Example #1
0
 def CreateTFGraphTrain(self):
     #Tensorflow 4 CNN Model
     #Classifier model; Architecture of the CNN
     ws = [('C', [3, 3,  3, 10], [1, 1, 1, 1]), ('P', [1, 4, 4, 1], [1, 2, 2, 1]), ('C', [3, 3, 10, 5], [1, 1, 1, 1]), ('P', [1, 4, 4, 1], [1, 2, 2, 1]), ('F', 32), ('F', 16), ('F', 2)]
     ims = [self.ss[1] // self.m, self.ss[0] // self.n, 3]   #Images from skimage are of shape (height, width, 3)
     hmcIms = 30 * 100 * 3 #Number of pixels in health/mana checker images
     carg = {'batchSize': 40, 'learnRate': 1e-3, 'maxIter': 40, 'reg': 6e-4, 'tol': 25e-3, 'verbose': True}
     self.OC = CNNC(ims, ws,  name = 'obcnn', **carg)
     self.OC.RestoreClasses(['C', 'O'])
     #Used to detect enemies
     self.EC = CNNC(ims, ws, name = 'encnn', **carg)
     self.EC.RestoreClasses(['N', 'E', 'I'])
     #CNN for detecting movement
     self.MC = CNNC(ims, ws, name = 'mvcnn', **carg)
     self.MC.RestoreClasses(['Y', 'N'])
     #Classifier for lightning-warp
     self.LC = CNNC(ims, ws, name = 'lwcnn', **carg)
     self.LC.RestoreClasses(['Y', 'N'])
     #Regressor for health and mana bar checker
     self.HR = MLPR([hmcIms, 1], maxIter = 0, name = 'hrmlp')
     self.MR = MLPR([hmcIms, 1], maxIter = 0, name = 'mrmlp')
     if not self.Restore():
         print('Model could not be loaded.')
     self.TFS = self.LC.GetSes()
     self.DIM = LoadDataset()
     self.FitCModel(self.OC, {'Closed/Dried Lake':'C', 'Closed/Oasis':'C', 'Open/Dried Lake':'O', 'Open/Oasis':'O', 'Enemy/Dried Lake':'O', 'Enemy/Oasis':'O'})  
     self.FitCModel(self.EC, {'Open/Dried Lake':'N', 'Open/Oasis':'N', 'Enemy/Dried Lake':'Y', 'Enemy/Oasis':'Y', 'Item/Dried Lake':'N'})
     self.FitCModel(self.MC, {'Move/Dried Lake':'Y', 'NoMove/Dried Lake':'N'})
     #self.LC.Reinitialize()
     self.FitCModel(self.LC, {'LW/Dried Lake':'Y', 'LW/Oasis':'Y', 'NLW/Dried Lake':'N', 'NLW/Oasis':'N'})
     
