def readdcmfile(filename):
    """
    This function used to read information from dicom file.
    Input:
        filename: file path to dicom file.
    Returns:
        spacing, machine, image_array, shape

    Note.: SimpleITK read image in the order of z-y-x, namely the number of slice-width-height;
    However,SimpleITK read origin and spacing in the order of x-y-z.
    """
    image = ReadImage(filename)
    machine = image.GetMetaData('0008|0070')
    manufacturer_model_name = image.GetMetaData('0008|1090')
    image_array = GetArrayFromImage(image)  # in the order of z, y, x
    shape = image.GetSize()
    #    origin = image.GetOrigin()  # in the order of x, y, z
    spacing = image.GetSpacing()  # in the order of x, y, z

    return spacing, machine, manufacturer_model_name, image_array, shape
Example #2
0
    def resample(sel, old_image_path, datatype='series'):
        """
        Usage: resample(sel, old_image_path)
        Resample a 3D old_image to given new spacing
        The new voxel spacing will determine the new old_image dimensions.
        
        interpolation选项 	所用的插值方法
        INTER_NEAREST 	    最近邻插值
        INTER_LINEAR 	    双线性插值(默认设置)
        INTER_AREA 	        使用像素区域关系进行重采样。 它可能是图像抽取的首选方法,因为它会产生无云纹理的结果。 但是当图像缩放时,它类似于INTER_NEAREST方法。
        INTER_CUBIC 	    4x4像素邻域的双三次插值
        INTER_LANCZOS4 	    8x8像素邻域的Lanczos插值
        """
        # read dicom series
        if datatype == 'series':
            reader = ImageSeriesReader()
            dicom_names = reader.GetGDCMSeriesFileNames(old_image_path)
            reader.SetFileNames(dicom_names)
            reader.MetaDataDictionaryArrayUpdateOn()
            reader.LoadPrivateTagsOn()
            series_ids = reader.GetGDCMSeriesIDs(
                old_image_path)  # get all series id
            series_file_names = reader.GetGDCMSeriesFileNames(
                old_image_path, series_ids[0])  # get the first series
            reader.SetFileNames(series_file_names)
            old_image = reader.Execute()  # type: sitk.Image
        elif datatype == 'nii':
            # read nifiti file
            old_image = ReadImage(old_image_path)
        else:
            print(f'Datatype {datatype} is wrong!\n')

        #  get old information and new information
        old_spacing = old_image.GetSpacing()
        size = old_image.GetSize()
        new_size = (np.round(
            size * (old_spacing / sel._new_spacing))).astype(int).tolist()

        # EXE
        # If is orginal data ('series'), use sitk.sitkLinear.
        # If is binary mask ('nii'), usse sitk.sitkNearestNeighbor.
        # TODO: other methods;
        # FIXME: Some cases the 'series' may not indicate the orginal data
        # FIXME:Some cases the 'nii' may not indicate the binary mask
        if datatype == 'series':
            resampled_img = sitk.Resample(old_image, new_size,
                                          sitk.Transform(), sitk.sitkLinear,
                                          old_image.GetOrigin(),
                                          sel._new_spacing,
                                          old_image.GetDirection(), 0.0,
                                          old_image.GetPixelID())
        elif datatype == 'nii':
            resampled_img = sitk.Resample(old_image, new_size,
                                          sitk.Transform(),
                                          sitk.sitkNearestNeighbor,
                                          old_image.GetOrigin(),
                                          sel._new_spacing,
                                          old_image.GetDirection(), 0.0,
                                          old_image.GetPixelID())

    #    resampled_img.GetSpacing()
    #    resampled_img.GetSize()
        return resampled_img