def test_in_out():
        layer = Decoder(
            in_channels=256,
            frame_channels=80,
            r=2,
            memory_size=4,
            attn_windowing=False,
            attn_norm="sigmoid",
            attn_K=5,
            attn_type="original",
            prenet_type="original",
            prenet_dropout=True,
            forward_attn=True,
            trans_agent=True,
            forward_attn_mask=True,
            location_attn=True,
            separate_stopnet=True,
        )
        dummy_input = T.rand(4, 8, 256)
        dummy_memory = T.rand(4, 2, 80)

        output, alignment, stop_tokens = layer(dummy_input,
                                               dummy_memory,
                                               mask=None)

        assert output.shape[0] == 4
        assert output.shape[1] == 80, "size not {}".format(output.shape[1])
        assert output.shape[2] == 2, "size not {}".format(output.shape[2])
        assert stop_tokens.shape[0] == 4
Example #2
0
    def __init__(
        self,
        config: "TacotronConfig",
        ap: "AudioProcessor" = None,
        tokenizer: "TTSTokenizer" = None,
        speaker_manager: SpeakerManager = None,
    ):

        super().__init__(config, ap, tokenizer, speaker_manager)

        # pass all config fields to `self`
        # for fewer code change
        for key in config:
            setattr(self, key, config[key])

        # set speaker embedding channel size for determining `in_channels` for the connected layers.
        # `init_multispeaker` needs to be called once more in training to initialize the speaker embedding layer based
        # on the number of speakers infered from the dataset.
        if self.use_speaker_embedding or self.use_d_vector_file:
            self.init_multispeaker(config)
            self.decoder_in_features += self.embedded_speaker_dim  # add speaker embedding dim

        if self.use_gst:
            self.decoder_in_features += self.gst.gst_embedding_dim

        if self.use_capacitron_vae:
            self.decoder_in_features += self.capacitron_vae.capacitron_VAE_embedding_dim

        # embedding layer
        self.embedding = nn.Embedding(self.num_chars, 256, padding_idx=0)
        self.embedding.weight.data.normal_(0, 0.3)

        # base model layers
        self.encoder = Encoder(self.encoder_in_features)
        self.decoder = Decoder(
            self.decoder_in_features,
            self.decoder_output_dim,
            self.r,
            self.memory_size,
            self.attention_type,
            self.windowing,
            self.attention_norm,
            self.prenet_type,
            self.prenet_dropout,
            self.use_forward_attn,
            self.transition_agent,
            self.forward_attn_mask,
            self.location_attn,
            self.attention_heads,
            self.separate_stopnet,
            self.max_decoder_steps,
        )
        self.postnet = PostCBHG(self.decoder_output_dim)
        self.last_linear = nn.Linear(self.postnet.cbhg.gru_features * 2,
                                     self.out_channels)

        # setup prenet dropout
        self.decoder.prenet.dropout_at_inference = self.prenet_dropout_at_inference

        # global style token layers
        if self.gst and self.use_gst:
            self.gst_layer = GST(
                num_mel=self.decoder_output_dim,
                num_heads=self.gst.gst_num_heads,
                num_style_tokens=self.gst.gst_num_style_tokens,
                gst_embedding_dim=self.gst.gst_embedding_dim,
            )

        # Capacitron layers
        if self.capacitron_vae and self.use_capacitron_vae:
            self.capacitron_vae_layer = CapacitronVAE(
                num_mel=self.decoder_output_dim,
                encoder_output_dim=self.encoder_in_features,
                capacitron_VAE_embedding_dim=self.capacitron_vae.
                capacitron_VAE_embedding_dim,
                speaker_embedding_dim=self.embedded_speaker_dim
                if self.use_speaker_embedding and
                self.capacitron_vae.capacitron_use_speaker_embedding else None,
                text_summary_embedding_dim=self.capacitron_vae.
                capacitron_text_summary_embedding_dim
                if self.capacitron_vae.capacitron_use_text_summary_embeddings
                else None,
            )

        # backward pass decoder
        if self.bidirectional_decoder:
            self._init_backward_decoder()
        # setup DDC
        if self.double_decoder_consistency:
            self.coarse_decoder = Decoder(
                self.decoder_in_features,
                self.decoder_output_dim,
                self.ddc_r,
                self.memory_size,
                self.attention_type,
                self.windowing,
                self.attention_norm,
                self.prenet_type,
                self.prenet_dropout,
                self.use_forward_attn,
                self.transition_agent,
                self.forward_attn_mask,
                self.location_attn,
                self.attention_heads,
                self.separate_stopnet,
                self.max_decoder_steps,
            )
Example #3
0
class Tacotron(BaseTacotron):
    """Tacotron as in https://arxiv.org/abs/1703.10135
    It's an autoregressive encoder-attention-decoder-postnet architecture.
    Check `TacotronConfig` for the arguments.

    Args:
        config (TacotronConfig): Configuration for the Tacotron model.
        speaker_manager (SpeakerManager): Speaker manager to handle multi-speaker settings. Only use if the model is
            a multi-speaker model. Defaults to None.
    """
    def __init__(
        self,
        config: "TacotronConfig",
        ap: "AudioProcessor" = None,
        tokenizer: "TTSTokenizer" = None,
        speaker_manager: SpeakerManager = None,
    ):

        super().__init__(config, ap, tokenizer, speaker_manager)

        # pass all config fields to `self`
        # for fewer code change
        for key in config:
            setattr(self, key, config[key])

        # set speaker embedding channel size for determining `in_channels` for the connected layers.
        # `init_multispeaker` needs to be called once more in training to initialize the speaker embedding layer based
        # on the number of speakers infered from the dataset.
        if self.use_speaker_embedding or self.use_d_vector_file:
            self.init_multispeaker(config)
            self.decoder_in_features += self.embedded_speaker_dim  # add speaker embedding dim

        if self.use_gst:
            self.decoder_in_features += self.gst.gst_embedding_dim

        if self.use_capacitron_vae:
            self.decoder_in_features += self.capacitron_vae.capacitron_VAE_embedding_dim

