Example #1
0
    def __init__(self, rs, sizeOfTarget, saveTraj, thetaFile):
        '''
    	Initializes the parameters used to run the functions below
    
    	Inputs:		
    			-arm, armModel, class object
                        -rs, readSetup, class object
    			-sizeOfTarget, size of the target, float
    			-Ukf, unscented kalman filter, class object
    			-saveTraj, Boolean: true = Data are saved, false = data are not saved
    	'''
        self.arm = Arm()
        self.arm.setDT(rs.dt)

        self.controller = initRBFNController(rs,thetaFile)
        #load the controller, i.e. the vector of parameters theta
        theta = self.controller.loadTheta(thetaFile+".theta")
        #put theta to a one dimension numpy array, ie row vector form
        #theta = matrixToVector(theta)
 
        self.rs = rs
        self.sizeOfTarget = sizeOfTarget
        #6 is the dimension of the state for the filter, 4 is the dimension of the observation for the filter, 25 is the delay used
        self.stateEstimator = StateEstimator(rs.inputDim,rs.outputDim, rs.delayUKF, self.arm)
        self.saveTraj = saveTraj
Example #2
0
def compavg(clients):
	signal.signal(signal.SIGINT, signal.SIG_DFL)
	y = np.zeros(shape=(6,8)) # observation matrix
	m = 8
	n = 8
	dg = DataGenerator(n=n, m=m);
	se = StateEstimator(dg.EstimationMatrix)

	while True:
		global globcount
		totals = [0]*8
		averages = [0]*8 # [avg1, avg2, avg3,..., avg8]
		
		for c in clients:
			line = c.getLine().strip().split(",")
			if len(line) != 8:
				line = [0.0, time.time(), 0.0, 0.0, 0.0, 0.0, 0.0, 0.0]
			for i in range(len(line)):
				if  i == 1:
					continue
				if i > 1:
					#print line[i]
					totals[i-1] += float(line[i])
				else:
					totals[0] += float(line[0])
		averages = map(lambda x: x / len(clients), totals)
		#with comp_state_est_cv:
		with cv:
			y[globcount,:]=averages
			globcount += 1
			if globcount == 6:
				times = y[:,1].reshape(-1, 1)
				count = 0
				timeno = 0
				observation = sp.zeros((48, 3))
				for t, row in zip(times, y):
					for id, val in enumerate(row):
						if timeno == 1:
							timeno += 1
							continue
						observation[count, :] = sp.array([id, t[0] , val ] ).reshape(1, -1)
						count += 1		
						timeno += 1    			
				xhat = sp.zeros( (6, 8) )
				T = 6
				stepsize = 1
				
				for t in range( 0, T + 1 - stepsize, stepsize ):
					newstate,t0 = se.estimate( observation[t*m:(t+stepsize)*m,:] )	
					xhat[t:(t+stepsize),:] = se.interpolate(newstate,t0,times[t:(t+stepsize),:])
				
				global state					
				state = xhat.reshape(-1).tolist()
				globcount=0
				cv.notifyAll()
				
	print "interrupted"
Example #3
0
    def __init__(self,
                 rs,
                 sizeOfTarget,
                 saveTraj,
                 thetaFile=None,
                 estim="Inv"):
        '''
    	Initializes the parameters used to run the functions below
    
    	Inputs:		
    			-arm, armModel, class object
                        -rs, readSetup, class object
    			-sizeOfTarget, size of the target, float
    			-Ukf, unscented kalman filter, class object
    			-saveTraj, Boolean: true = Data are saved, false = data are not saved
    	'''
        self.arm = ArmType[rs.arm]()
        self.arm.setDT(rs.dt)
        if (not rs.det and rs.noise != None):
            self.arm.setNoise(rs.noise)
        self.controller = initController(rs, thetaFile)
        if (rs.costClass == None):
            self.trajCost = CostCMAES(rs)
        else:
            self.trajCost = rs.costClass(rs)
        self.costU12 = 0
        #put theta to a one dimension numpy array, ie row vector form
        #theta = matrixToVector(theta)

        self.rs = rs
        self.sizeOfTarget = sizeOfTarget
        #6 is the dimension of the state for the filter, 4 is the dimension of the observation for the filter, 25 is the delay used
        if estim == "Inv":
            self.stateEstimator = StateEstimator(rs.inputDim, rs.outputDim,
                                                 rs.delayUKF, self.arm)
        elif estim == "Reg":
            self.stateEstimator = StateEstimatorRegression(
                rs.inputDim, rs.outputDim, rs.delayUKF, self.arm)
        elif estim == "Hyb":
            self.stateEstimator = StateEstimatorHyb(rs.inputDim, rs.outputDim,
                                                    rs.delayUKF, self.arm)
        elif estim == "No":
            self.stateEstimator = StateEstimatorNoFeedBack(
                rs.inputDim, rs.outputDim, rs.delayUKF, self.arm)
        else:
            raise TypeError("This Estimator do not exist")
        self.saveTraj = saveTraj
Example #4
0
class TrajMaker:
    
    def __init__(self, rs, sizeOfTarget, saveTraj, thetaFile):
        '''
    	Initializes the parameters used to run the functions below
    