     self.FitRModel(self.HR, 'HR')
     self.FitRModel(self.MR, 'MR')
     self.Save()
def T13():
    '''
    Tests restoring a model from file
    '''
    m1 = MLPR([4, 4, 1], maxIter=16, name='t12ann1')
    rv = m1.RestoreModel('./', 't12ann1')
    return rv
def T12():
    '''
    Tests saving a model to file
    '''
    A = np.random.rand(32, 4)
    Y = (A.sum(axis=1)**2).reshape(-1, 1)
    m1 = MLPR([4, 4, 1], maxIter=16, name='t12ann1')
    m1.fit(A, Y)
    m1.SaveModel('./t12ann1')
    return True
def T9():
    '''
    Tests if multiple MLPRs can be created without affecting each other
    '''
    A = np.random.rand(32, 4)
    Y = (A.sum(axis=1)**2).reshape(-1, 1)
    m1 = MLPR([4, 4, 1], maxIter=16)
    m1.fit(A, Y)
    s1 = m1.score(A, Y)
    m2 = MLPR([4, 4, 1], maxIter=16)
    m2.fit(A, Y)
    s2 = m1.score(A, Y)
    if s1 != s2:
        return False
    return True
def T8():
    '''
    Tests if multiple MLPRs can be created without affecting each other
    '''
    A = np.random.rand(32, 4)
    Y = (A.sum(axis=1)**2).reshape(-1, 1)
    m1 = MLPR([4, 4, 1], maxIter=16)
    m1.fit(A, Y)
    R1 = m1.GetWeightMatrix(0)
    m2 = MLPR([4, 4, 1], maxIter=16)
    m2.fit(A, Y)
    R2 = m1.GetWeightMatrix(0)
    if (R1 != R2).any():
        return False
    return True
def T14():
    '''
    Tests saving and restore a model
    '''
    A = np.random.rand(32, 4)
    Y = (A.sum(axis=1)**2).reshape(-1, 1)
    m1 = MLPR([4, 4, 1], maxIter=16, name='t12ann1')
    m1.fit(A, Y)
    m1.SaveModel('./t12ann1')
    R1 = m1.GetWeightMatrix(0)
    ANN.Reset()
    m1 = MLPR([4, 4, 1], maxIter=16, name='t12ann2')
    m1.RestoreModel('./', 't12ann1')
    R2 = m1.GetWeightMatrix(0)
    if (R1 != R2).any():
        return False
    return True
def T1():
    '''
    Tests basic functionality of MLPR
    '''
    A = np.random.rand(32, 4)
    Y = np.random.rand(32, 1)
    a = MLPR([4, 4, 1], maxIter=16, name='mlpr1')
    a.fit(A, Y)
    a.score(A, Y)
    a.predict(A)
    return True
Example #8
0
def Main():
	if len(sys.argv) <= 1:
		return
	A, Y = GenerateData(ns = 2048)
	#Create layer sizes; make 6 layers of nf neurons followed by a single output neuron
	L = [A.shape[1]] * 6 + [1]
	print('Layer Sizes: ' + str(L))
	if sys.argv[1] == 'theano':
		print('Running theano benchmark.')
		from TheanoANN import TheanoMLPR
		#Create the Theano MLP
		tmlp = TheanoMLPR(L, batchSize = 128, learnRate = 1e-5, maxIter = 100, tol = 1e-3, verbose = True)
		MakeBenchDataSample(tmlp, A, Y, 16, 'TheanoSampDat.csv')
		print('Done. Data written to TheanoSampDat.csv.')
	if sys.argv[1] == 'theanogpu':
		print('Running theano GPU benchmark.')
		#Set optional flags for the GPU
		#Environment flags need to be set before importing theano
		os.environ["THEANO_FLAGS"] = "device=gpu"
		from TheanoANN import TheanoMLPR
		#Create the Theano MLP
		tmlp = TheanoMLPR(L, batchSize = 128, learnRate = 1e-5, maxIter = 100, tol = 1e-3, verbose = True)
		MakeBenchDataSample(tmlp, A, Y, 16, 'TheanoGPUSampDat.csv')
		print('Done. Data written to TheanoGPUSampDat.csv.')
	if sys.argv[1] == 'tensorflow':
		print('Running tensorflow benchmark.')
		from TFANN import MLPR
		#Create the Tensorflow model
		mlpr = MLPR(L, batchSize = 128, learnRate = 1e-5, maxIter = 100, tol = 1e-3, verbose = True)
		MakeBenchDataSample(mlpr, A, Y, 16, 'TfSampDat.csv')
		print('Done. Data written to TfSampDat.csv.')
	if sys.argv[1] == 'plot':
		print('Displaying results.')
		try:
			T1 = np.loadtxt('TheanoSampDat.csv', delimiter = ',', skiprows = 1)
		except OSError:
			T1 = None
		try:
			T2 = np.loadtxt('TfSampDat.csv', delimiter = ',', skiprows = 1)
		except OSError:
			T2 = None
		try:
			T3 = np.loadtxt('TheanoGPUSampDat.csv', delimiter = ',', skiprows = 1)
		except OSError:
			T3 = None
		fig, ax = mpl.subplots(1, 2)
		if T1 is not None:
			PlotBenchmark(T1[:, 0], T1[:, 1], ax[0], '# Samples', 'Train', 'Theano')
			PlotBenchmark(T1[:, 0], T1[:, 2], ax[1], '# Samples', 'Test', 'Theano')
		if T2 is not None:
			PlotBenchmark(T2[:, 0], T2[:, 1], ax[0], '# Samples', 'Train', 'Tensorflow')
			PlotBenchmark(T2[:, 0], T2[:, 2], ax[1], '# Samples', 'Test', 'Tensorflow')	
		if T3 is not None:
			PlotBenchmark(T3[:, 0], T3[:, 1], ax[0], '# Samples', 'Train', 'Theano GPU')
			PlotBenchmark(T3[:, 0], T3[:, 2], ax[1], '# Samples', 'Test', 'Theano GPU')	
		mpl.show()
def score(self, A, y):
    #Number of neurons in the input layer
    i = 1
#Number of neurons in the output layer
    o = 1
#Number of neurons in the hidden layers
    h = 32
#The list of layer sizes
    layers = [i, h, h, h, h, h, h, h, h, h, o]
    mlpr = MLPR(layers, maxItr = 1000, tol = 0.40, reg = 0.001, verbose = True)
Example #10
0
 def CreateTFGraphTest(self):
     #Tensorflow 4 CNN Model
     #Classifier model; Architecture of the CNN
     ws = [('C', [3, 3,  3, 10], [1, 1, 1, 1]), ('P', [1, 4, 4, 1], [1, 2, 2, 1]), ('C', [3, 3, 10, 5], [1, 1, 1, 1]), ('P', [1, 4, 4, 1], [1, 2, 2, 1]), ('F', 32), ('F', 16), ('F', 2)]
     ims = [self.ss[1] // self.m, self.ss[0] // self.n, 3]   #Image size for CNN model
     hmcIms = 30 * 100 * 3 #Number of pixels in health/mana checker images
     self.I1 = tf.placeholder("float", [self.NSS] + ims, name = 'S_I1')  #Previous image placeholder
     self.I2 = tf.placeholder("float", [self.NSS] + ims, name = 'S_I2')  #Current image placeholder
     self.TV = tf.placeholder("float", [self.NSS, 2], name = 'S_TV')     #Target values for binary classifiers
     self.LWI = tf.placeholder("float", [2] + ims, name = 'S_LWI')
     self.LWTV = tf.placeholder("float", [2, 2], name = 'S_LWTV')
     self.HRI = tf.placeholder("float", [1, hmcIms], name = 'S_HRI')
     self.MRI = tf.placeholder("float", [1, hmcIms], name = 'S_MRI')
     self.RTV = tf.placeholder("float", [1, 1], name = 'S_RTV')
     Z = tf.zeros([self.NSS] + ims, name = "S_Z")                        #Completely black grid of image cells
     wcnd = tf.abs(self.I1 - self.I2) > 16                               #Where condition
     ID = tf.where(wcnd, self.I2, Z, name = 'S_ID')                      #Difference between images   
     #Used to detect Obstacles; 
     carg = {'batchSize': self.NSS, 'learnRate': 1e-3, 'maxIter': 2, 'reg': 6e-4, 'tol': 1e-2, 'verbose': True} 
     self.OC = CNNC(ims, ws, name = 'obcnn', X = self.I2, Y = self.TV, **carg)
     self.OC.RestoreClasses(['C', 'O'])
     #Used to detect enemies
     self.EC = CNNC(ims, ws, name = 'encnn', X = self.I2, Y = self.TV, **carg)
     self.EC.RestoreClasses(['N', 'E', 'I'])
     #CNN for detecting movement
     self.MC = CNNC(ims, ws, name = 'mvcnn', X = ID, Y = self.TV, **carg)
     self.MC.RestoreClasses(['Y', 'N'])
     #Classifier for lightning-warp
     self.LC = CNNC(ims, ws, name = 'lwcnn', X = self.LWI, Y = self.LWTV, **carg)
     self.LC.RestoreClasses(['Y', 'N'])
     #Regressor for health-bar checker
     self.HR = MLPR([hmcIms, 1], name = 'hrmlp', X = self.HRI, Y = self.RTV, **carg)
     self.MR = MLPR([hmcIms, 1], name = 'mrmlp', X = self.MRI, Y = self.RTV, **carg)
     if not self.Restore():
         print('Model could not be loaded.')
     self.TFS = self.LC.GetSes()
Example #11
0
class TargetingSystem:
    