        # embedding layer
        self.embedding = nn.Embedding(self.num_chars, 256, padding_idx=0)
        self.embedding.weight.data.normal_(0, 0.3)

        # base model layers
        self.encoder = Encoder(self.encoder_in_features)
        self.decoder = Decoder(
            self.decoder_in_features,
            self.decoder_output_dim,
            self.r,
            self.memory_size,
            self.attention_type,
            self.windowing,
            self.attention_norm,
            self.prenet_type,
            self.prenet_dropout,
            self.use_forward_attn,
            self.transition_agent,
            self.forward_attn_mask,
            self.location_attn,
            self.attention_heads,
            self.separate_stopnet,
            self.max_decoder_steps,
        )
        self.postnet = PostCBHG(self.decoder_output_dim)
        self.last_linear = nn.Linear(self.postnet.cbhg.gru_features * 2,
                                     self.out_channels)

        # setup prenet dropout
        self.decoder.prenet.dropout_at_inference = self.prenet_dropout_at_inference

        # global style token layers
        if self.gst and self.use_gst:
            self.gst_layer = GST(
                num_mel=self.decoder_output_dim,
                num_heads=self.gst.gst_num_heads,
                num_style_tokens=self.gst.gst_num_style_tokens,
                gst_embedding_dim=self.gst.gst_embedding_dim,
            )

        # Capacitron layers
        if self.capacitron_vae and self.use_capacitron_vae:
            self.capacitron_vae_layer = CapacitronVAE(
                num_mel=self.decoder_output_dim,
                encoder_output_dim=self.encoder_in_features,
                capacitron_VAE_embedding_dim=self.capacitron_vae.
                capacitron_VAE_embedding_dim,
                speaker_embedding_dim=self.embedded_speaker_dim
                if self.use_speaker_embedding and
                self.capacitron_vae.capacitron_use_speaker_embedding else None,
                text_summary_embedding_dim=self.capacitron_vae.
                capacitron_text_summary_embedding_dim
                if self.capacitron_vae.capacitron_use_text_summary_embeddings
                else None,
            )

        # backward pass decoder
        if self.bidirectional_decoder:
            self._init_backward_decoder()
        # setup DDC
        if self.double_decoder_consistency:
            self.coarse_decoder = Decoder(
                self.decoder_in_features,
                self.decoder_output_dim,
                self.ddc_r,
                self.memory_size,
                self.attention_type,
                self.windowing,
                self.attention_norm,
                self.prenet_type,
                self.prenet_dropout,
                self.use_forward_attn,
                self.transition_agent,
                self.forward_attn_mask,
                self.location_attn,
                self.attention_heads,
                self.separate_stopnet,
                self.max_decoder_steps,
            )

    def forward(  # pylint: disable=dangerous-default-value
            self,
            text,
            text_lengths,
            mel_specs=None,
            mel_lengths=None,
            aux_input={
                "speaker_ids": None,
                "d_vectors": None
            }):
        """
        Shapes:
            text: [B, T_in]
            text_lengths: [B]
            mel_specs: [B, T_out, C]
            mel_lengths: [B]
            aux_input: 'speaker_ids': [B, 1] and  'd_vectors':[B, C]
        """
        aux_input = self._format_aux_input(aux_input)
        outputs = {
            "alignments_backward": None,
            "decoder_outputs_backward": None
        }
        inputs = self.embedding(text)
        input_mask, output_mask = self.compute_masks(text_lengths, mel_lengths)
        # B x T_in x encoder_in_features
        encoder_outputs = self.encoder(inputs)
        # sequence masking
        encoder_outputs = encoder_outputs * input_mask.unsqueeze(2).expand_as(
            encoder_outputs)
        # global style token
        if self.gst and self.use_gst:
            # B x gst_dim
            encoder_outputs = self.compute_gst(encoder_outputs, mel_specs)
        # speaker embedding
        if self.use_speaker_embedding or self.use_d_vector_file:
            if not self.use_d_vector_file:
                # B x 1 x speaker_embed_dim
                embedded_speakers = self.speaker_embedding(
                    aux_input["speaker_ids"])[:, None]
            else:
                # B x 1 x speaker_embed_dim
                embedded_speakers = torch.unsqueeze(aux_input["d_vectors"], 1)
            encoder_outputs = self._concat_speaker_embedding(
                encoder_outputs, embedded_speakers)
        # Capacitron
        if self.capacitron_vae and self.use_capacitron_vae:
            # B x capacitron_VAE_embedding_dim
            encoder_outputs, *capacitron_vae_outputs = self.compute_capacitron_VAE_embedding(
                encoder_outputs,
                reference_mel_info=[mel_specs, mel_lengths],
                text_info=[inputs, text_lengths]
                if self.capacitron_vae.capacitron_use_text_summary_embeddings
                else None,
                speaker_embedding=embedded_speakers if
                self.capacitron_vae.capacitron_use_speaker_embedding else None,
            )
        else:
            capacitron_vae_outputs = None
        # decoder_outputs: B x decoder_in_features x T_out
        # alignments: B x T_in x encoder_in_features
        # stop_tokens: B x T_in
        decoder_outputs, alignments, stop_tokens = self.decoder(
            encoder_outputs, mel_specs, input_mask)
        # sequence masking
        if output_mask is not None:
            decoder_outputs = decoder_outputs * output_mask.unsqueeze(
                1).expand_as(decoder_outputs)
        # B x T_out x decoder_in_features
        postnet_outputs = self.postnet(decoder_outputs)
        # sequence masking
        if output_mask is not None:
            postnet_outputs = postnet_outputs * output_mask.unsqueeze(
                2).expand_as(postnet_outputs)
        # B x T_out x posnet_dim
        postnet_outputs = self.last_linear(postnet_outputs)
        # B x T_out x decoder_in_features
        decoder_outputs = decoder_outputs.transpose(1, 2).contiguous()
        if self.bidirectional_decoder:
            decoder_outputs_backward, alignments_backward = self._backward_pass(
                mel_specs, encoder_outputs, input_mask)
            outputs["alignments_backward"] = alignments_backward
            outputs["decoder_outputs_backward"] = decoder_outputs_backward
        if self.double_decoder_consistency:
            decoder_outputs_backward, alignments_backward = self._coarse_decoder_pass(
                mel_specs, encoder_outputs, alignments, input_mask)
            outputs["alignments_backward"] = alignments_backward
            outputs["decoder_outputs_backward"] = decoder_outputs_backward
        outputs.update({
            "model_outputs": postnet_outputs,
            "decoder_outputs": decoder_outputs,
            "alignments": alignments,
            "stop_tokens": stop_tokens,
            "capacitron_vae_outputs": capacitron_vae_outputs,
        })
        return outputs

