def test_in_out(): layer = Decoder( in_channels=256, frame_channels=80, r=2, memory_size=4, attn_windowing=False, attn_norm="sigmoid", attn_K=5, attn_type="original", prenet_type="original", prenet_dropout=True, forward_attn=True, trans_agent=True, forward_attn_mask=True, location_attn=True, separate_stopnet=True, ) dummy_input = T.rand(4, 8, 256) dummy_memory = T.rand(4, 2, 80) output, alignment, stop_tokens = layer(dummy_input, dummy_memory, mask=None) assert output.shape[0] == 4 assert output.shape[1] == 80, "size not {}".format(output.shape[1]) assert output.shape[2] == 2, "size not {}".format(output.shape[2]) assert stop_tokens.shape[0] == 4
def __init__( self, config: "TacotronConfig", ap: "AudioProcessor" = None, tokenizer: "TTSTokenizer" = None, speaker_manager: SpeakerManager = None, ): super().__init__(config, ap, tokenizer, speaker_manager) # pass all config fields to `self` # for fewer code change for key in config: setattr(self, key, config[key]) # set speaker embedding channel size for determining `in_channels` for the connected layers. # `init_multispeaker` needs to be called once more in training to initialize the speaker embedding layer based # on the number of speakers infered from the dataset. if self.use_speaker_embedding or self.use_d_vector_file: self.init_multispeaker(config) self.decoder_in_features += self.embedded_speaker_dim # add speaker embedding dim if self.use_gst: self.decoder_in_features += self.gst.gst_embedding_dim if self.use_capacitron_vae: self.decoder_in_features += self.capacitron_vae.capacitron_VAE_embedding_dim # embedding layer self.embedding = nn.Embedding(self.num_chars, 256, padding_idx=0) self.embedding.weight.data.normal_(0, 0.3) # base model layers self.encoder = Encoder(self.encoder_in_features) self.decoder = Decoder( self.decoder_in_features, self.decoder_output_dim, self.r, self.memory_size, self.attention_type, self.windowing, self.attention_norm, self.prenet_type, self.prenet_dropout, self.use_forward_attn, self.transition_agent, self.forward_attn_mask, self.location_attn, self.attention_heads, self.separate_stopnet, self.max_decoder_steps, ) self.postnet = PostCBHG(self.decoder_output_dim) self.last_linear = nn.Linear(self.postnet.cbhg.gru_features * 2, self.out_channels) # setup prenet dropout self.decoder.prenet.dropout_at_inference = self.prenet_dropout_at_inference # global style token layers if self.gst and self.use_gst: self.gst_layer = GST( num_mel=self.decoder_output_dim, num_heads=self.gst.gst_num_heads, num_style_tokens=self.gst.gst_num_style_tokens, gst_embedding_dim=self.gst.gst_embedding_dim, ) # Capacitron layers if self.capacitron_vae and self.use_capacitron_vae: self.capacitron_vae_layer = CapacitronVAE( num_mel=self.decoder_output_dim, encoder_output_dim=self.encoder_in_features, capacitron_VAE_embedding_dim=self.capacitron_vae. capacitron_VAE_embedding_dim, speaker_embedding_dim=self.embedded_speaker_dim if self.use_speaker_embedding and self.capacitron_vae.capacitron_use_speaker_embedding else None, text_summary_embedding_dim=self.capacitron_vae. capacitron_text_summary_embedding_dim if self.capacitron_vae.capacitron_use_text_summary_embeddings else None, ) # backward pass decoder if self.bidirectional_decoder: self._init_backward_decoder() # setup DDC if self.double_decoder_consistency: self.coarse_decoder = Decoder( self.decoder_in_features, self.decoder_output_dim, self.ddc_r, self.memory_size, self.attention_type, self.windowing, self.attention_norm, self.prenet_type, self.prenet_dropout, self.use_forward_attn, self.transition_agent, self.forward_attn_mask, self.location_attn, self.attention_heads, self.separate_stopnet, self.max_decoder_steps, )
class Tacotron(BaseTacotron): """Tacotron as in https://arxiv.org/abs/1703.10135 It's an autoregressive encoder-attention-decoder-postnet architecture. Check `TacotronConfig` for the arguments. Args: config (TacotronConfig): Configuration for the Tacotron model. speaker_manager (SpeakerManager): Speaker manager to handle multi-speaker settings. Only use if the model is a multi-speaker model. Defaults to None. """ def __init__( self, config: "TacotronConfig", ap: "AudioProcessor" = None, tokenizer: "TTSTokenizer" = None, speaker_manager: SpeakerManager = None, ): super().