    def __init__(self, m, n, ss, sb, cp, train = False):
        '''
        m:         Number of rows
        n:         Number of cols
        ss:        Screen size (x, y)
        sb:        Screen border (left, top, right, bottom) (images passed are already cropped using this border)
        cp:        Character position (x, y)
        '''
        self.S = None
        #Good screen cells
        self.SC = np.array([           
                              [0, 1], [0, 2], [0, 3], [0, 4], [0, 5], [0, 6], [0, 7], [0, 8],
                      [1, 0], [1, 1], [1, 2], [1, 3], [1, 4], [1, 5], [1, 6], [1, 7], [1, 8],
                      [2, 0], [2, 1], [2, 2], [2, 3], [2, 4], [2, 5], [2, 6], [2, 7], [2, 8],
                      [3, 0], [3, 1], [3, 2], [3, 3], [3, 4], [3, 5], [3, 6], [3, 7], [3, 8],
                      [4, 0], [4, 1], [4, 2], [4, 3], [4, 4], [4, 5], [4, 6], [4, 7], [4, 8],
                      [5, 0], [5, 1], [5, 2], [5, 3], [5, 4], [5, 5], [5, 6], [5, 7], [5, 8],
                                              [6, 3], [6, 4], [6, 5]                        ])
        #self.GCLU = dict(zip(self.SC, range(len(self.SC))))         #Lookup for good cells to indices
        self.GCLU = np.array(                                        #Indices of good cells in screen
                [   -1,  0,  1,  2,  3,  4,  5,  6,  7,  
                     8,  9, 10, 11, 12, 13, 14, 15, 16,
                    17, 18, 19, 20, 21, 22, 23, 24, 25,
                    26, 27, 28, 29, 30, 31, 32, 33, 34,
                    35, 36, 37, 38, 39, 40, 41, 42, 43,
                    44, 45, 46, 47, 48, 49, 50, 51, 52,
                    -1, -1, -1, 53, 54, 55, -1, -1, -1])
        self.GSC = np.array(                                        #Indices of good cells in screen
                [        1,  2,  3,  4,  5,  6,  7,  8,
                     9, 10, 11, 12, 13, 14, 15, 16, 17,
                    18, 19, 20, 21, 22, 23, 24, 25, 26,
                    27, 28, 29, 30, 31, 32, 33, 34, 35,
                    36, 37, 38, 39, 40, 41, 42, 43, 44,
                    45, 46, 47, 48, 49, 50, 51, 52, 53,
                                57, 58, 59            ])
        self.NSS = self.GSC.shape[0]
        self.YH = None                                              #Latest predictions for screen input
        self.m, self.n = m, n                                       #Number of rows/columns in screen division for cnn pediction
        self.ss = (ss[0] - sb[0] - sb[2], ss[1] - sb[1] - sb[3])    #Actual screen size is original size minus borders
        self.sb = sb                                                #Screen border (left, top, right bottom)
        self.cs = (self.ss[0] // self.n, self.ss[1] // self.m)      #Cell size in pixels (x, y)
        self.cp = cp                                                #Character position in pixels (x, y)
        self.cc = np.zeros([self.m * self.n, 2])                    #Center of prediction cell (i, j) in pixels (x, y)
        for i in range(self.m):
            for j in range(self.n):
                self.cc[i * self.n + j] = (sb[0] + (self.cs[0] // 2) * (2 * j + 1), sb[1] + (self.cs[1] // 2) * (2 * i + 1))
        self.train = train                                #Force train will train the model further even if a saved one exists
        if train:
            self.CreateTFGraphTrain()
        else:
            self.CreateTFGraphTest()