    @torch.no_grad()
    def inference(self, text_input, aux_input=None):
        aux_input = self._format_aux_input(aux_input)
        inputs = self.embedding(text_input)
        encoder_outputs = self.encoder(inputs)
        if self.gst and self.use_gst:
            # B x gst_dim
            encoder_outputs = self.compute_gst(encoder_outputs,
                                               aux_input["style_mel"],
                                               aux_input["d_vectors"])
        if self.capacitron_vae and self.use_capacitron_vae:
            if aux_input["style_text"] is not None:
                style_text_embedding = self.embedding(aux_input["style_text"])
                style_text_length = torch.tensor(
                    [style_text_embedding.size(1)],
                    dtype=torch.int64).to(encoder_outputs.device)  # pylint: disable=not-callable
            reference_mel_length = (
                torch.tensor([aux_input["style_mel"].size(1)],
                             dtype=torch.int64).to(encoder_outputs.device)
                if aux_input["style_mel"] is not None else None)  # pylint: disable=not-callable
            # B x capacitron_VAE_embedding_dim
            encoder_outputs, *_ = self.compute_capacitron_VAE_embedding(
                encoder_outputs,
                reference_mel_info=[
                    aux_input["style_mel"], reference_mel_length
                ] if aux_input["style_mel"] is not None else None,
                text_info=[style_text_embedding, style_text_length]
                if aux_input["style_text"] is not None else None,
                speaker_embedding=aux_input["d_vectors"] if
                self.capacitron_vae.capacitron_use_speaker_embedding else None,
            )
        if self.num_speakers > 1:
            if not self.use_d_vector_file:
                # B x 1 x speaker_embed_dim
                embedded_speakers = self.speaker_embedding(
                    aux_input["speaker_ids"])
                # reshape embedded_speakers
                if embedded_speakers.ndim == 1:
                    embedded_speakers = embedded_speakers[None, None, :]
                elif embedded_speakers.ndim == 2:
                    embedded_speakers = embedded_speakers[None, :]
            else:
                # B x 1 x speaker_embed_dim
                embedded_speakers = torch.unsqueeze(aux_input["d_vectors"], 1)
            encoder_outputs = self._concat_speaker_embedding(
                encoder_outputs, embedded_speakers)
        decoder_outputs, alignments, stop_tokens = self.decoder.inference(
            encoder_outputs)
        postnet_outputs = self.postnet(decoder_outputs)
        postnet_outputs = self.last_linear(postnet_outputs)
        decoder_outputs = decoder_outputs.transpose(1, 2)
        outputs = {
            "model_outputs": postnet_outputs,
            "decoder_outputs": decoder_outputs,
            "alignments": alignments,
            "stop_tokens": stop_tokens,
        }
        return outputs

    def before_backward_pass(self, loss_dict, optimizer) -> None:
        # Extracting custom training specific operations for capacitron
        # from the trainer
        if self.use_capacitron_vae:
            loss_dict["capacitron_vae_beta_loss"].backward()
            optimizer.first_step()

    def train_step(self, batch: Dict,
                   criterion: torch.nn.Module) -> Tuple[Dict, Dict]:
        """Perform a single training step by fetching the right set of samples from the batch.

        Args:
            batch ([Dict]): A dictionary of input tensors.
            criterion ([torch.nn.Module]): Callable criterion to compute model loss.
        """
        text_input = batch["text_input"]
        text_lengths = batch["text_lengths"]
        mel_input = batch["mel_input"]
        mel_lengths = batch["mel_lengths"]
        linear_input = batch["linear_input"]
        stop_targets = batch["stop_targets"]
        stop_target_lengths = batch["stop_target_lengths"]
        speaker_ids = batch["speaker_ids"]
        d_vectors = batch["d_vectors"]

        aux_input = {"speaker_ids": speaker_ids, "d_vectors": d_vectors}
        outputs = self.forward(text_input, text_lengths, mel_input,
                               mel_lengths, aux_input)

        # set the [alignment] lengths wrt reduction factor for guided attention
        if mel_lengths.max() % self.decoder.r != 0:
            alignment_lengths = (
                mel_lengths +
                (self.decoder.r -
                 (mel_lengths.max() % self.decoder.r))) // self.decoder.r
        else:
            alignment_lengths = mel_lengths // self.decoder.r

        # compute loss
        with autocast(enabled=False):  # use float32 for the criterion
            loss_dict = criterion(
                outputs["model_outputs"].float(),
                outputs["decoder_outputs"].float(),
                mel_input.float(),
                linear_input.float(),
                outputs["stop_tokens"].float(),
                stop_targets.float(),
                stop_target_lengths,
                outputs["capacitron_vae_outputs"]
                if self.capacitron_vae else None,
                mel_lengths,
                None if outputs["decoder_outputs_backward"] is None else
                outputs["decoder_outputs_backward"].float(),
                outputs["alignments"].float(),
                alignment_lengths,
                None if outputs["alignments_backward"] is None else
                outputs["alignments_backward"].float(),
                text_lengths,
            )