__init__(config, ap, tokenizer, speaker_manager) # pass all config fields to `self` # for fewer code change for key in config: setattr(self, key, config[key]) # set speaker embedding channel size for determining `in_channels` for the connected layers. # `init_multispeaker` needs to be called once more in training to initialize the speaker embedding layer based # on the number of speakers infered from the dataset. if self.use_speaker_embedding or self.use_d_vector_file: self.init_multispeaker(config) self.decoder_in_features += self.embedded_speaker_dim # add speaker embedding dim if self.use_gst: self.decoder_in_features += self.gst.gst_embedding_dim if self.use_capacitron_vae: self.decoder_in_features += self.capacitron_vae.capacitron_VAE_embedding_dim # embedding layer self.embedding = nn.Embedding(self.num_chars, 256, padding_idx=0) self.embedding.weight.data.normal_(0, 0.3) # base model layers self.encoder = Encoder(self.encoder_in_features) self.decoder = Decoder( self.decoder_in_features, self.decoder_output_dim, self.r, self.memory_size, self.attention_type, self.windowing, self.attention_norm, self.prenet_type, self.prenet_dropout, self.use_forward_attn, self.transition_agent, self.forward_attn_mask, self.location_attn, self.attention_heads, self.separate_stopnet, self.max_decoder_steps, ) self.postnet = PostCBHG(self.decoder_output_dim) self.last_linear = nn.Linear(self.postnet.cbhg.gru_features * 2, self.out_channels) # setup prenet dropout self.decoder.prenet.dropout_at_inference = self.prenet_dropout_at_inference # global style token layers if self.gst and self.use_gst: self.gst_layer = GST( num_mel=self.decoder_output_dim, num_heads=self.gst.gst_num_heads, num_style_tokens=self.gst.gst_num_style_tokens, gst_embedding_dim=self.gst.gst_embedding_dim, ) # Capacitron layers if self.capacitron_vae and self.use_capacitron_vae: self.capacitron_vae_layer = CapacitronVAE( num_mel=self.decoder_output_dim, encoder_output_dim=self.encoder_in_features, capacitron_VAE_embedding_dim=self.capacitron_vae. capacitron_VAE_embedding_dim, speaker_embedding_dim=self.embedded_speaker_dim if self.use_speaker_embedding and self.capacitron_vae.capacitron_use_speaker_embedding else None, text_summary_embedding_dim=self.capacitron_vae. capacitron_text_summary_embedding_dim if self.capacitron_vae.capacitron_use_text_summary_embeddings else None, ) # backward pass decoder if self.bidirectional_decoder: self._init_backward_decoder() # setup DDC if self.double_decoder_consistency: self.coarse_decoder = Decoder( self.decoder_in_features, self.decoder_output_dim, self.ddc_r, self.memory_size, self.attention_type, self.windowing, self.attention_norm, self.prenet_type, self.prenet_dropout, self.use_forward_attn, self.transition_agent, self.forward_attn_mask, self.location_attn, self.attention_heads, self.separate_stopnet, self.max_decoder_steps, ) def forward( # pylint: disable=dangerous-default-value self, text, text_lengths, mel_specs=None, mel_lengths=None, aux_input={ "speaker_ids": None, "d_vectors": None }): """ Shapes: text: [B, T_in] text_lengths: [B] mel_specs: [B, T_out, C] mel_lengths: [B] aux_input: 'speaker_ids': [B, 1] and 'd_vectors':[B, C] """ aux_input = self._format_aux_input(aux_input) outputs = { "alignments_backward": None, "decoder_outputs_backward": None } inputs = self.embedding(text) input_mask, output_mask = self.compute_masks(text_lengths, mel_lengths) # B x T_in x encoder_in_features encoder_outputs = self.encoder(inputs) # sequence masking encoder_outputs = encoder_outputs * input_mask.unsqueeze(2).expand_as( encoder_outputs) # global style token if self.gst and self.use_gst: # B x gst_dim encoder_outputs = self.compute_gst(encoder_outputs, mel_specs) # speaker embedding if self.use_speaker_embedding or self.use_d_vector_file: if not self.use_d_vector_file: # B x 1 x speaker_embed_dim embedded_speakers = self.speaker_embedding( aux_input["speaker_ids"])[:, None] else: # B x 1 x speaker_embed_dim embedded_speakers = torch.unsqueeze(aux_input["d_vectors"], 1) encoder_outputs = self._concat_speaker_embedding( encoder_outputs, embedded_speakers) # Capacitron if self.capacitron_vae and self.use_capacitron_vae: # B x capacitron_VAE_embedding_dim encoder_outputs, *capacitron_vae_outputs = self.compute_capacitron_VAE_embedding( encoder_outputs, reference_mel_info=[mel_specs, mel_lengths], text_info=[inputs, text_lengths] if self.capacitron_vae.capacitron_use_text_summary_embeddings else None, speaker_embedding=embedded_speakers if self.capacitron_vae.capacitron_use_speaker_embedding else None, ) else: capacitron_vae_outputs = None # decoder_outputs: B x decoder_in_features x T_out # alignments: B x T_in x encoder_in_features # stop_tokens: B x T_in decoder_outputs, alignments, stop_tokens = self.decoder( encoder_outputs, mel_specs, input_mask) # sequence masking if output_mask is not None: decoder_outputs = decoder_outputs * output_mask.unsqueeze( 1).expand_as(decoder_outputs) # B x T_out x decoder_in_features postnet_outputs = self.postnet(decoder_outputs) # sequence masking if output_mask is not None: postnet_outputs = postnet_outputs * output_mask.unsqueeze( 2).expand_as(postnet_outputs) # B x T_out x posnet_dim postnet_outputs = self.last_linear(postnet_outputs) # B x T_out x decoder_in_features decoder_outputs = decoder_outputs.transpose(1, 2).contiguous() if self.bidirectional_decoder: decoder_outputs_backward, alignments_backward = self._backward_pass( mel_specs, encoder_outputs, input_mask) outputs["alignments_backward"] = alignments_backward outputs["decoder_outputs_backward"] = decoder_outputs_backward if self.double_decoder_consistency: decoder_outputs_backward, alignments_backward = self._coarse_decoder_pass( mel_specs, encoder_outputs, alignments, input_mask) outputs["alignments_backward"] = alignments_backward outputs["decoder_outputs_backward"] = decoder_outputs_backward outputs.update({ "model_outputs": postnet_outputs, "decoder_outputs": decoder_outputs, "alignments": alignments, "stop_tokens": stop_tokens, "capacitron_vae_outputs": capacitron_vae_outputs, }) return outputs @torch.no_grad() def inference(self, text_input, aux_input=None): aux_input = self._format_aux_input(aux_input) inputs = self.embedding(text_input) encoder_outputs = self.encoder(inputs) if self.gst and self.use_gst: # B x gst_dim encoder_outputs = self.compute_gst(encoder_outputs, aux_input["style_mel"], aux_input["d_vectors"]) if self.capacitron_vae and self.use_capacitron_vae: if aux_input["style_text"] is not None: style_text_embedding = self.embedding(aux_input["style_text"]) style_text_length = torch.tensor( [style_text_embedding.size(1)], dtype=torch.int64).to(encoder_outputs.device) # pylint: disable=not-callable reference_mel_length = ( torch.tensor([aux_input["style_mel"].size(1)], dtype=torch.int64).to(encoder_outputs.device) if aux_input["style_mel"] is not None else None) # pylint: disable=not-callable # B x capacitron_VAE_embedding_dim encoder_outputs, *_ = self.compute_capacitron_VAE_embedding( encoder_outputs, reference_mel_info=[ aux_input["style_mel"], reference_mel_length ] if aux_input["style_mel"] is not None else None, text_info=[style_text_embedding, style_text_length] if aux_input["style_text"] is not None else None, speaker_embedding=aux_input["d_vectors"] if self.capacitron_vae.capacitron_use_speaker_embedding else None, ) if self.num_speakers > 1: if not self.use_d_vector_file: # B x 1 x speaker_embed_dim embedded_speakers = self.speaker_embedding( aux_input["speaker_ids"]) # reshape embedded_speakers if embedded_speakers.ndim == 1: embedded_speakers = embedded_speakers[None, None, :] elif embedded_speakers.ndim == 2: embedded_speakers = embedded_speakers[None, :] else: # B x 1 x speaker_embed_dim embedded_speakers = torch.unsqueeze(aux_input["d_vectors"], 1) encoder_outputs = self._concat_speaker_embedding( encoder_outputs, embedded_speakers) decoder_outputs, alignments, stop_tokens = self.decoder.inference( encoder_outputs) postnet_outputs = self.postnet(decoder_outputs) postnet_outputs = self.last_linear(postnet_outputs) decoder_outputs = decoder_outputs.transpose(1, 2) outputs = { "model_outputs": postnet_outputs, "decoder_outputs": decoder_outputs, "alignments": alignments, "stop_tokens": stop_tokens, } return outputs def before_backward_pass(self, loss_dict, optimizer) -> None: # Extracting custom training specific operations for capacitron # from the trainer if self.use_capacitron_vae: loss_dict["capacitron_vae_beta_loss"].backward() optimizer.first_step() def train_step(self, batch: Dict, criterion: torch.nn.Module) -> Tuple[Dict, Dict]: """Perform a single training step by fetching the right set of samples from the batch. Args: batch ([Dict]): A dictionary of input tensors. criterion ([torch.nn.Module]): Callable criterion to compute model loss. """ text_input = batch["text_input"] text_lengths = batch["text_lengths"] mel_input = batch["mel_input"] mel_lengths = batch["mel_lengths"] linear_input = batch["linear_input"] stop_targets = batch["stop_targets"] stop_target_lengths = batch["stop_target_lengths"] speaker_ids = batch["speaker_ids"] d_vectors = batch["d_vectors"] aux_input = {"speaker_ids": speaker_ids, "d_vectors": d_vectors} outputs = self.forward(text_input, text_lengths, mel_input, mel_lengths, aux_input) # set the [alignment] lengths wrt reduction factor for guided attention if mel_lengths.max() % self.decoder.r != 0: alignment_lengths = ( mel_lengths + (self.decoder.r - (mel_lengths.max() % self.decoder.r))) // self.decoder.r else: alignment_lengths = mel_lengths // self.decoder.r # compute loss with autocast(enabled=False): # use float32 for the criterion loss_dict = criterion( outputs["model_outputs"].float(), outputs["decoder_outputs"].float(), mel_input.float(), linear_input.float(), outputs["stop_tokens"].float(), stop_targets.float(), stop_target_lengths, outputs["capacitron_vae_outputs"] if self.capacitron_vae else None, mel_lengths, None if outputs["decoder_outputs_backward"] is None else outputs["decoder_outputs_backward"].float(), outputs["alignments"].float(), alignment_lengths, None if outputs["alignments_backward"] is None else outputs["alignments_backward"].float(), text_lengths, ) # compute alignment error (the