    def CellCorners(self):
        '''
        Gets the top left corners of the CNN prediction cells in pixels (x, y)
        '''
        return np.mgrid[self.sb[0]:(self.ss[0] + self.sb[0] + 1):self.cs[0], self.sb[1]:(self.ss[1] + self.sb[1] + 1):self.cs[1]].reshape(2, -1).T

    def CellLookup(self, c):
        ci = self.GCLU[np.multiply(c, np.array([self.n, 1])).sum(axis = 1)]
        nnci = np.nonzero(ci >= 0)[0]
        return self.YH[ci[nnci]], nnci
    
    def CellRectangle(self, c):
        '''
        Gets the pixel values of the rectangle of the cell at index (i, j)
        Return (left, top, right, bottom)
        '''
        return (self.cs[0] * c[1] + self.sb[0], self.cs[1] * c[0] + self.sb[1], self.cs[0] * (c[1] + 1) + self.sb[0], self.cs[1] * (c[0] + 1) + self.sb[0])

    def CharPos(self):
        '''
        Gets the character's position on the screen
        '''
        return self.cp
        
    def CreateTFGraphTest(self):
        #Tensorflow 4 CNN Model
        #Classifier model; Architecture of the CNN
        ws = [('C', [3, 3,  3, 10], [1, 1, 1, 1]), ('P', [1, 4, 4, 1], [1, 2, 2, 1]), ('C', [3, 3, 10, 5], [1, 1, 1, 1]), ('P', [1, 4, 4, 1], [1, 2, 2, 1]), ('F', 32), ('F', 16), ('F', 2)]
        ims = [self.ss[1] // self.m, self.ss[0] // self.n, 3]   #Image size for CNN model
        hmcIms = 30 * 100 * 3 #Number of pixels in health/mana checker images
        self.I1 = tf.placeholder("float", [self.NSS] + ims, name = 'S_I1')  #Previous image placeholder
        self.I2 = tf.placeholder("float", [self.NSS] + ims, name = 'S_I2')  #Current image placeholder
        self.TV = tf.placeholder("float", [self.NSS, 2], name = 'S_TV')     #Target values for binary classifiers
        self.LWI = tf.placeholder("float", [2] + ims, name = 'S_LWI')
        self.LWTV = tf.placeholder("float", [2, 2], name = 'S_LWTV')
        self.HRI = tf.placeholder("float", [1, hmcIms], name = 'S_HRI')
        self.MRI = tf.placeholder("float", [1, hmcIms], name = 'S_MRI')
        self.RTV = tf.placeholder("float", [1, 1], name = 'S_RTV')
        Z = tf.zeros([self.NSS] + ims, name = "S_Z")                        #Completely black grid of image cells
        wcnd = tf.abs(self.I1 - self.I2) > 16                               #Where condition
        ID = tf.where(wcnd, self.I2, Z, name = 'S_ID')                      #Difference between images   
        #Used to detect Obstacles; 
        carg = {'batchSize': self.NSS, 'learnRate': 1e-3, 'maxIter': 2, 'reg': 6e-4, 'tol': 1e-2, 'verbose': True} 
        self.OC = CNNC(ims, ws, name = 'obcnn', X = self.I2, Y = self.TV, **carg)
        self.OC.RestoreClasses(['C', 'O'])
        #Used to detect enemies
        self.EC = CNNC(ims, ws, name = 'encnn', X = self.I2, Y = self.TV, **carg)
        self.EC.RestoreClasses(['N', 'E', 'I'])
        #CNN for detecting movement
        self.MC = CNNC(ims, ws, name = 'mvcnn', X = ID, Y = self.TV, **carg)
        self.MC.RestoreClasses(['Y', 'N'])
        #Classifier for lightning-warp
        self.LC = CNNC(ims, ws, name = 'lwcnn', X = self.LWI, Y = self.LWTV, **carg)
        self.LC.RestoreClasses(['Y', 'N'])
        #Regressor for health-bar checker
        self.HR = MLPR([hmcIms, 1], name = 'hrmlp', X = self.HRI, Y = self.RTV, **carg)
        self.MR = MLPR([hmcIms, 1], name = 'mrmlp', X = self.MRI, Y = self.RTV, **carg)
        if not self.Restore():
            print('Model could not be loaded.')
        self.TFS = self.LC.GetSes()
    