        # compute alignment error (the lower the better )
        align_error = 1 - alignment_diagonal_score(outputs["alignments"])
        loss_dict["align_error"] = align_error
        return outputs, loss_dict

    def get_optimizer(self) -> List:
        if self.use_capacitron_vae:
            return CapacitronOptimizer(self.config, self.named_parameters())
        return get_optimizer(self.config.optimizer,
                             self.config.optimizer_params, self.config.lr,
                             self)

    def get_scheduler(self, optimizer: object):
        opt = optimizer.primary_optimizer if self.use_capacitron_vae else optimizer
        return get_scheduler(self.config.lr_scheduler,
                             self.config.lr_scheduler_params, opt)

    def before_gradient_clipping(self):
        if self.use_capacitron_vae:
            # Capacitron model specific gradient clipping
            model_params_to_clip = []
            for name, param in self.named_parameters():
                if param.requires_grad:
                    if name != "capacitron_vae_layer.beta":
                        model_params_to_clip.append(param)
            torch.nn.utils.clip_grad_norm_(
                model_params_to_clip, self.capacitron_vae.capacitron_grad_clip)

    def _create_logs(self, batch, outputs, ap):
        postnet_outputs = outputs["model_outputs"]
        decoder_outputs = outputs["decoder_outputs"]
        alignments = outputs["alignments"]
        alignments_backward = outputs["alignments_backward"]
        mel_input = batch["mel_input"]
        linear_input = batch["linear_input"]

        pred_linear_spec = postnet_outputs[0].data.cpu().numpy()
        pred_mel_spec = decoder_outputs[0].data.cpu().numpy()
        gt_linear_spec = linear_input[0].data.cpu().numpy()
        gt_mel_spec = mel_input[0].data.cpu().numpy()
        align_img = alignments[0].data.cpu().numpy()

        figures = {
            "pred_linear_spec":
            plot_spectrogram(pred_linear_spec, ap, output_fig=False),
            "real_linear_spec":
            plot_spectrogram(gt_linear_spec, ap, output_fig=False),
            "pred_mel_spec":
            plot_spectrogram(pred_mel_spec, ap, output_fig=False),
            "real_mel_spec":
            plot_spectrogram(gt_mel_spec, ap, output_fig=False),
            "alignment":
            plot_alignment(align_img, output_fig=False),
        }

        if self.bidirectional_decoder or self.double_decoder_consistency:
            figures["alignment_backward"] = plot_alignment(
                alignments_backward[0].data.cpu().numpy(), output_fig=False)

        # Sample audio
        audio = ap.inv_spectrogram(pred_linear_spec.T)
        return figures, {"audio": audio}

    def train_log(self, batch: dict, outputs: dict, logger: "Logger",
                  assets: dict, steps: int) -> None:  # pylint: disable=no-self-use
        figures, audios = self._create_logs(batch, outputs, self.ap)
        logger.train_figures(steps, figures)
        logger.train_audios(steps, audios, self.ap.sample_rate)

    def eval_step(self, batch: dict, criterion: nn.Module):
        return self.train_step(batch, criterion)

    def eval_log(self, batch: dict, outputs: dict, logger: "Logger",
                 assets: dict, steps: int) -> None:
        figures, audios = self._create_logs(batch, outputs, self.ap)
        logger.eval_figures(steps, figures)
        logger.eval_audios(steps, audios, self.ap.sample_rate)

    @staticmethod
    def init_from_config(config: "TacotronConfig",
                         samples: Union[List[List], List[Dict]] = None):
        """Initiate model from config

        Args:
            config (TacotronConfig): Model config.
            samples (Union[List[List], List[Dict]]): Training samples to parse speaker ids for training.
                Defaults to None.
        """
        from TTS.utils.audio import AudioProcessor

        ap = AudioProcessor.init_from_config(config)
        tokenizer, new_config = TTSTokenizer.init_from_config(config)
        speaker_manager = SpeakerManager.init_from_config(config, samples)
        return Tacotron(new_config, ap, tokenizer, speaker_manager)
Example #4
0
class Tacotron(BaseTacotron):
    """Tacotron as in https://arxiv.org/abs/1703.10135
    It's an autoregressive encoder-attention-decoder-postnet architecture.
    Check `TacotronConfig` for the arguments.
    """
    def __init__(self, config: Coqpit):
        super().__init__(config)

        chars, self.config = self.get_characters(config)
        config.num_chars = self.num_chars = len(chars)

        # pass all config fields to `self`
        # for fewer code change
        for key in config:
            setattr(self, key, config[key])

        # set speaker embedding channel size for determining `in_channels` for the connected layers.
        # `init_multispeaker` needs to be called once more in training to initialize the speaker embedding layer based
        # on the number of speakers infered from the dataset.
        if self.use_speaker_embedding or self.use_d_vector_file:
            self.init_multispeaker(config)
            self.decoder_in_features += self.embedded_speaker_dim  # add speaker embedding dim

        if self.use_gst:
            self.decoder_in_features += self.gst.gst_embedding_dim

        # embedding layer
        self.embedding = nn.Embedding(self.num_chars, 256, padding_idx=0)
        self.embedding.weight.data.normal_(0, 0.3)

        # base model layers
        self.encoder = Encoder(self.encoder_in_features)
        self.decoder = Decoder(
            self.decoder_in_features,
            self.decoder_output_dim,
            self.r,
            self.memory_size,
            self.attention_type,
            self.windowing,
            self.attention_norm,
            self.prenet_type,
            self.prenet_dropout,
            self.use_forward_attn,
            self.transition_agent,
            self.forward_attn_mask,
            self.location_attn,
            self.attention_heads,
            self.separate_stopnet,
            self.max_decoder_steps,
        )
        self.postnet = PostCBHG(self.decoder_output_dim)
        self.last_linear = nn.Linear(self.postnet.cbhg.gru_features * 2,
                                     self.out_channels)

