def test_train_step(self): input = torch.randint(0, 24, (8, 128)).long().to(device) mel_spec = torch.rand(8, 30, c.num_mels).to(device) linear_spec = torch.rand(8, 30, c.num_freq).to(device) mel_lengths = torch.randint(20, 30, (8, )).long().to(device) criterion = L1LossMasked().to(device) model = Tacotron(c.embedding_size, c.num_freq, c.num_mels, c.r).to(device) model.train() model_ref = copy.deepcopy(model) count = 0 for param, param_ref in zip(model.parameters(), model_ref.parameters()): assert (param - param_ref).sum() == 0, param count += 1 optimizer = optim.Adam(model.parameters(), lr=c.lr) for i in range(5): mel_out, linear_out, align = model.forward(input, mel_spec) optimizer.zero_grad() loss = criterion(mel_out, mel_spec, mel_lengths) loss = 0.5 * loss + 0.5 * criterion(linear_out, linear_spec, mel_lengths) loss.backward() optimizer.step() # check parameter changes count = 0 for param, param_ref in zip(model.parameters(), model_ref.parameters()): # ignore pre-higway layer since it works conditional if count not in [139, 59]: assert (param != param_ref).any( ), "param {} with shape {} not updated!! \n{}\n{}".format( count, param.shape, param, param_ref) count += 1
def test_train_step(): input_dummy = torch.randint(0, 24, (8, 128)).long().to(device) input_lengths = torch.randint(100, 129, (8, )).long().to(device) input_lengths[-1] = 128 mel_spec = torch.rand(8, 120, c.audio['num_mels']).to(device) linear_spec = torch.rand(8, 120, c.audio['num_freq']).to(device) mel_lengths = torch.randint(20, 120, (8, )).long().to(device) mel_lengths[-1] = 120 stop_targets = torch.zeros(8, 120, 1).float().to(device) speaker_ids = torch.randint(0, 5, (8, )).long().to(device) for idx in mel_lengths: stop_targets[:, int(idx.item()):, 0] = 1.0 stop_targets = stop_targets.view(input_dummy.shape[0], stop_targets.size(1) // c.r, -1) stop_targets = (stop_targets.sum(2) > 0.0).unsqueeze(2).float().squeeze() criterion = L1LossMasked(seq_len_norm=False).to(device) criterion_st = nn.BCEWithLogitsLoss().to(device) model = Tacotron( num_chars=32, num_speakers=5, gst=True, postnet_output_dim=c.audio['num_freq'], decoder_output_dim=c.audio['num_mels'], r=c.r, memory_size=c.memory_size ).to(device) #FIXME: missing num_speakers parameter to Tacotron ctor model.train() print(model) print(" > Num parameters for Tacotron GST model:%s" % (count_parameters(model))) model_ref = copy.deepcopy(model) count = 0 for param, param_ref in zip(model.parameters(), model_ref.parameters()): assert (param - param_ref).sum() == 0, param count += 1 optimizer = optim.Adam(model.parameters(), lr=c.lr) for _ in range(10): mel_out, linear_out, align, stop_tokens = model.forward( input_dummy, input_lengths, mel_spec, mel_lengths, speaker_ids) optimizer.zero_grad() loss = criterion(mel_out, mel_spec, mel_lengths) stop_loss = criterion_st(stop_tokens, stop_targets) loss = loss + criterion(linear_out, linear_spec, mel_lengths) + stop_loss loss.backward() optimizer.step() # check parameter changes count = 0 for param, param_ref in zip(model.parameters(), model_ref.parameters()): # ignore pre-higway layer since it works conditional assert (param != param_ref).any( ), "param {} with shape {} not updated!! \n{}\n{}".format( count, param.shape, param, param_ref) count += 1
class Synthesizer(object): def load_model(self, model_path, model_name, model_config, use_cuda): model_config = os.path.join(model_path, model_config) self.model_file = os.path.join(model_path, model_name) print(" > Loading model ...") print(" | > model config: ", model_config) print(" | > model file: ", self.model_file) config = load_config(model_config) self.config = config self.use_cuda = use_cuda self.model = Tacotron(config.embedding_size, config.num_freq, config.num_mels, config.r) self.ap = AudioProcessor(config.sample_rate, config.num_mels, config.min_level_db, config.frame_shift_ms, config.frame_length_ms, config.preemphasis, config.ref_level_db, config.num_freq, config.power, griffin_lim_iters=60) # load model state if use_cuda: cp = torch.load(self.model_file) else: cp = torch.load(self.model_file, map_location=lambda storage, loc: storage) # load the model self.model.load_state_dict(cp['model']) if