    def CreateTFGraphTrain(self):
        #Tensorflow 4 CNN Model
        #Classifier model; Architecture of the CNN
        ws = [('C', [3, 3,  3, 10], [1, 1, 1, 1]), ('P', [1, 4, 4, 1], [1, 2, 2, 1]), ('C', [3, 3, 10, 5], [1, 1, 1, 1]), ('P', [1, 4, 4, 1], [1, 2, 2, 1]), ('F', 32), ('F', 16), ('F', 2)]
        ims = [self.ss[1] // self.m, self.ss[0] // self.n, 3]   #Images from skimage are of shape (height, width, 3)
        hmcIms = 30 * 100 * 3 #Number of pixels in health/mana checker images
        carg = {'batchSize': 40, 'learnRate': 1e-3, 'maxIter': 40, 'reg': 6e-4, 'tol': 25e-3, 'verbose': True}
        self.OC = CNNC(ims, ws,  name = 'obcnn', **carg)
        self.OC.RestoreClasses(['C', 'O'])
        #Used to detect enemies
        self.EC = CNNC(ims, ws, name = 'encnn', **carg)
        self.EC.RestoreClasses(['N', 'E', 'I'])
        #CNN for detecting movement
        self.MC = CNNC(ims, ws, name = 'mvcnn', **carg)
        self.MC.RestoreClasses(['Y', 'N'])
        #Classifier for lightning-warp
        self.LC = CNNC(ims, ws, name = 'lwcnn', **carg)
        self.LC.RestoreClasses(['Y', 'N'])
        #Regressor for health and mana bar checker
        self.HR = MLPR([hmcIms, 1], maxIter = 0, name = 'hrmlp')
        self.MR = MLPR([hmcIms, 1], maxIter = 0, name = 'mrmlp')
        if not self.Restore():
            print('Model could not be loaded.')
        self.TFS = self.LC.GetSes()
        self.DIM = LoadDataset()
        self.FitCModel(self.OC, {'Closed/Dried Lake':'C', 'Closed/Oasis':'C', 'Open/Dried Lake':'O', 'Open/Oasis':'O', 'Enemy/Dried Lake':'O', 'Enemy/Oasis':'O'})  
        self.FitCModel(self.EC, {'Open/Dried Lake':'N', 'Open/Oasis':'N', 'Enemy/Dried Lake':'Y', 'Enemy/Oasis':'Y', 'Item/Dried Lake':'N'})
        self.FitCModel(self.MC, {'Move/Dried Lake':'Y', 'NoMove/Dried Lake':'N'})
        #self.LC.Reinitialize()
        self.FitCModel(self.LC, {'LW/Dried Lake':'Y', 'LW/Oasis':'Y', 'NLW/Dried Lake':'N', 'NLW/Oasis':'N'})
        
        self.FitRModel(self.HR, 'HR')
        self.FitRModel(self.MR, 'MR')
        self.Save()
        