        # setup prenet dropout
        self.decoder.prenet.dropout_at_inference = self.prenet_dropout_at_inference

        # global style token layers
        if self.gst and self.use_gst:
            self.gst_layer = GST(
                num_mel=self.decoder_output_dim,
                num_heads=self.gst.gst_num_heads,
                num_style_tokens=self.gst.gst_num_style_tokens,
                gst_embedding_dim=self.gst.gst_embedding_dim,
            )

        # backward pass decoder
        if self.bidirectional_decoder:
            self._init_backward_decoder()
        # setup DDC
        if self.double_decoder_consistency:
            self.coarse_decoder = Decoder(
                self.decoder_in_features,
                self.decoder_output_dim,
                self.ddc_r,
                self.memory_size,
                self.attention_type,
                self.windowing,
                self.attention_norm,
                self.prenet_type,
                self.prenet_dropout,
                self.use_forward_attn,
                self.transition_agent,
                self.forward_attn_mask,
                self.location_attn,
                self.attention_heads,
                self.separate_stopnet,
                self.max_decoder_steps,
            )

    def forward(  # pylint: disable=dangerous-default-value
            self,
            text,
            text_lengths,
            mel_specs=None,
            mel_lengths=None,
            aux_input={
                "speaker_ids": None,
                "d_vectors": None
            }):
        """
        Shapes:
            text: [B, T_in]
            text_lengths: [B]
            mel_specs: [B, T_out, C]
            mel_lengths: [B]
            aux_input: 'speaker_ids': [B, 1] and  'd_vectors':[B, C]
        """
        aux_input = self._format_aux_input(aux_input)
        outputs = {
            "alignments_backward": None,
            "decoder_outputs_backward": None
        }
        inputs = self.embedding(text)
        input_mask, output_mask = self.compute_masks(text_lengths, mel_lengths)
        # B x T_in x encoder_in_features
        encoder_outputs = self.encoder(inputs)
        # sequence masking
        encoder_outputs = encoder_outputs * input_mask.unsqueeze(2).expand_as(
            encoder_outputs)
        # global style token
        if self.gst and self.use_gst:
            # B x gst_dim
            encoder_outputs = self.compute_gst(encoder_outputs, mel_specs)
        # speaker embedding
        if self.use_speaker_embedding or self.use_d_vector_file:
            if not self.use_d_vector_file:
                # B x 1 x speaker_embed_dim
                embedded_speakers = self.speaker_embedding(
                    aux_input["speaker_ids"])[:, None]
            else:
                # B x 1 x speaker_embed_dim
                embedded_speakers = torch.unsqueeze(aux_input["d_vectors"], 1)
            encoder_outputs = self._concat_speaker_embedding(
                encoder_outputs, embedded_speakers)
        # decoder_outputs: B x decoder_in_features x T_out
        # alignments: B x T_in x encoder_in_features
        # stop_tokens: B x T_in
        decoder_outputs, alignments, stop_tokens = self.decoder(
            encoder_outputs, mel_specs, input_mask)
        # sequence masking
        if output_mask is not None:
            decoder_outputs = decoder_outputs * output_mask.unsqueeze(
                1).expand_as(decoder_outputs)
        # B x T_out x decoder_in_features
        postnet_outputs = self.postnet(decoder_outputs)
        # sequence masking
        if output_mask is not None:
            postnet_outputs = postnet_outputs * output_mask.unsqueeze(
                2).expand_as(postnet_outputs)
        # B x T_out x posnet_dim
        postnet_outputs = self.last_linear(postnet_outputs)
        # B x T_out x decoder_in_features
        decoder_outputs = decoder_outputs.transpose(1, 2).contiguous()
        if self.bidirectional_decoder:
            decoder_outputs_backward, alignments_backward = self._backward_pass(
                mel_specs, encoder_outputs, input_mask)
            outputs["alignments_backward"] = alignments_backward
            outputs["decoder_outputs_backward"] = decoder_outputs_backward
        if self.double_decoder_consistency:
            decoder_outputs_backward, alignments_backward = self._coarse_decoder_pass(
                mel_specs, encoder_outputs, alignments, input_mask)
            outputs["alignments_backward"] = alignments_backward
            outputs["decoder_outputs_backward"] = decoder_outputs_backward
        outputs.update({
            "model_outputs": postnet_outputs,
            "decoder_outputs": decoder_outputs,
            "alignments": alignments,
            "stop_tokens": stop_tokens,
        })
        return outputs

    @torch.no_grad()
    def inference(self, text_input, aux_input=None):
        aux_input = self._format_aux_input(aux_input)
        inputs = self.embedding(text_input)
        encoder_outputs = self.encoder(inputs)
        if self.gst and self.use_gst:
            # B x gst_dim
            encoder_outputs = self.compute_gst(encoder_outputs,
                                               aux_input["style_mel"],
                                               aux_input["d_vectors"])
        if self.num_speakers > 1:
            if not self.use_d_vector_file:
                # B x 1 x speaker_embed_dim
                embedded_speakers = self.speaker_embedding(
                    aux_input["speaker_ids"])
                # reshape embedded_speakers
                if embedded_speakers.ndim == 1:
                    embedded_speakers = embedded_speakers[None, None, :]
                elif embedded_speakers.ndim == 2:
                    embedded_speakers = embedded_speakers[None, :]
            else:
                # B x 1 x speaker_embed_dim
                embedded_speakers = torch.unsqueeze(aux_input["d_vectors"], 1)
            encoder_outputs = self._concat_speaker_embedding(
                encoder_outputs, embedded_speakers)
        decoder_outputs, alignments, stop_tokens = self.decoder.inference(
            encoder_outputs)
        postnet_outputs = self.postnet(decoder_outputs)
        postnet_outputs = self.last_linear(postnet_outputs)
        decoder_outputs = decoder_outputs.transpose(1, 2)
        outputs = {
            "model_outputs": postnet_outputs,
            "decoder_outputs": decoder_outputs,
            "alignments": alignments,
            "stop_tokens": stop_tokens,
        }
        return outputs

    def train_step(self, batch, criterion):
        """Perform a single training step by fetching the right set if samples from the batch.

