notch", frequency=type)
        return notchfilter
Example #16
0
    def createHighpassFilter(self, xCutoff, yCutoff=None, size=(64, 64)):
        """
        **SUMMARY**

        Creates a highpass filter of given size and order.

        **PARAMETERS**

        * *xCutoff*       - int - horizontal cut off frequency
                          - list - provide a list of three cut off frequencies
                                   to create a 3 channel filter
        * *yCutoff*       - int - vertical cut off frequency
                          - list - provide a list of three cut off frequencies
                                   to create a 3 channel filter
        * *size*      - size of the filter (width, height)

        **RETURNS**

        DFT filter.

        **EXAMPLE**

        >>> flt = DFT.createHighpassFilter(xCutoff=75, size=(320, 280))

        >>> flt = DFT.createHighpassFilter(xCutoff=[75], size=(320, 280))

        >>> flt = DFT.createHighpassFilter(xCutoff=[75, 100, 120],
                                           size=(320, 280))

        >>> flt = DFT.createHighpassFilter(xCutoff=75, yCutoff=35, 
                                           size=(320, 280))

        >>> flt = DFT.createHighpassFilter(xCutoff=[75], yCutoff=[35],
                                           size=(320, 280))

        >>> flt = DFT.createHighpassFilter(xCutoff=[75, 100, 125], yCutoff=35,
                                           size=(320, 280))
        >>> # yCutoff will be [35, 35, 35]

        >>> flt = DFT.createHighpassFilter(xCutoff=[75, 113, 124],
                                           yCutoff=[35, 45, 90],
                                           size=(320, 280))
        
        >>> img = Image('lenna')
        >>> flt.applyFilter(img).show()
        """
        if isinstance(xCutoff, list):
            if len(xCutoff) != 3 and len(xCutoff) != 1:
                warnings.warn("xCutoff list must be of size 3 or 1")
                return None
            if isinstance(yCutoff, list):
                if len(yCutoff) != 3 and len(yCutoff) != 1:
                    warnings.warn("yCutoff list must be of size 3 or 1")
                    return None
                if len(yCutoff) == 1:
                    yCutoff = [yCutoff[0]]*len(xCutoff)
            else:
                yCutoff = [yCutoff]*len(xCutoff)
            stackedfilter = DFT()
            for xfreq, yfreq in zip(xCutoff, yCutoff):
                stackedfilter = stackedfilter._stackFilters(
                                self.createHighpassFilter(xfreq, yfreq, size))
            image = Image(stackedfilter._numpy)
            retVal = DFT(numpyarray=stackedfilter._numpy, image=image,
                         xCutoffHigh=xCutoff, yCutoffHigh=yCutoff,
                         channels=len(xCutoff), size=size,
                         type=stackedfilter._type, order=self._order,
                         frequency=stackedfilter._freqpass)
            return retVal

        lowpass = self.createLowpassFilter(xCutoff, yCutoff, size)
        w, h = lowpass.size()
        flt = lowpass._numpy
        flt = 255 - flt
        img = Image(flt)
        highpassFilter = DFT(size=size, numpyarray=flt, image=img,
                             type="Highpass", xCutoffHigh=xCutoff,
                             yCutoffHigh=yCutoff, frequency="highpass")
        return highpassFilter