Example #1
0
class NManager():
    def __init__(self, playerStats):
        self.status = Status("NManager")
        self.playerStats = playerStats
        self.normalstats = self.normalize()

    def normalize(self):
        self.status.message(1, "normalize(self)")
        stats = PlayerStats()
        stats.state.race = self.bounds(self.playerStats[0], 0, 1)
        stats.buildings.built = self.bounds(self.playerStats[1], 0, 300)
        stats.buildings.destroyed = self.bounds(self.playerStats[2], 0, 50)
        stats.armyUnits.spawned = self.bounds(self.playerStats[3], 0, 1000)
        stats.armyUnits.dead = self.bounds(self.playerStats[4], 0, 500)
        stats.workerUnits.spawned = self.bounds(self.playerStats[5], 0, 1000)
        stats.workerUnits.dead = self.bounds(self.playerStats[6], 0, 500)

        self.status.message(0, "normalize(self)")
        return stats

    def bounds(self, value, lower, upper):
        # self.status.message(1, "bounds(self, value, lower, upper)")
        diff = upper - lower
        result = int((diff * value) + 1)

        # self.status.message(0, "bounds(self, value, lower, upper)")
        return result
Example #2
0
    def __init__(self):
        self.status = Status("GAN")
        self.cols = 7
        self.img_shape = (self.cols,)

        optimizer = Adam(0.0002, 0.5)

        # Build and compile the discriminator
        self.discriminator = self.build_discriminator()
        self.discriminator.compile(loss='binary_crossentropy',
            optimizer=optimizer,
            metrics=['accuracy'])

        # Build and compile the generator
        self.generator = self.build_generator()
        self.generator.compile(loss='binary_crossentropy', optimizer=optimizer)

        # The generator takes noise as input and generated imgs
        z = Input(shape=(7,))
        img = self.generator(z)

        # For the combined model we will only train the generator
        self.discriminator.trainable = False

        # The valid takes generated images as input and determines validity
        valid = self.discriminator(img)

        # The combined model  (stacked generator and discriminator) takes
        # noise as input => generates images => determines validity
        self.combined = Model(z, valid)
        self.combined.compile(loss='binary_crossentropy', optimizer=optimizer)
Example #3
0
class NNManager():
    def __init__(self):
        self.status = Status("NNManager")
        self.datapath = None

    def buildGAN(self,
                 trainset,
                 epochs=30000,
                 batch_size=25,
                 sample_interval=200):
        self.status.message(
            1, "buildGAN(self, trainset, epochs, batch_size, sample_interval")
        gan = GAN()
        gan.train(trainset, epochs, batch_size, sample_interval)

        self.status.message(
            0, "buildGAN(self, trainset, epochs, batch_size, sample_interval")
        return True
def loadJSON(path):
    status = Status("Extraction")
    status.message(1, "loadJSON(path)")
    with open(path) as f:
        datadict = json.load(f)

    listings = []
    for match in datadict:
        for player in datadict[match]:
            listings.append(datadict[match][player])

    status.message(0, "loadJSON(path)")
    return listings
Example #5
0
class FManager():
    def __init__(self):
        self.status = Status("FManager")
        self.sitestatus = False

    def isRunning(self):
        self.status.message(1, "isRunning(self)")
        sock = socket.socket(socket.AF_INET, socket.SOCK_STREAM)
        result = sock.connect_ex(('0.0.0.0', 3000))
        sock.close()

        if result == 0:
            self.sitestatus = True
            self.status.message(9)
        else:
            self.sitestatus = False
            self.status.message(8)

        self.status.message(0, "isRunning(self)")

        return self.sitestatus
Example #6
0
class EManager:
	def __init__(self, jsonpath):
		self.status = Status("Extraction")
		self.playerList = self.extractJSON(jsonpath)
		self.examples = self.numpifyPlayers()

	def extractReplayDir(self, dirname):
		replays = sc2reader.load_replays("sc2reader/test_replays/2.1.4")

	def extractJSON(self, jsonpath):
		self.status.message(1, "extractJSON(self, jsonpath)")

		listings = decodeJSON.loadJSON(jsonpath)
		playerList = []
		
		for i in listings:
			player = PlayerStats()
			player.populate(i)
			playerList.append(player)

		self.status.message(7)
		self.status.message(0, "extractJSON(self, jsonpath)")
		return playerList

