Example #1
0
def make_msid_file(colname, content, content_def):
    ft['content'] = content
    ft['msid'] = colname
    filename = msid_files['data'].abs
    if os.path.exists(filename):
        return

    logger.info('Making MSID data file %s', filename)

    if colname == 'TIME':
        dp_vals, indexes = derived.times_indexes(opt.start, opt.stop,
                                                 content_def['time_step'])
    else:
        dp = content_def['classes'][colname]()
        dataset = dp.fetch(opt.start, opt.stop)
        dp_vals = np.asarray(dp.calc(dataset), dtype=dp.dtype)

    # Finally make the actual MSID data file
    filters = tables.Filters(complevel=5, complib='zlib')
    h5 = tables.openFile(filename, mode='w', filters=filters)
    
    n_rows = int(20 * 3e7 / content_def['time_step'])
    h5shape = (0,) 
    h5type = tables.Atom.from_dtype(dp_vals.dtype)
    h5.createEArray(h5.root, 'data', h5type, h5shape, title=colname,
                    expectedrows=n_rows)
    h5.createEArray(h5.root, 'quality', tables.BoolAtom(), (0,), title='Quality',
                    expectedrows=n_rows)

    logger.info('Made {} shape={} with n_rows(1e6)={}'.format(colname, h5shape, n_rows / 1.0e6))
    h5.close()
Example #2
0
def make_archfiles_db(filename, content_def):
    # Do nothing if it is already there
    if os.path.exists(filename):
        return

    datestart = DateTime(DateTime(opt.start).secs - 60)
    tstart = datestart.secs
    tstop = tstart
    year, doy = datestart.date.split(':')[:2]
    times, indexes = derived.times_indexes(tstart, tstop,
                                           content_def['time_step'])

    logger.info('Creating db {}'.format(filename))
    archfiles_def = open(Path(__file__).parent / 'archfiles_def.sql').read()
    db = Ska.DBI.DBI(dbi='sqlite', server=filename)
    db.execute(archfiles_def)
    archfiles_row = dict(
        filename='{}:0:1'.format(content_def['content']),
        filetime=0,
        year=year,
        doy=doy,
        tstart=tstart,
        tstop=tstop,
        rowstart=0,
        rowstop=0,
        startmjf=indexes[0],  # really index0
        stopmjf=indexes[-1],  # really index1
        date=datestart.date)
    db.insert(archfiles_row, 'archfiles')
Example #3
0
def make_archfiles_db(filename, content_def):
    # Do nothing if it is already there
    if os.path.exists(filename):
        return

    datestart = DateTime(DateTime(opt.start).secs - 60)
    tstart = datestart.secs
    tstop = tstart
    year, doy = datestart.date.split(':')[:2]
    times, indexes = derived.times_indexes(tstart, tstop, content_def['time_step'])

    logger.info('Creating db {}'.format(filename))
    archfiles_def = open('archfiles_def.sql').read()
    db = Ska.DBI.DBI(dbi='sqlite', server=filename)
    db.execute(archfiles_def)
    archfiles_row = dict(filename='{}:0:1'.format(content_def['content']),
                         filetime=0,
                         year=year,
                         doy=doy,
                         tstart=tstart,
                         tstop=tstop,
                         rowstart=0,
                         rowstop=0,
                         startmjf=indexes[0], # really index0
                         stopmjf=indexes[-1],  # really index1
                         date=datestart.date)
    db.insert(archfiles_row, 'archfiles')
Example #4
0
def make_msid_file(colname, content, content_def):
    ft['content'] = content
    ft['msid'] = colname
    filename = msid_files['data'].abs
    if os.path.exists(filename):
        return

    logger.info('Making MSID data file %s', filename)

    if colname == 'TIME':
        dp_vals, indexes = derived.times_indexes(opt.start, opt.stop,
                                                 content_def['time_step'])
    else:
        dp = content_def['classes'][colname]()
        dataset = dp.fetch(opt.start, opt.stop)
        dp_vals = np.asarray(dp.calc(dataset), dtype=dp.dtype)

    # Finally make the actual MSID data file
    filters = tables.Filters(complevel=5, complib='zlib')
    h5 = tables.open_file(filename, mode='w', filters=filters)

    n_rows = int(20 * 3e7 / content_def['time_step'])
    h5shape = (0, )
    h5type = tables.Atom.from_dtype(dp_vals.dtype)
    h5.create_earray(h5.root,
                     'data',
                     h5type,
                     h5shape,
                     title=colname,
                     expectedrows=n_rows)
    h5.create_earray(h5.root,
                     'quality',
                     tables.BoolAtom(), (0, ),
                     title='Quality',
                     expectedrows=n_rows)

    logger.info('Made {} shape={} with n_rows(1e6)={}'.format(
        colname, h5shape, n_rows / 1.0e6))
    h5.close()