use_cuda: self.model.cuda() self.model.eval() def save_wav(self, wav, path): wav *= 32767 / max(1e-8, np.max(np.abs(wav))) # sf.write(path, wav.astype(np.int32), self.config.sample_rate, format='wav') # wav = librosa.util.normalize(wav.astype(np.float), norm=np.inf, axis=None) # wav = wav / wav.max() # sf.write(path, wav.astype('float'), self.config.sample_rate, format='ogg') scipy.io.wavfile.write(path, self.config.sample_rate, wav.astype(np.int16)) # librosa.output.write_wav(path, wav.astype(np.int16), self.config.sample_rate, norm=True) def tts(self, text): text_cleaner = [self.config.text_cleaner] wavs = [] for sen in text.split('.'): if len(sen) < 3: continue sen = sen.strip() sen +='.' print(sen) sen = sen.strip() seq = np.array(text_to_sequence(text, text_cleaner)) chars_var = torch.from_numpy(seq).unsqueeze(0) if self.use_cuda: chars_var = chars_var.cuda() mel_out, linear_out, alignments, stop_tokens = self.model.forward(chars_var) linear_out = linear_out[0].data.cpu().numpy() wav = self.ap.inv_spectrogram(linear_out.T) # wav = wav[:self.ap.find_endpoint(wav)] out = io.BytesIO() wavs.append(wav) wavs.append(np.zeros(10000)) self.save_wav(wav, out) return out
def test_train_step(self): input = torch.randint(0, 24, (8, 128)).long().to(device) mel_spec = torch.rand(8, 30, c.num_mels).to(device) linear_spec = torch.rand(8, 30, c.num_freq).to(device) mel_lengths = torch.randint(20, 30, (8, )).long().to(device) stop_targets = torch.zeros(8, 30, 1).float().to(device) for idx in mel_lengths: stop_targets[:, int(idx.item()):, 0] = 1.0 stop_targets = stop_targets.view(input.shape[0], stop_targets.size(1) // c.r, -1) stop_targets = (stop_targets.sum(2) > 0.0).unsqueeze(2).float() criterion = L1LossMasked().to(device) criterion_st = nn.BCELoss().to(device) model = Tacotron(c.embedding_size, c.num_freq, c.num_mels, c.r).to(device) model.train() model_ref = copy.deepcopy(model) count = 0 for param, param_ref in zip(model.parameters(), model_ref.parameters()): assert (param - param_ref).sum() == 0, param count += 1 optimizer = optim.Adam(model.parameters(), lr=c.lr) for i in range(5): mel_out, linear_out, align, stop_tokens = model.forward( input, mel_spec) assert stop_tokens.data.max() <= 1.0 assert stop_tokens.data.min() >= 0.0 optimizer.zero_grad() loss = criterion(mel_out, mel_spec, mel_lengths) stop_loss = criterion_st(stop_tokens, stop_targets) loss = loss + criterion(linear_out, linear_spec, mel_lengths) + stop_loss loss.backward() optimizer.step() # check parameter changes count = 0 for param, param_ref in zip(model.parameters(), model_ref.parameters()): # ignore pre-higway layer since it works conditional if count not in [145, 59]: assert (param != param_ref).any( ), "param {} with shape {} not updated!! \n{}\n{}".format( count, param.shape, param, param_ref) count += 1
def tts(text, model_path='model/best_model.pth.tar', config_path='model/config.json', use_cuda=False): CONFIG = load_config(config_path) model = Tacotron(CONFIG.embedding_size, CONFIG.num_freq, CONFIG.num_mels, CONFIG.r) if use_cuda: cp = torch.load(model_path + seq_to_seq_test_model_fname, map_location='cuda:0') else: cp = torch.load(model_path, map_location=lambda storage, loc: storage) model.load_state_dict(cp['model']) if use_cuda: model.cuda() model.eval() model.decoder.max_decoder_steps = 250 ap = AudioProcessor(CONFIG.sample_rate, CONFIG.num_mels, CONFIG.min_level_db, CONFIG.frame_shift_ms, CONFIG.frame_length_ms, CONFIG.ref_level_db, CONFIG.num_freq, CONFIG.power, CONFIG.preemphasis, griffin_lim_iters=50) t_1 = time.time() text_cleaner = [CONFIG.text_cleaner] seq = np.array(text_to_sequence(text, text_cleaner)) chars_var = torch.from_numpy(seq).unsqueeze(0) if use_cuda: chars_var = chars_var.cuda() linear_out = model.forward(chars_var.long()) linear_out = linear_out[0].data.cpu().numpy() waveform = ap.inv_spectrogram(linear_out.T) waveform = waveform[:ap.find_endpoint(waveform)] out_path = 'static/samples/' os.makedirs(out_path, exist_ok=True) file_name = text.replace(" ", "_").replace(".", "") + ".wav" out_path = os.path.join(out_path, file_name) ap.save_wav(waveform, out_path) # print(" > Run-time: {}".format(time.time() - t_1)) return file_name