        Args:
            batch ([type]): [description]
            criterion ([type]): [description]
        """
        text_input = batch["text_input"]
        text_lengths = batch["text_lengths"]
        mel_input = batch["mel_input"]
        mel_lengths = batch["mel_lengths"]
        linear_input = batch["linear_input"]
        stop_targets = batch["stop_targets"]
        stop_target_lengths = batch["stop_target_lengths"]
        speaker_ids = batch["speaker_ids"]
        d_vectors = batch["d_vectors"]

        # forward pass model
        outputs = self.forward(
            text_input,
            text_lengths,
            mel_input,
            mel_lengths,
            aux_input={
                "speaker_ids": speaker_ids,
                "d_vectors": d_vectors
            },
        )

        # set the [alignment] lengths wrt reduction factor for guided attention
        if mel_lengths.max() % self.decoder.r != 0:
            alignment_lengths = (
                mel_lengths +
                (self.decoder.r -
                 (mel_lengths.max() % self.decoder.r))) // self.decoder.r
        else:
            alignment_lengths = mel_lengths // self.decoder.r

        aux_input = {"speaker_ids": speaker_ids, "d_vectors": d_vectors}
        outputs = self.forward(text_input, text_lengths, mel_input,
                               mel_lengths, aux_input)

        # compute loss
        loss_dict = criterion(
            outputs["model_outputs"],
            outputs["decoder_outputs"],
            mel_input,
            linear_input,
            outputs["stop_tokens"],
            stop_targets,
            stop_target_lengths,
            mel_lengths,
            outputs["decoder_outputs_backward"],
            outputs["alignments"],
            alignment_lengths,
            outputs["alignments_backward"],
            text_lengths,
        )

        # compute alignment error (the lower the better )
        align_error = 1 - alignment_diagonal_score(outputs["alignments"])
        loss_dict["align_error"] = align_error
        return outputs, loss_dict

    def train_log(self, ap: AudioProcessor, batch: dict,
                  outputs: dict) -> Tuple[Dict, Dict]:
        postnet_outputs = outputs["model_outputs"]
        alignments = outputs["alignments"]
        alignments_backward = outputs["alignments_backward"]
        mel_input = batch["mel_input"]

        pred_spec = postnet_outputs[0].data.cpu().numpy()
        gt_spec = mel_input[0].data.cpu().numpy()
        align_img = alignments[0].data.cpu().numpy()

        figures = {
            "prediction": plot_spectrogram(pred_spec, ap, output_fig=False),
            "ground_truth": plot_spectrogram(gt_spec, ap, output_fig=False),
            "alignment": plot_alignment(align_img, output_fig=False),
        }

        if self.bidirectional_decoder or self.double_decoder_consistency:
            figures["alignment_backward"] = plot_alignment(
                alignments_backward[0].data.cpu().numpy(), output_fig=False)

        # Sample audio
        train_audio = ap.inv_spectrogram(pred_spec.T)
        return figures, {"audio": train_audio}

    def eval_step(self, batch, criterion):
        return self.train_step(batch, criterion)

    def eval_log(self, ap, batch, outputs):
        return self.train_log(ap, batch, outputs)
Example #5
0
class Tacotron(TacotronAbstract):
    """Tacotron as in https://arxiv.org/abs/1703.10135

    It's an autoregressive encoder-attention-decoder-postnet architecture.

    Args:
        num_chars (int): number of input characters to define the size of embedding layer.
        num_speakers (int): number of speakers in the dataset. >1 enables multi-speaker training and model learns speaker embeddings.
        r (int): initial model reduction rate.
        postnet_output_dim (int, optional): postnet output channels. Defaults to 80.
        decoder_output_dim (int, optional): decoder output channels. Defaults to 80.
        attn_type (str, optional): attention type. Check ```TTS.tts.layers.attentions.init_attn```. Defaults to 'original'.
        attn_win (bool, optional): enable/disable attention windowing.
            It especially useful at inference to keep attention alignment diagonal. Defaults to False.
        attn_norm (str, optional): Attention normalization method. "sigmoid" or "softmax". Defaults to "softmax".
        prenet_type (str, optional): prenet type for the decoder. Defaults to "original".
        prenet_dropout (bool, optional): prenet dropout rate. Defaults to True.
        forward_attn (bool, optional): enable/disable forward attention.
            It is only valid if ```attn_type``` is ```original```.  Defaults to False.
        trans_agent (bool, optional): enable/disable transition agent in forward attention. Defaults to False.
        forward_attn_mask (bool, optional): enable/disable extra masking over forward attention. Defaults to False.
        location_attn (bool, optional): enable/disable location sensitive attention.
            It is only valid if ```attn_type``` is ```original```. Defaults to True.
        attn_K (int, optional): Number of attention heads for GMM attention. Defaults to 5.
        separate_stopnet (bool, optional): enable/disable separate stopnet training without only gradient
            flow from stopnet to the rest of the model.  Defaults to True.
        bidirectional_decoder (bool, optional): enable/disable bidirectional decoding. Defaults to False.
        double_decoder_consistency (bool, optional): enable/disable double decoder consistency. Defaults to False.
        ddc_r (int, optional): reduction rate for the coarse decoder of double decoder consistency. Defaults to None.
        encoder_in_features (int, optional): input channels for the encoder. Defaults to 512.
        decoder_in_features (int, optional): input channels for the decoder. Defaults to 512.
        speaker_embedding_dim (int, optional): external speaker conditioning vector channels. Defaults to None.
        gst (bool, optional): enable/disable global style token learning. Defaults to False.
        gst_embedding_dim (int, optional): size of channels for GST vectors. Defaults to 512.
        gst_num_heads (int, optional): number of attention heads for GST. Defaults to 4.
        gst_style_tokens (int, optional): number of GST tokens. Defaults to 10.
        gst_use_speaker_embedding (bool, optional): enable/disable inputing speaker embedding to GST. Defaults to False.
        memory_size (int, optional): size of the history queue fed to the prenet. Model feeds the last ```memory_size```
            output frames to the prenet.
    """
    def __init__(self,
                 num_chars,
                 num_speakers,
                 r=5,
                 postnet_output_dim=1025,
                 decoder_output_dim=80,
                 attn_type='original',
                 attn_win=False,
                 attn_norm="sigmoid",
                 prenet_type="original",
                 prenet_dropout=True,
                 forward_attn=False,
                 trans_agent=False,
                 forward_attn_mask=False,
                 location_attn=True,
                 attn_K=5,
                 separate_stopnet=True,
                 bidirectional_decoder=False,
                 double_decoder_consistency=False,
                 ddc_r=None,
                 encoder_in_features=256,
                 decoder_in_features=256,
                 speaker_embedding_dim=None,
                 gst=False,
                 gst_embedding_dim=256,
                 gst_num_heads=4,
                 gst_style_tokens=10,
                 memory_size=5,
                 gst_use_speaker_embedding=False):
        super(Tacotron, self).__init__(
            num_chars, num_speakers, r, postnet_output_dim, decoder_output_dim,
            attn_type, attn_win, attn_norm, prenet_type, prenet_dropout,
            forward_attn, trans_agent, forward_attn_mask, location_attn,
            attn_K, separate_stopnet, bidirectional_decoder,
            double_decoder_consistency, ddc_r, encoder_in_features,
            decoder_in_features, speaker_embedding_dim, gst, gst_embedding_dim,
            gst_num_heads, gst_style_tokens, gst_use_speaker_embedding)