	def numpifyPlayers(self):
		self.status.message(1, "numpifyPlayers(self)")
		examples = []
		
		for player in self.playerList:
			npyplayer = np.array([player.state.race, 
				player.buildings.built, 
				player.buildings.destroyed, 
				player.armyUnits.spawned, 
				player.armyUnits.dead, 
				player.workerUnits.spawned, 
				player.workerUnits.dead])
			examples.append(npyplayer)
		
		return np.asarray(examples)
Example #7
0
 def __init__(self, playerStats):
     self.status = Status("NManager")
     self.playerStats = playerStats
     self.normalstats = self.normalize()
Example #8
0
 def __init__(self):
     self.status = Status("FManager")
     self.sitestatus = False
Example #9
0
	def __init__(self):
		self.status = Status("Admin")
		self.extraction = EManager('/home/service/analyticsBot-sc2/modules/Extraction/jsondump/output.json')
		self.neuralnet = NNManager()
		self.neuralnet.buildGAN(self.extraction.examples)
Example #10
0
class GAN():
    def __init__(self):
        self.status = Status("GAN")
        self.cols = 7
        self.img_shape = (self.cols,)

        optimizer = Adam(0.0002, 0.5)

        # Build and compile the discriminator
        self.discriminator = self.build_discriminator()
        self.discriminator.compile(loss='binary_crossentropy',
            optimizer=optimizer,
            metrics=['accuracy'])

        # Build and compile the generator
        self.generator = self.build_generator()
        self.generator.compile(loss='binary_crossentropy', optimizer=optimizer)

        # The generator takes noise as input and generated imgs
        z = Input(shape=(7,))
        img = self.generator(z)

        # For the combined model we will only train the generator
        self.discriminator.trainable = False

        # The valid takes generated images as input and determines validity
        valid = self.discriminator(img)

        # The combined model  (stacked generator and discriminator) takes
        # noise as input => generates images => determines validity
        self.combined = Model(z, valid)
        self.combined.compile(loss='binary_crossentropy', optimizer=optimizer)

    def build_generator(self):
        self.status.message(1, "build_generator(self)")

        noise_shape = (7,)

        model = Sequential()

        model.add(Dense(7, input_shape=noise_shape))
        model.add(LeakyReLU(alpha=0.2))
        model.add(BatchNormalization(momentum=0.8))
        model.add(Dense(7))
        model.add(LeakyReLU(alpha=0.2))
        model.add(BatchNormalization(momentum=0.8))
        model.add(Dense(7))
        model.add(LeakyReLU(alpha=0.2))
        model.add(BatchNormalization(momentum=0.8))
        model.add(Dense(np.prod(self.img_shape), activation='tanh'))
        model.add(Reshape(self.img_shape))

        #model.summary()

        noise = Input(shape=noise_shape)
        img = model(noise)

        self.status.message(0, "build_generator(self)")
        return Model(noise, img)

    def build_discriminator(self):
        self.status.message(1, "build_discriminator(self)")

        shape = (self.cols,)

        model = Sequential()

        #model.add(Flatten(input_shape=shape))
        model.add(Dense(7))
        model.add(LeakyReLU(alpha=0.2))
        model.add(Dense(1, activation='sigmoid'))
        # model.summary()

        example = Input(shape=shape)
        validity = model(example)

        self.status.message(0, "build_discriminator(self)")
        return Model(example, validity)

    def train(self, trainset, epochs, batch_size=128, save_interval=50):
        # self.status.message(1, "train(self, trainset, epochs, batch_size, save_interval)")

        # Load the dataset
        #(X_train, _), (_, _) = mnist.load_data()
        X_train = trainset

        # Rescale -1 to 1
        X_train = (X_train.astype(np.float32) - 127.5) / 127.5
        #X_train = np.expand_dims(X_train, axis=3)

        half_batch = int(batch_size / 2)

        for epoch in range(epochs):

            # ---------------------
            #  Train Discriminator
            # ---------------------

            # Select a random half batch of images
            idx = np.random.randint(0, X_train.shape[0], half_batch)
            imgs = X_train[idx]

            noise = np.random.normal(0, 1, (half_batch, 7))