lower the better ) align_error = 1 - alignment_diagonal_score(outputs["alignments"]) loss_dict["align_error"] = align_error return outputs, loss_dict def get_optimizer(self) -> List: if self.use_capacitron_vae: return CapacitronOptimizer(self.config, self.named_parameters()) return get_optimizer(self.config.optimizer, self.config.optimizer_params, self.config.lr, self) def get_scheduler(self, optimizer: object): opt = optimizer.primary_optimizer if self.use_capacitron_vae else optimizer return get_scheduler(self.config.lr_scheduler, self.config.lr_scheduler_params, opt) def before_gradient_clipping(self): if self.use_capacitron_vae: # Capacitron model specific gradient clipping model_params_to_clip = [] for name, param in self.named_parameters(): if param.requires_grad: if name != "capacitron_vae_layer.beta": model_params_to_clip.append(param) torch.nn.utils.clip_grad_norm_( model_params_to_clip, self.capacitron_vae.capacitron_grad_clip) def _create_logs(self, batch, outputs, ap): postnet_outputs = outputs["model_outputs"] decoder_outputs = outputs["decoder_outputs"] alignments = outputs["alignments"] alignments_backward = outputs["alignments_backward"] mel_input = batch["mel_input"] linear_input = batch["linear_input"] pred_linear_spec = postnet_outputs[0].data.cpu().numpy() pred_mel_spec = decoder_outputs[0].data.cpu().numpy() gt_linear_spec = linear_input[0].data.cpu().numpy() gt_mel_spec = mel_input[0].data.cpu().numpy() align_img = alignments[0].data.cpu().numpy() figures = { "pred_linear_spec": plot_spectrogram(pred_linear_spec, ap, output_fig=False), "real_linear_spec": plot_spectrogram(gt_linear_spec, ap, output_fig=False), "pred_mel_spec": plot_spectrogram(pred_mel_spec, ap, output_fig=False), "real_mel_spec": plot_spectrogram(gt_mel_spec, ap, output_fig=False), "alignment": plot_alignment(align_img, output_fig=False), } if self.bidirectional_decoder or self.double_decoder_consistency: figures["alignment_backward"] = plot_alignment( alignments_backward[0].data.cpu().numpy(), output_fig=False) # Sample audio audio = ap.inv_spectrogram(pred_linear_spec.T) return figures, {"audio": audio} def train_log(self, batch: dict, outputs: dict, logger: "Logger", assets: dict, steps: int) -> None: # pylint: disable=no-self-use figures, audios = self._create_logs(batch, outputs, self.ap) logger.train_figures(steps, figures) logger.train_audios(steps, audios, self.ap.sample_rate) def eval_step(self, batch: dict, criterion: nn.Module): return self.train_step(batch, criterion) def eval_log(self, batch: dict, outputs: dict, logger: "Logger", assets: dict, steps: int) -> None: figures, audios = self._create_logs(batch, outputs, self.ap) logger.eval_figures(steps, figures) logger.eval_audios(steps, audios, self.ap.sample_rate) @staticmethod def init_from_config(config: "TacotronConfig", samples: Union[List[List], List[Dict]] = None): """Initiate model from config Args: config (TacotronConfig): Model config. samples (Union[List[List], List[Dict]]): Training samples to parse speaker ids for training. Defaults to None. """ from TTS.utils.audio import AudioProcessor ap = AudioProcessor.init_from_config(config) tokenizer, new_config = TTSTokenizer.init_from_config(config) speaker_manager = SpeakerManager.init_from_config(config, samples) return Tacotron(new_config, ap, tokenizer, speaker_manager)
class Tacotron(BaseTacotron): """Tacotron as in https://arxiv.org/abs/1703.10135 It's an autoregressive encoder-attention-decoder-postnet architecture. Check `TacotronConfig` for the arguments. """ def __init__(self, config: Coqpit): super().__init__(config) chars, self.config = self.get_characters(config) config.num_chars = self.num_chars = len(chars) # pass all config fields to `self` # for fewer code change for key in config: setattr(self, key, config[key]) # set speaker embedding channel size for determining `in_channels` for the connected layers. # `init_multispeaker` needs to be called once more in training to initialize the speaker embedding layer based # on the number of speakers infered from the dataset. if self.use_speaker_embedding or self.use_d_vector_file: self.init_multispeaker(config) self.decoder_in_features += self.embedded_speaker_dim # add speaker embedding dim if self.use_gst: self.decoder_in_features += self.gst.gst_embedding_dim # embedding layer self.embedding = nn.Embedding(self.num_chars, 256, padding_idx=0) self.embedding.weight.data.normal_(0, 0.3) # base model layers self.encoder = Encoder(self.encoder_in_features) self.decoder = Decoder( self.decoder_in_features, self.decoder_output_dim, self.r, self.memory_size, self.attention_type, self.windowing, self.attention_norm, self.prenet_type, self.prenet_dropout, self.use_forward_attn, self.transition_agent, self.forward_attn_mask, self.location_attn, self.attention_heads, self.separate_stopnet, self.max_decoder_steps, ) self.postnet = PostCBHG(self.decoder_output_dim) self.last_linear = nn.Linear(self.postnet.cbhg.gru_features * 2, self.out_channels) # setup prenet dropout self.decoder.prenet.dropout_at_inference = self.prenet_dropout_at_inference # global style token layers if self.gst and self.use_gst: self.gst_layer = GST( num_mel=self.decoder_output_dim, num_heads=self.gst.gst_num_heads, num_style_tokens=self.gst.gst_num_style_tokens, gst_embedding_dim=self.gst.gst_embedding_dim, ) # backward pass decoder if self.bidirectional_decoder: self._init_backward_decoder() # setup DDC if self.double_decoder_consistency: self.coarse_decoder = Decoder( self.decoder_in_features, self.decoder_output_dim, self.ddc_r, self.memory_size, self.attention_type, self.windowing, self.attention_norm, self.prenet_type, self.prenet_dropout, self.use_forward_attn, self.transition_agent, self.forward_attn_mask, self.location_attn, self.attention_heads, self.separate_stopnet, self.max_decoder_steps, ) def forward( # pylint: disable=dangerous-default-value self, text, text_lengths, mel_specs=None, mel_lengths=None, aux_input={ "speaker_ids": None, "d_vectors": None }): """ Shapes: text: [B, T_in] text_lengths: [B] mel_specs: [B, T_out, C] mel_lengths: [B] aux_input: 'speaker_ids': [B, 1] and 'd_vectors':[B, C] """ aux_input = self._format_aux_input(aux_input) outputs = { "alignments_backward": None, "decoder_outputs_backward": None } inputs = self.embedding(text) input_mask, output_mask = self.compute_masks(text_lengths, mel_lengths) # B x T_in x encoder_in_features encoder_outputs = self.encoder(inputs) # sequence masking encoder_outputs = encoder_outputs * input_mask.unsqueeze(2).expand_as( encoder_outputs) # global style token if self.gst and self.use_gst: # B x gst_dim encoder_outputs = self.compute_gst(encoder_outputs, mel_specs) # speaker embedding if self.use_speaker_embedding or self.use_d_vector_file: if not self.use_d_vector_file: # B x 1 x speaker_embed_dim embedded_speakers = self.speaker_embedding( aux_input["speaker_ids"])[:, None] else: # B x 1 x speaker_embed_dim embedded_speakers = torch.unsqueeze(aux_input["d_vectors"], 1) encoder_outputs = self._concat_speaker_embedding( encoder_outputs, embedded_speakers) # decoder_outputs: B x decoder_in_features x T_out # alignments: B x T_in x encoder_in_features # stop_tokens: B x T_in decoder_outputs, alignments, stop_tokens = self.decoder( encoder_outputs, mel_specs, input_mask) # sequence masking if output_mask is not None: decoder_outputs = decoder_outputs * output_mask.unsqueeze( 1).expand_as(decoder_outputs) # B x T_out x decoder_in_features postnet_outputs = self.postnet(decoder_outputs) # sequence masking if output_mask is not None: postnet_outputs = postnet_outputs * output_mask.unsqueeze( 2).expand_as(postnet_outputs) # B x T_out x posnet_dim postnet_outputs = self.last_linear(postnet_outputs) # B x T_out x decoder_in_features decoder_outputs = decoder_outputs.transpose(1, 2).contiguous() if self.bidirectional_decoder: decoder_outputs_backward, alignments_backward = self._backward_pass( mel_specs, encoder_outputs, input_mask) outputs["alignments_backward"] = alignments_backward outputs["decoder_outputs_backward"] = decoder_outputs_backward if self.double_decoder_consistency: decoder_outputs_backward, alignments_backward = self._coarse_decoder_pass( mel_specs, encoder_outputs, alignments, input_mask) outputs["alignments_backward"] = alignments_backward outputs["decoder_outputs_backward"] = decoder_outputs_backward outputs.update({ "model_outputs": postnet_outputs, "decoder_outputs": decoder_outputs, "alignments": alignments, "stop_tokens": stop_tokens, }) return outputs @torch.no_grad() def inference(self, text_input, aux_input=None): aux_input = self._format_aux_input(aux_input) inputs = self.embedding(text_input) encoder_outputs = self.encoder(inputs) if self.gst and self.use_gst: # B x gst_dim encoder_outputs = self.compute_gst(encoder_outputs, aux_input["style_mel"], aux_input["d_vectors"]) if self.num_speakers > 1: if not self.use_d_vector_file: # B x 1 x speaker_embed_dim embedded_speakers = self.speaker_embedding( aux_input["speaker_ids"]) # reshape embedded_speakers if embedded_speakers.ndim == 1: embedded_speakers = embedded_speakers[None, None, :] elif embedded_speakers.ndim == 2: embedded_speakers = embedded_speakers[None, :] else: # B x 1 x speaker_embed_dim embedded_speakers = torch.unsqueeze(aux_input["d_vectors"], 1) encoder_outputs = self._concat_speaker_embedding( encoder_outputs, embedded_speakers) decoder_outputs, alignments, stop_tokens = self.decoder.inference( encoder_outputs) postnet_outputs = self.postnet(decoder_outputs) postnet_outputs = self.last_linear(postnet_outputs) decoder_outputs = decoder_outputs.transpose(1, 2) outputs = { "model_outputs": postnet_outputs, "decoder_outputs": decoder_outputs, "alignments": alignments, "stop_tokens": stop_tokens, } return outputs def train_step(self, batch, criterion): """Perform a single training step by fetching the right set if samples from the batch. Args: batch ([type]): [description] criterion ([type]): [description] """ text_input = batch["text_input"] text_lengths = batch["text_lengths"] mel_input = batch["mel_input"] mel_lengths = batch["mel_lengths"] linear_input = batch["linear_input"] stop_targets = batch["stop_targets"] stop_target_lengths = batch["stop_target_lengths"] speaker_ids = batch["speaker_ids"] d_vectors = batch["d_vectors"] # forward pass model outputs = self.forward( text_input, text_lengths, mel_input, mel_lengths, aux_input={ "speaker_ids": speaker_ids, "d_vectors": d_vectors }, ) # set the [alignment] lengths wrt reduction factor for guided attention if mel_lengths.max() % self.decoder.r != 0: alignment_lengths = ( mel_lengths + (self.decoder.r - (mel_lengths.max() % self.decoder.r))) // self.decoder.r else: alignment_lengths = mel_lengths // self.decoder.r aux_input = {"speaker_ids": speaker_ids, "d_vectors": d_vectors} outputs = self.forward(text_input, text_lengths, mel_input, mel_lengths, aux_input) # compute loss loss_dict = criterion( outputs["model_outputs"], outputs["decoder_outputs"], mel_input, linear_input, outputs["stop_tokens"], stop_targets, stop_target_lengths, mel_lengths, outputs["decoder_outputs_backward"], outputs["alignments"], alignment_lengths, outputs["alignments_backward"], text_lengths, ) # compute alignment error (the lower the better ) align_error = 1 - alignment_diagonal_score(outputs["alignments"]) loss_dict["align_error"] = align_error return outputs, loss_dict def train_log(self, ap: AudioProcessor, batch: dict, outputs: dict) -> Tuple[Dict, Dict]: postnet_outputs = outputs["model_outputs"] alignments = outputs["alignments"] alignments_backward = outputs["alignments_backward"] mel_input = batch["mel_input"] pred_spec = postnet_outputs[0].data.cpu().numpy() gt_spec = mel_input[0].data.cpu().numpy() align_img = alignments[0].data.cpu().numpy() figures = { "prediction": plot_spectrogram(pred_spec, ap, output_fig=False), "ground_truth": plot_spectrogram(gt_spec, ap, output_fig=False), "alignment": plot_alignment(align_img, output_fig=False), } if self.bidirectional_decoder or self.double_decoder_consistency: figures["alignment_backward"] = plot_alignment( alignments_backward[0].data.cpu().numpy(), output_fig=False) # Sample audio train_audio = ap.inv_spectrogram(pred_spec.T) return figures, {"audio": train_audio} def eval_step(self, batch, criterion): return self.train_step(batch, criterion) def eval_log(self, ap, batch, outputs): return self.train_log(ap, batch, outputs)
class Tacotron(TacotronAbstract): """Tacotron as in https://arxiv.org/abs/1703.10135 It's an autoregressive encoder-attention-decoder-postnet architecture. Args: num_chars (int): number of input characters to define the size of embedding layer. num_speakers (int): number of speakers in the dataset. >1 enables multi-speaker training and model learns speaker embeddings. r (int): initial model reduction rate. postnet_output_dim (int, optional): postnet output channels. Defaults to 80. decoder_output_dim (int, optional): decoder output channels. Defaults to 80. attn_type (str, optional): attention type. Check ```TTS.tts.layers.attentions.init_attn```. Defaults to 'original'. attn_win (bool, optional): enable/disable attention windowing. It especially useful at inference to keep attention alignment diagonal. Defaults to False. attn_norm (str, optional): Attention normalization method. "sigmoid" or "softmax". Defaults to "softmax". prenet_type (str, optional): prenet type for the decoder. Defaults to "original". prenet_dropout (bool, optional): prenet dropout rate. Defaults to True. forward_attn (bool, optional): enable/disable forward attention. It is only valid if ```attn_type``` is ```original```. Defaults to False. trans_agent (bool, optional): enable/disable transition agent in forward attention. Defaults to False. forward_attn_mask (bool, optional): enable/disable extra masking over forward attention. Defaults to False. location_attn (bool, optional): enable/disable location sensitive attention. It is only valid if ```attn_type``` is ```original```. Defaults to True. attn_K (int, optional): Number of attention heads for GMM attention. Defaults to 5. separate_stopnet (bool, optional): enable/disable separate stopnet training without only gradient flow from stopnet to the rest of the model. Defaults to True. bidirectional_decoder (bool, optional): enable/disable bidirectional decoding. Defaults to False. double_decoder_consistency (bool, optional): enable/disable double decoder consistency. Defaults to False. ddc_r (int, optional): reduction rate for the coarse decoder