    	Inputs:		
    			-arm, armModel, class object
                        -rs, readSetup, class object
    			-sizeOfTarget, size of the target, float
    			-Ukf, unscented kalman filter, class object
    			-saveTraj, Boolean: true = Data are saved, false = data are not saved
    	'''
        self.arm = Arm()
        self.arm.setDT(rs.dt)

        self.controller = initRBFNController(rs,thetaFile)
        #load the controller, i.e. the vector of parameters theta
        theta = self.controller.loadTheta(thetaFile+".theta")
        #put theta to a one dimension numpy array, ie row vector form
        #theta = matrixToVector(theta)
 
        self.rs = rs
        self.sizeOfTarget = sizeOfTarget
        #6 is the dimension of the state for the filter, 4 is the dimension of the observation for the filter, 25 is the delay used
        self.stateEstimator = StateEstimator(rs.inputDim,rs.outputDim, rs.delayUKF, self.arm)
        self.saveTraj = saveTraj
        #Initializes variables used to save trajectory
 
    def setTheta(self, theta):
        self.controller.setTheta(theta)

    def computeManipulabilityCost(self):
        '''
        Computes the manipulability cost on one step of the trajectory
		
        Input:	-cost: cost at time t, float
				
        Output:		-cost: cost at time t+1, float
        '''
        dotq, q = getDotQAndQFromStateVector(self.arm.getState())
        manip = self.arm.directionalManipulability(q,self.cartTarget)
        return 1-manip

    def computeStateTransitionCost(self, U):
        '''
		Computes the cost on one step of the trajectory
		
		Input:	-cost: cost at time t, float
				-U: muscular activation vector, numpy array (6,1)
				-t: time, float
				
		Output:		-cost: cost at time t+1, float
		'''
        #compute the square of the norm of the muscular activation vector
        norme = np.linalg.norm(U)
        mvtCost = norme*norme
        #compute the cost following the law of the model
        #return np.exp(-t/self.rs.gammaCF)*(-self.rs.upsCF*mvtCost)
        return -self.rs.upsCF*mvtCost
    
    def computePerpendCost(self):  
        dotq, q = getDotQAndQFromStateVector(self.arm.getState())
        J = self.arm.jacobian(q)
        xi = np.dot(J,dotq)
        xi = xi/np.linalg.norm(xi)
        return 500-1000*xi[0]*xi[0]

    def computeFinalReward(self, t, coordHand):
        cost = self.computePerpendCost()
        '''
		Computes the cost on final step if the target is reached
		
		Input:		-cost: cost at the end of the trajectory, float
					-t: time, float
					
		Output:		-cost: final cost if the target is reached
		'''
        #check if the target is reached and give the reward if yes
        if coordHand[1] >= self.rs.YTarget:
            #print "main X:", coordHand[0]
            if coordHand[0] >= -self.sizeOfTarget/2 and coordHand[0] <= self.sizeOfTarget/2:
                cost += np.exp(-t/self.rs.gammaCF)*self.rs.rhoCF
            else:
                cost += -500-500000*(coordHand[0]*coordHand[0])
        else:
            cost += -4000
        return cost

        
    def runTrajectory(self, x, y, foldername):
        '''
    	Generates trajectory from the initial position (x, y)
    
    	Inputs:		-x: abscissa of the initial position, float
    			-y: ordinate of the initial position, float
    
    	Output:		-cost: the cost of the trajectory, float
    	'''
        #computes the articular position q1, q2 from the initial coordinates (x, y)
        q1, q2 = self.arm.mgi(x, y)
        #creates the state vector [dotq1, dotq2, q1, q2]
        q = createVector(q1,q2)
        state = np.array([0., 0., q1, q2])
        #print("start state --------------: ",state)

        #computes the coordinates of the hand and the elbow from the position vector
        coordElbow, coordHand = self.arm.mgdFull(q)
        #assert(coordHand[0]==x and coordHand[1]==y), "Erreur de MGD" does not work because of rounding effects