        # speaker embedding layers
        if self.num_speakers > 1:
            if not self.embeddings_per_sample:
                speaker_embedding_dim = 256
                self.speaker_embedding = nn.Embedding(self.num_speakers,
                                                      speaker_embedding_dim)
                self.speaker_embedding.weight.data.normal_(0, 0.3)

        # speaker and gst embeddings is concat in decoder input
        if self.num_speakers > 1:
            self.decoder_in_features += speaker_embedding_dim  # add speaker embedding dim

        # embedding layer
        self.embedding = nn.Embedding(num_chars, 256, padding_idx=0)
        self.embedding.weight.data.normal_(0, 0.3)

        # base model layers
        self.encoder = Encoder(self.encoder_in_features)
        self.decoder = Decoder(self.decoder_in_features, decoder_output_dim, r,
                               memory_size, attn_type, attn_win, attn_norm,
                               prenet_type, prenet_dropout, forward_attn,
                               trans_agent, forward_attn_mask, location_attn,
                               attn_K, separate_stopnet)
        self.postnet = PostCBHG(decoder_output_dim)
        self.last_linear = nn.Linear(self.postnet.cbhg.gru_features * 2,
                                     postnet_output_dim)

        # global style token layers
        if self.gst:
            self.gst_layer = GST(num_mel=80,
                                 num_heads=gst_num_heads,
                                 num_style_tokens=gst_style_tokens,
                                 gst_embedding_dim=self.gst_embedding_dim,
                                 speaker_embedding_dim=speaker_embedding_dim
                                 if self.embeddings_per_sample
                                 and self.gst_use_speaker_embedding else None)
        # backward pass decoder
        if self.bidirectional_decoder:
            self._init_backward_decoder()
        # setup DDC
        if self.double_decoder_consistency:
            self.coarse_decoder = Decoder(
                self.decoder_in_features, decoder_output_dim, ddc_r,
                memory_size, attn_type, attn_win, attn_norm, prenet_type,
                prenet_dropout, forward_attn, trans_agent, forward_attn_mask,
                location_attn, attn_K, separate_stopnet)

    def forward(self,
                characters,
                text_lengths,
                mel_specs,
                mel_lengths=None,
                speaker_ids=None,
                speaker_embeddings=None):
        """
        Shapes:
            characters: [B, T_in]
            text_lengths: [B]
            mel_specs: [B, T_out, C]
            mel_lengths: [B]
            speaker_ids: [B, 1]
            speaker_embeddings: [B, C]
        """
        input_mask, output_mask = self.compute_masks(text_lengths, mel_lengths)
        # B x T_in x embed_dim
        inputs = self.embedding(characters)
        # B x T_in x encoder_in_features
        encoder_outputs = self.encoder(inputs)
        # sequence masking
        encoder_outputs = encoder_outputs * input_mask.unsqueeze(2).expand_as(
            encoder_outputs)
        # global style token
        if self.gst:
            # B x gst_dim
            encoder_outputs = self.compute_gst(
                encoder_outputs, mel_specs,
                speaker_embeddings if self.gst_use_speaker_embedding else None)
        # speaker embedding
        if self.num_speakers > 1:
            if not self.embeddings_per_sample:
                # B x 1 x speaker_embed_dim
                speaker_embeddings = self.speaker_embedding(speaker_ids)[:,
                                                                         None]
            else:
                # B x 1 x speaker_embed_dim
                speaker_embeddings = torch.unsqueeze(speaker_embeddings, 1)
            encoder_outputs = self._concat_speaker_embedding(
                encoder_outputs, speaker_embeddings)
        # decoder_outputs: B x decoder_in_features x T_out
        # alignments: B x T_in x encoder_in_features
        # stop_tokens: B x T_in
        decoder_outputs, alignments, stop_tokens = self.decoder(
            encoder_outputs, mel_specs, input_mask)
        # sequence masking
        if output_mask is not None:
            decoder_outputs = decoder_outputs * output_mask.unsqueeze(
                1).expand_as(decoder_outputs)
        # B x T_out x decoder_in_features
        postnet_outputs = self.postnet(decoder_outputs)
        # sequence masking
        if output_mask is not None:
            postnet_outputs = postnet_outputs * output_mask.unsqueeze(
                2).expand_as(postnet_outputs)
        # B x T_out x posnet_dim
        postnet_outputs = self.last_linear(postnet_outputs)
        # B x T_out x decoder_in_features
        decoder_outputs = decoder_outputs.transpose(1, 2).contiguous()
        if self.bidirectional_decoder:
            decoder_outputs_backward, alignments_backward = self._backward_pass(
                mel_specs, encoder_outputs, input_mask)
            return decoder_outputs, postnet_outputs, alignments, stop_tokens, decoder_outputs_backward, alignments_backward
        if self.double_decoder_consistency:
            decoder_outputs_backward, alignments_backward = self._coarse_decoder_pass(
                mel_specs, encoder_outputs, alignments, input_mask)
            return decoder_outputs, postnet_outputs, alignments, stop_tokens, decoder_outputs_backward, alignments_backward
        return decoder_outputs, postnet_outputs, alignments, stop_tokens