    def DivideIntoSubimages(self, A):
        '''
        Divide 1 large image into rectangular sub-images
        The screen is chopped into self.m rows and self.n columns
        '''
        return A.reshape(self.m, self.cs[1], self.n, self.cs[0], 3).swapaxes(1, 2).reshape(self.m * self.n, self.cs[1], self.cs[0], 3)
        
    def EnemyPositionsToTargets(self):
        '''
        Given past prediction, identify places to target to hit enemies.
        Targets are cells predicted to have enemies AND movement
        '''
        return self.cc[self.GSC[(self.YHD & self.CM).astype(np.bool)]]
    
    def FitCModel(self, C, DM):
        '''
        Fit a classification model and shows the accuracy
        C:  The classifier model to fit
        DM: The mapping of directories to labels
        '''
        A = np.concatenate([self.DIM[Di] for Di in DM])
        Y = np.concatenate([np.repeat(Li, len(self.DIM[Di])) for Di, Li in DM.items()])
        self.Train(C, A, Y, Acc)
        
    def FitRModel(self, R, D):
        '''
        Fits a regression model and displays the MSE
        C:  The classifier model to fit
        D:  The directory name
        '''
        from sklearn.linear_model import LinearRegression
        A = self.DIM[D]     #Last column is target value
        lr = LinearRegression()
        lr.fit(A[:, :-1], A[:, [-1]])
        A1 = R.W[0].assign(lr.coef_.reshape(-1, 1))
        A2 = R.B[0].assign(lr.intercept_.reshape(-1))
        self.TFS.run([A1, A2])
        self.Train(R, A[:, :-1], A[:, [-1]], MSE)
        
    def GetCellIJ(self, k):
        return self.SC[k]

    def GetItemLocations(self):
        '''
        Given past prediction, locates items on the screen
        '''
        if len(self.CM) == 0:
            return np.array([])
        ICP = self.GSC[self.CM[self.YHD == 'I']]
        return [(ipi[0] + self.SC[icpi][0] * self.cs[0], ipi[1] + self.SC[icpi][1] * self.cs[1]) for icpi in ICP for ipi in self.GetItemPixels(self.S[icpi])]
        
    def GetItemPixels(self, I):
        '''
        Locates items that should be picked up on the screen
        '''
        ws = [8, 14]
        D1 = np.abs(I - np.array([10.8721,  12.8995,  13.9932])).sum(axis = 2) < 15
        D2 = np.abs(I - np.array([118.1302, 116.0938, 106.9063])).sum(axis = 2) < 76
        R1 = view_as_windows(D1, ws, ws).sum(axis = (2, 3))
        R2 = view_as_windows(D2, ws, ws).sum(axis = (2, 3))
        FR = ((R1 + R2 / np.prod(ws)) >= 1.0) & (R1 > 10) & (R2 > 10)
        PL = np.transpose(np.nonzero(FR)) * np.array(ws)
        if len(PL) <= 0:
            return []
        bc = Birch(threshold = 50, n_clusters = None)
        bc.fit(PL)
        return bc.subcluster_centers_
        
    def IsEdgeCell(self, ci, cj):
        ci = np.array([[ci - 1, ci, ci + 1, ci], [cj, cj - 1, cj, cj + 1]])
        if (ci < 0).any():
            return True
        try:
            return (self.GCLU.reshape(self.m, self.n)[ci[0], ci[1]] == -1).any()
        except IndexError:
            return True
        return False            
        
    def PixelToCell(self, p):
        '''
        Determine cell into which a pixel coordinate falls (thresholds values)
        '''
        return (np.maximum(np.minimum(p - self.sb[0:2], self.ss), 0)  / self.cs)[:, ::-1].astype(np.int)
        