        #initializes parameters for the trajectory
        i, t, cost = 0, 0, 0
        self.stateEstimator.initStore(state)
        self.arm.setState(state)
        estimState = state
        dataStore = []
        qtarget1, qtarget2 = self.arm.mgi(self.rs.XTarget, self.rs.YTarget)
        vectarget = [0.0, 0.0, qtarget1, qtarget2]

        #loop to generate next position until the target is reached 
        while coordHand[1] < self.rs.YTarget and i < self.rs.numMaxIter:
            stepStore = []
            #computation of the next muscular activation vector using the controller theta
            #print ("state :",self.arm.getState())

            U = self.controller.computeOutput(estimState)

            if det:
                Unoisy = muscleFilter(U)
            else:
                Unoisy = getNoisyCommand(U,self.arm.musclesP.knoiseU)
                Unoisy = muscleFilter(Unoisy)
            #computation of the arm state
            realNextState = self.arm.computeNextState(Unoisy, self.arm.getState())
 
            #computation of the approximated state
            tmpState = self.arm.getState()

            if det:
                estimNextState = realNextState
            else:
                U = muscleFilter(U)
                estimNextState = self.stateEstimator.getEstimState(tmpState,U)
            
            #print estimNextState

            self.arm.setState(realNextState)

            #computation of the cost
            cost += self.computeStateTransitionCost(Unoisy)

            '''
            print "U =", U
            print "Unoisy =", Unoisy
            print "estimstate =", estimState
            #print "theta =", self.controller.theta
            if math.isnan(cost):
                print "NAN : U =", U
                print "NAN : Unoisy =", Unoisy
                print "NAN : estimstate =", estimState
                #print "NAN : theta =", self.controller.theta
                sys.exit()
            '''

            #get dotq and q from the state vector
            dotq, q = getDotQAndQFromStateVector(tmpState)
            coordElbow, coordHand = self.arm.mgdFull(q)
            #print ("dotq :",dotq)
            #computation of the coordinates to check if the target is reach or not
            #code to save data of the trajectory

            #Note : these structures might be much improved
            if self.saveTraj == True: 
                stepStore.append(vectarget)
                stepStore.append(estimState)
                stepStore.append(tmpState)
                stepStore.append(Unoisy)
                stepStore.append(np.array(U))
                stepStore.append(estimNextState)
                stepStore.append(realNextState)
                stepStore.append([coordElbow[0], coordElbow[1]])
                stepStore.append([coordHand[0], coordHand[1]])
                #print ("before",stepStore)
                tmpstore = np.array(stepStore).flatten()
                row = [item for sub in tmpstore for item in sub]
                #print ("store",row)
                dataStore.append(row)

            estimState = estimNextState
            i += 1
            t += self.rs.dt

        cost += self.computeFinalReward(t,coordHand)

        if self.saveTraj == True:
            filename = findFilename(foldername+"Log/","traj",".log")
            np.savetxt(filename,dataStore)
            '''
            if coordHand[0] >= -self.sizeOfTarget/2 and coordHand[0] <= self.sizeOfTarget/2 and coordHand[1] >= self.rs.YTarget and i<230:
                foldername = pathDataFolder + "TrajRepository/"
                name = findFilename(foldername,"Traj",".traj")
                np.savetxt(name,dataStore)
            '''

        lastX = -1000 #used to ignore dispersion when the target line is not crossed
        if coordHand[1] >= self.rs.YTarget:
            lastX = coordHand[0]
        #print "end of trajectory"
        return cost, t, lastX
    # args.PORT = 8000         # The port used on server

    # Set up server
    s = socket.socket(socket.AF_INET, socket.SOCK_STREAM)
    s.bind(('', args.PORT))
    s.listen(5)
    # s.settimeout(3.0)
    state_estimation_server = StateEstimationServer(args.HOST, args.PORT,
                                                    pmu_list, state_list)

    # Initialize data generator and state estimator
    dg = DataGenerator(n=args.n,
                       m=args.m,
                       error_std=args.error_std,
                       randseed=args.randseed)
    se = StateEstimator(dg.EstimationMatrix)

    # Start uploading thread
    last_timestamp = -1
    work_queue = Queue()
    uploader = Uploader(state_estimation_server, work_queue)
    uploader.start()

    # Start State Estimator Thread
    se_thread = StateEstimatorThread(state_estimation_server, args.start_time,
                                     args.time_period, work_queue)
    se_thread.start()
    ''' Connect to GMS '''
    gms_s = socket.socket(socket.AF_INET, socket.SOCK_STREAM)
    gms_s.connect((args.GMS_HOST, args.GMS_PORT))
    # s2.settimeout(3.0)