of double decoder consistency. Defaults to None. encoder_in_features (int, optional): input channels for the encoder. Defaults to 512. decoder_in_features (int, optional): input channels for the decoder. Defaults to 512. speaker_embedding_dim (int, optional): external speaker conditioning vector channels. Defaults to None. gst (bool, optional): enable/disable global style token learning. Defaults to False. gst_embedding_dim (int, optional): size of channels for GST vectors. Defaults to 512. gst_num_heads (int, optional): number of attention heads for GST. Defaults to 4. gst_style_tokens (int, optional): number of GST tokens. Defaults to 10. gst_use_speaker_embedding (bool, optional): enable/disable inputing speaker embedding to GST. Defaults to False. memory_size (int, optional): size of the history queue fed to the prenet. Model feeds the last ```memory_size``` output frames to the prenet. """ def __init__(self, num_chars, num_speakers, r=5, postnet_output_dim=1025, decoder_output_dim=80, attn_type='original', attn_win=False, attn_norm="sigmoid", prenet_type="original", prenet_dropout=True, forward_attn=False, trans_agent=False, forward_attn_mask=False, location_attn=True, attn_K=5, separate_stopnet=True, bidirectional_decoder=False, double_decoder_consistency=False, ddc_r=None, encoder_in_features=256, decoder_in_features=256, speaker_embedding_dim=None, gst=False, gst_embedding_dim=256, gst_num_heads=4, gst_style_tokens=10, memory_size=5, gst_use_speaker_embedding=False): super(Tacotron, self).__init__( num_chars, num_speakers, r, postnet_output_dim, decoder_output_dim, attn_type, attn_win, attn_norm, prenet_type, prenet_dropout, forward_attn, trans_agent, forward_attn_mask, location_attn, attn_K, separate_stopnet, bidirectional_decoder, double_decoder_consistency, ddc_r, encoder_in_features, decoder_in_features, speaker_embedding_dim, gst, gst_embedding_dim, gst_num_heads, gst_style_tokens, gst_use_speaker_embedding) # speaker embedding layers if self.num_speakers > 1: if not self.embeddings_per_sample: speaker_embedding_dim = 256 self.speaker_embedding = nn.Embedding(self.num_speakers, speaker_embedding_dim) self.speaker_embedding.weight.data.normal_(0, 0.3) # speaker and gst embeddings is concat in decoder input if self.num_speakers > 1: self.decoder_in_features += speaker_embedding_dim # add speaker embedding dim # embedding layer self.embedding = nn.Embedding(num_chars, 256, padding_idx=0) self.embedding.weight.data.normal_(0, 0.3) # base model layers self.encoder = Encoder(self.encoder_in_features) self.decoder = Decoder(self.decoder_in_features, decoder_output_dim, r, memory_size, attn_type, attn_win, attn_norm, prenet_type, prenet_dropout, forward_attn, trans_agent, forward_attn_mask, location_attn, attn_K, separate_stopnet) self.postnet = PostCBHG(decoder_output_dim) self.last_linear = nn.Linear(self.postnet.cbhg.gru_features * 2, postnet_output_dim) # global style token layers if self.gst: self.gst_layer = GST(num_mel=80, num_heads=gst_num_heads, num_style_tokens=gst_style_tokens, gst_embedding_dim=self.gst_embedding_dim, speaker_embedding_dim=speaker_embedding_dim if self.embeddings_per_sample and self.gst_use_speaker_embedding else None) # backward pass decoder if self.bidirectional_decoder: self._init_backward_decoder() # setup DDC if self.double_decoder_consistency: self.coarse_decoder = Decoder( self.decoder_in_features, decoder_output_dim, ddc_r, memory_size, attn_type, attn_win, attn_norm, prenet_type, prenet_dropout, forward_attn, trans_agent, forward_attn_mask, location_attn, attn_K, separate_stopnet) def forward(self, characters, text_lengths, mel_specs, mel_lengths=None, speaker_ids=None, speaker_embeddings=None): """ Shapes: characters: [B, T_in] text_lengths: [B] mel_specs: [B, T_out, C] mel_lengths: [B] speaker_ids: [B, 1] speaker_embeddings: [B, C] """ input_mask, output_mask = self.compute_masks(text_lengths, mel_lengths) # B x T_in x embed_dim inputs = self.embedding(characters) # B x T_in x encoder_in_features encoder_outputs = self.encoder(inputs) # sequence masking encoder_outputs = encoder_outputs * input_mask.unsqueeze(2).expand_as( encoder_outputs) # global style token if self.gst: # B x gst_dim encoder_outputs = self.compute_gst( encoder_outputs, mel_specs, speaker_embeddings if self.gst_use_speaker_embedding else None) # speaker embedding if self.num_speakers > 1: if not self.embeddings_per_sample: # B x 1 x speaker_embed_dim speaker_embeddings = self.speaker_embedding(speaker_ids)[:, None] else: # B x 1 x speaker_embed_dim speaker_embeddings = torch.unsqueeze(speaker_embeddings, 1) encoder_outputs = self._concat_speaker_embedding( encoder_outputs, speaker_embeddings) # decoder_outputs: B x decoder_in_features x T_out # alignments: B x T_in x encoder_in_features # stop_tokens: B x T_in decoder_outputs, alignments, stop_tokens = self.decoder( encoder_outputs, mel_specs, input_mask) # sequence masking if output_mask is not None: decoder_outputs = decoder_outputs * output_mask.unsqueeze( 1).expand_as(decoder_outputs) # B x T_out x decoder_in_features postnet_outputs = self.postnet(decoder_outputs) # sequence masking if output_mask is not None: postnet_outputs = postnet_outputs * output_mask.unsqueeze( 2).expand_as(postnet_outputs) # B x T_out x posnet_dim postnet_outputs = self.last_linear(postnet_outputs) # B x T_out x decoder_in_features decoder_outputs = decoder_outputs.transpose(1, 2).contiguous() if self.bidirectional_decoder: decoder_outputs_backward, alignments_backward = self._backward_pass( mel_specs, encoder_outputs, input_mask) return decoder_outputs, postnet_outputs, alignments, stop_tokens, decoder_outputs_backward, alignments_backward if self.double_decoder_consistency: decoder_outputs_backward, alignments_backward = self._coarse_decoder_pass( mel_specs, encoder_outputs, alignments, input_mask) return decoder_outputs, postnet_outputs, alignments, stop_tokens, decoder_outputs_backward, alignments_backward return decoder_outputs, postnet_outputs, alignments, stop_tokens @torch.no_grad() def inference(self, characters, speaker_ids=None, style_mel=None, speaker_embeddings=None): inputs = self.embedding(characters) encoder_outputs = self.encoder(inputs) if self.gst: # B x gst_dim encoder_outputs = self.compute_gst( encoder_outputs, style_mel, speaker_embeddings if self.gst_use_speaker_embedding else None) if self.num_speakers > 1: if not self.embeddings_per_sample: # B x 1 x speaker_embed_dim speaker_embeddings = self.speaker_embedding(speaker_ids)[:, None] else: # B x 1 x speaker_embed_dim speaker_embeddings = torch.unsqueeze(speaker_embeddings, 1) encoder_outputs = self._concat_speaker_embedding( encoder_outputs, speaker_embeddings) decoder_outputs, alignments, stop_tokens = self.decoder.inference( encoder_outputs) postnet_outputs = self.postnet(decoder_outputs) postnet_outputs = self.last_linear(postnet_outputs) decoder_outputs = decoder_outputs.transpose(1, 2) return decoder_outputs, postnet_outputs, alignments, stop_tokens
def __init__(self, num_chars, num_speakers, r=5, postnet_output_dim=1025, decoder_output_dim=80, attn_type='original', attn_win=False, attn_norm="sigmoid", prenet_type="original", prenet_dropout=True, forward_attn=False, trans_agent=False, forward_attn_mask=False, location_attn=True, attn_K=5, separate_stopnet=True, bidirectional_decoder=False, double_decoder_consistency=False, ddc_r=None, encoder_in_features=256, decoder_in_features=256, speaker_embedding_dim=None, gst=False, gst_embedding_dim=256, gst_num_heads=4, gst_style_tokens=10, memory_size=5, gst_use_speaker_embedding=False): super(Tacotron, self).__init__( num_chars, num_speakers, r, postnet_output_dim, decoder_output_dim, attn_type, attn_win, attn_norm, prenet_type, prenet_dropout, forward_attn, trans_agent, forward_attn_mask, location_attn, attn_K, separate_stopnet, bidirectional_decoder, double_decoder_consistency, ddc_r, encoder_in_features, decoder_in_features, speaker_embedding_dim, gst, gst_embedding_dim, gst_num_heads, gst_style_tokens, gst_use_speaker_embedding) # speaker embedding layers if self.num_speakers > 1: if not self.embeddings_per_sample: speaker_embedding_dim = 256 self.speaker_embedding = nn.Embedding(self.num_speakers, speaker_embedding_dim) self.speaker_embedding.weight.data.normal_(0, 0.3) # speaker and gst embeddings is concat in decoder input if self.num_speakers > 1: self.decoder_in_features += speaker_embedding_dim # add speaker embedding dim # embedding layer self.embedding = nn.Embedding(num_chars, 256, padding_idx=0) self.embedding.weight.data.normal_(0, 0.3) # base model layers self.encoder = Encoder(self.encoder_in_features) self.decoder = Decoder(self.decoder_in_features, decoder_output_dim, r, memory_size, attn_type, attn_win, attn_norm, prenet_type, prenet_dropout, forward_attn, trans_agent, forward_attn_mask, location_attn, attn_K, separate_stopnet) self.postnet = PostCBHG(decoder_output_dim) self.last_linear = nn.Linear(self.postnet.cbhg.gru_features * 2, postnet_output_dim) # global style token layers if self.gst: self.gst_layer = GST(num_mel=80, num_heads=gst_num_heads, num_style_tokens=gst_style_tokens, gst_embedding_dim=self.gst_embedding_dim, speaker_embedding_dim=speaker_embedding_dim if self.embeddings_per_sample and self.gst_use_speaker_embedding else None) # backward pass decoder if self.bidirectional_decoder: self._init_backward_decoder() # setup DDC if self.double_decoder_consistency: self.coarse_decoder = Decoder( self.decoder_in_features, decoder_output_dim, ddc_r, memory_size, attn_type, attn_win, attn_norm, prenet_type, prenet_dropout, forward_attn, trans_agent, forward_attn_mask, location_attn, attn_K, separate_stopnet)