    def ProcessScreen(self, I1, I2):
        CI1 = self.DivideIntoSubimages(I1)
        CI2 = self.DivideIntoSubimages(I2)
        CNNYH = [self.OC.YHL, self.EC.YHL, self.MC.YHL, self.LC.YHL, self.HR.YH, self.MR.YH]
        MBIM = I2[488:, 719:749].reshape(1, -1) #Mana bar image
        HBIM = I2[488:, 52:82].reshape(1, -1)   #Health bar image
        FD = {self.I1: CI1[self.GSC], self.I2: CI2[self.GSC], self.LWI: CI2[[22, 31]], self.HRI: HBIM, self.MRI: MBIM}
        self.YH, self.YHD, self.CM, LW, HL, ML = self.TFS.run(CNNYH, feed_dict = FD)
        return self.YH, self.YHD, self.CM, LW, HL, ML
    
    def Restore(self):
        return self.MR.RestoreModel(os.path.join('TFModel', ''), 'targsys')
        
    def Save(self):
        try:    #Create directory if it doesn't exist
            os.makedirs(os.path.join('TFModel'))
        except OSError as e:
            pass
        self.MR.SaveModel(os.path.join('TFModel', 'targsys'))
    
    def Train(self, C, A, Y, SF):
        '''
        Train the classifier using the sample matrix A and target matrix Y
        '''
        C.fit(A, Y)
        YH = np.zeros(Y.shape, dtype = np.object)
        for i in np.array_split(np.arange(A.shape[0]), 32):   #Split up verification into chunks to prevent out of memory
            YH[i] = C.predict(A[i])
        s1 = SF(Y, YH)
        print('All:{:8.6f}'.format(s1))
        '''
print(stockData2)

print(scale(stockDataASC))

# to get only specific columns of data from a array use :
# data[:, [1, 9]] where data is array and you want columns 1, 9 (index start from 0)

# scale the stock data, volume to ease the calculations and fit within the data range

# Number of neurons in the input layer
# 4 neurons to indicate the candle stick doji patterns
# 4 neurons to indicate the previous most tested highs which are greater than previous day closing prices
# 4 neurons to indicate the previous most tested lows which are less than previous day closing prices
# 5 neurons to indicate the previous day open, close, high and low prices, and volume
i = 17
# Number of neurons in the output layer
# 5 neurons to indicate the current day open, close, high and low prices and volume
o = 5
#Number of neurons in the hidden layers
h = 17
#The list of layer sizes
layers = [i, h, h, h, h, h, h, h, h, h, o]
mlpr = MLPR(layers, maxIter=1000, tol=0.40, reg=0.001, verbose=True)
mlpr.fit()

#Begin prediction
yHat = mlpr.predict(A)
#Plot the results
mpl.plot(A, Y, c='#b0403f')
mpl.plot(A, yHat, c='#5aa9ab')
mpl.show()
Example #13
0
stockData = numpy.loadtxt(path, delimiter=",", skiprows=1, usecols=(1,2,3,4))
# stockData2 = numpy.genfromtxt(path, delimiter=",", dtype=None, skip_header=1, usecols=(1, 2, 3, 4, 5))

# scale down the data and reverse the array
A = scale(stockData)[::-1] # A is input data
Y = A # Y is expected output

#Number of neurons in the input layer
i = 4
#Number of neurons in the output layer
o = 4
#Number of neurons in the hidden layers
h = 4
#The list of layer sizes
layers = [i, h, o]
mlpr = MLPR(layers, maxIter = 10000, tol = 0.0010, reg = 0.001, verbose = True)

#Length of the hold-out period
n = len(A)
nDays = int(round(n*.3))
#Learn the data
mlpr.fit(A[0: (n - nDays)], Y[1:(n - nDays + 1)])

#Begin prediction
yHat = mlpr.predict(A[0: (n - 1)])
#Plot the results

# mPlotLib.plot(list(range(nDays - 1)), Y[(n-nDays + 1):, (0)].reshape(-1, 1), c='#b04fff')
# mPlotLib.plot(list(range(nDays - 1)), yHat[:, (0)].reshape(-1, 1), c='#000000')
# # # mPlotLib.plot(A[(n-nDays): (n-1)], yHat, c='#5aa9ab')
# mPlotLib.show()