    @torch.no_grad()
    def inference(self,
                  characters,
                  speaker_ids=None,
                  style_mel=None,
                  speaker_embeddings=None):
        inputs = self.embedding(characters)
        encoder_outputs = self.encoder(inputs)
        if self.gst:
            # B x gst_dim
            encoder_outputs = self.compute_gst(
                encoder_outputs, style_mel,
                speaker_embeddings if self.gst_use_speaker_embedding else None)
        if self.num_speakers > 1:
            if not self.embeddings_per_sample:
                # B x 1 x speaker_embed_dim
                speaker_embeddings = self.speaker_embedding(speaker_ids)[:,
                                                                         None]
            else:
                # B x 1 x speaker_embed_dim
                speaker_embeddings = torch.unsqueeze(speaker_embeddings, 1)
            encoder_outputs = self._concat_speaker_embedding(
                encoder_outputs, speaker_embeddings)
        decoder_outputs, alignments, stop_tokens = self.decoder.inference(
            encoder_outputs)
        postnet_outputs = self.postnet(decoder_outputs)
        postnet_outputs = self.last_linear(postnet_outputs)
        decoder_outputs = decoder_outputs.transpose(1, 2)
        return decoder_outputs, postnet_outputs, alignments, stop_tokens
Example #6
0
    def __init__(self,
                 num_chars,
                 num_speakers,
                 r=5,
                 postnet_output_dim=1025,
                 decoder_output_dim=80,
                 attn_type='original',
                 attn_win=False,
                 attn_norm="sigmoid",
                 prenet_type="original",
                 prenet_dropout=True,
                 forward_attn=False,
                 trans_agent=False,
                 forward_attn_mask=False,
                 location_attn=True,
                 attn_K=5,
                 separate_stopnet=True,
                 bidirectional_decoder=False,
                 double_decoder_consistency=False,
                 ddc_r=None,
                 encoder_in_features=256,
                 decoder_in_features=256,
                 speaker_embedding_dim=None,
                 gst=False,
                 gst_embedding_dim=256,
                 gst_num_heads=4,
                 gst_style_tokens=10,
                 memory_size=5,
                 gst_use_speaker_embedding=False):
        super(Tacotron, self).__init__(
            num_chars, num_speakers, r, postnet_output_dim, decoder_output_dim,
            attn_type, attn_win, attn_norm, prenet_type, prenet_dropout,
            forward_attn, trans_agent, forward_attn_mask, location_attn,
            attn_K, separate_stopnet, bidirectional_decoder,
            double_decoder_consistency, ddc_r, encoder_in_features,
            decoder_in_features, speaker_embedding_dim, gst, gst_embedding_dim,
            gst_num_heads, gst_style_tokens, gst_use_speaker_embedding)

        # speaker embedding layers
        if self.num_speakers > 1:
            if not self.embeddings_per_sample:
                speaker_embedding_dim = 256
                self.speaker_embedding = nn.Embedding(self.num_speakers,
                                                      speaker_embedding_dim)
                self.speaker_embedding.weight.data.normal_(0, 0.3)

        # speaker and gst embeddings is concat in decoder input
        if self.num_speakers > 1:
            self.decoder_in_features += speaker_embedding_dim  # add speaker embedding dim

        # embedding layer
        self.embedding = nn.Embedding(num_chars, 256, padding_idx=0)
        self.embedding.weight.data.normal_(0, 0.3)

        # base model layers
        self.encoder = Encoder(self.encoder_in_features)
        self.decoder = Decoder(self.decoder_in_features, decoder_output_dim, r,
                               memory_size, attn_type, attn_win, attn_norm,
                               prenet_type, prenet_dropout, forward_attn,
                               trans_agent, forward_attn_mask, location_attn,
                               attn_K, separate_stopnet)
        self.postnet = PostCBHG(decoder_output_dim)
        self.last_linear = nn.Linear(self.postnet.cbhg.gru_features * 2,
                                     postnet_output_dim)

        # global style token layers
        if self.gst:
            self.gst_layer = GST(num_mel=80,
                                 num_heads=gst_num_heads,
                                 num_style_tokens=gst_style_tokens,
                                 gst_embedding_dim=self.gst_embedding_dim,
                                 speaker_embedding_dim=speaker_embedding_dim
                                 if self.embeddings_per_sample
                                 and self.gst_use_speaker_embedding else None)
        # backward pass decoder
        if self.bidirectional_decoder:
            self._init_backward_decoder()
        # setup DDC
        if self.double_decoder_consistency:
            self.coarse_decoder = Decoder(
                self.decoder_in_features, decoder_output_dim, ddc_r,
                memory_size, attn_type, attn_win, attn_norm, prenet_type,
                prenet_dropout, forward_attn, trans_agent, forward_attn_mask,
                location_attn, attn_K, separate_stopnet)