def popcorrelation(data1, data2):
        covxy = 0
        n = 0
        xmean = Mean.mean(data1)
        ymean = Mean.mean(data2)
        xstd = StandardDeviation.stardardDev(data1)
        ystd = StandardDeviation.stardardDev(data2)
        if (len(data1) == len(data2)):
            for x, y in zip(data1, data2):
                n += 1
                covxy += abs((int(x - xmean) * int(y - ymean)) / n)

        return covxy / (xstd * ystd)
Example #2
0
    def samplecorrelation(data1, data2):
        numerator = 0
        n = 0
        meanofx = Mean.mean(data1)
        meanofy = Mean.mean(data2)
        stdevx = StandardDeviation.stardardDev(data1)
        stdevy = StandardDeviation.stardardDev(data2)
        if len(data1) == len(data2):
            for x, y in zip(data1, data2):
                n += 1
                numerator += abs(
                    (int(x - meanofx) * int(y - meanofy)) / (n - 1))

        return numerator / (stdevx * stdevy)
Example #3
0
 def setUp(self):
     self.sample = Sample()
     self.list1 = Randm.randList(1, 100, 30, 99)
     self.size = len(self.list1)
     self.standarddev = StandardDeviation.stardardDev(self.list1)
     self.merror = 3
     self.mean = Mean.mean(self.list1)
Example #4
0
 def confInterval(data, cval=0.95):
     mean = Mean.mean(data)
     standardDev = StandardDeviation.stardardDev(data)
     n = len(data)
     zscr = ZScore.zscore(cval)
     num = round(zscr * (standardDev / nthroot.root(2, n)), 2)
     return round((mean - num), 2), round(mean), round((mean + num), 2)
Example #5
0
 def meanDeviation(data):
     m = Mean.mean(data)
     total = 0
     l = len(data)
     for i in data:
         total = total + absolute(i - m)
     return (total / l)
 def confInterval(data):
     zvalue = ZScore.zscore(data)
     stdDev = StandardDeviation.stardardDev(data)
     mean = Mean.mean(data)
     n = len(data)
     num = round(zvalue * (stdDev / nthroot.root(2, n)), 2)
     return round((mean - num), 2), round(mean), round((mean + num), 2)
Example #7
0
    def zscore(data):
        newData = []
        mean = Mean.mean(data)
        stdDev = StandardDeviation.stardardDev(data)
        for i in data:
            newData.append((i - mean)/stdDev)

        return newData
Example #8
0
    def stardardDev(data):
        n = len(data)
        mn = Mean.mean(data)
        newlist = []

        for i in data:
            newlist.append(Exponentiation.power(i - mn, 2))

        total = Addition.sumList(newlist)
        return nthroot.root(2, Division.divide(total, n))
Example #9
0
    def meanDev(data):

        newlist = []
        meanOfData = Mean.mean(data)

        for i in data:
            newlist.append(abs(i - meanOfData))

        total = Addition.sumList(newlist)
        return Division.divide(total, len(data))
Example #10
0
    def confidenceIntervalPop(conf, data):

        lngth = len(data)
        mean = Mean.mean(data)
        std_err = sem(data)
        high = std_err * t.ppf((1 + conf) / 2, lngth - 1)

        start = mean - high
        end = mean + high

        return start, end
 def test_StatisticFunctions_Mean(self):
     self.assertEqual(38.95, Mean.mean(self.testData))
 def meanDeviation(data):
     return Mean.mean(absolute(asarray(data) - Mean.mean(data)))
Example #13
0
 def mean(self, data):
     self.result = Mean.mean(data)
     return self.result
Example #14
0
 def variance(data):
     return Mean.mean(absolute(asarray(data) - Mean.mean(data))**2)
Example #15
0
    def skewness(data):

        mean = Mean.mean(data)
        median = Median.med(data)
        stdDev = StandardDeviation.stardardDev(data)
        return (3 * (mean - median)) / stdDev