            # Generate a half batch of new images
            gen_imgs = self.generator.predict(noise)

            # Train the discriminator
            d_loss_real = self.discriminator.train_on_batch(imgs, np.ones((half_batch, 1)))
            d_loss_fake = self.discriminator.train_on_batch(gen_imgs, np.zeros((half_batch, 1)))
            d_loss = 0.5 * np.add(d_loss_real, d_loss_fake)


            # ---------------------
            #  Train Generator
            # ---------------------

            noise = np.random.normal(0, 1, (batch_size, 7))

            # The generator wants the discriminator to label the generated samples
            # as valid (ones)
            valid_y = np.array([1] * batch_size)

            # Train the generator
            g_loss = self.combined.train_on_batch(noise, valid_y)

            # Plot the progress
            if epoch % 10 == 0:
                print ("Epoch: %d [Discriminator loss: %f, acc.: %.2f%%] [Generator loss: %f]" % (epoch, d_loss[0], 100*d_loss[1], g_loss))

            # If at save interval => save generated image samples
            if epoch % save_interval == 0:
                self.save_imgs(epoch)

            # self.status.message(0, "train(self, trainset, epochs, batch_size, save_interval)")
            # return

    def save_imgs(self, epoch):
        self.status.message(1, "save_imgs(self, epoch)")
        rows = 10
        noise = np.random.normal(0, 1, (rows, 7))
        gen_imgs = self.generator.predict(noise)

        # Rescale images 0 - 1
        gen_imgs = 0.5 * gen_imgs + 0.5

        cnt = 0
        for i in gen_imgs:
            normalizer = NManager(i)
            print(normalizer.normalstats)

        self.status.message(0, "save_imgs(self, epoch)")
        return
Example #11
0
 def __init__(self):
     self.status = Status("NNManager")
     self.datapath = None
Example #12
0
 def __init__(self):
     self.status = Status("PlayerStats")
     self.state = State()
     self.buildings = BuildingUnits()
     self.armyUnits = ArmyUnits()
     self.workerUnits = WorkerUnits()
Example #13
0
class PlayerStats():
    def __init__(self):
        self.status = Status("PlayerStats")
        self.state = State()
        self.buildings = BuildingUnits()
        self.armyUnits = ArmyUnits()
        self.workerUnits = WorkerUnits()

    def __str__(self):
        print("+++++ Optimal Settings +++++")
        return str(
            "%s |\n%s |\n%s |\n%s |\n" %
            (self.state, self.buildings, self.armyUnits, self.workerUnits))

    def getBuildingUnits(self, playerDict):
        self.status.message(1, "getBuildingUnits(self, playerDict)")

        self.status.message(0, "getBuildingUnits(self, playerDict)")
        return BuildingUnits(playerDict["buildingBuilt"],
                             playerDict["buildingKilled"])

    def getArmyUnits(self, playerDict):
        self.status.message(1, "getArmyUnits(self, playerDict)")

        self.status.message(0, "getArmyUnits(self, playerDict)")
        return ArmyUnits(playerDict["armyBuilt"], playerDict["armyKilled"])

    def getWorkerUnits(self, playerDict):
        self.status.message(1, "getWorkerUnits(self, playerDict)")

        self.status.message(0, "getWorkerUnits(self, playerDict)")
        return WorkerUnits(playerDict["workerBuilt"],
                           playerDict["workerKilled"])

    def getState(self, playerDict):
        self.status.message(1, "getState(self, playerDict)")
        # print(playerDict)
        try:
            if playerDict["result"] == "Loss":
                won = False
            else:
                won = True

            if playerDict["race"] == "Zerg":
                race = 0
            elif playerDict["race"] == "Protoss":
                race = 1
            elif playerDict["race"] == "Terran":
                race = 2
            else:
                race = 0
        except KeyError:
            print("Key error occured. Using defaults.")
            won = False
            race = 0
        self.status.message(0, "getState(self, playerDict)")
        return State(won, race)

    def populate(self, playerDict):
        self.status.message(1, "populate(self, playerDict)")

        self.state = self.getState(playerDict)
        self.buildings = self.getBuildingUnits(playerDict)
        self.armyUnits = self.getArmyUnits(playerDict)
        self.workerUnits = self.getWorkerUnits(playerDict)

        self.status.message(0, "populate(self, playerDict)")
        return True
Example #14
0
	def __init__(self, jsonpath):
		self.status = Status("Extraction")
		self.playerList = self.extractJSON(jsonpath)
		self.examples = self.numpifyPlayers()