Example #1
0
def load_meta_data(datasets):
    meta_data_train_all = []
    meta_data_eval_all = []
    for dataset in datasets:
        name = dataset['name']
        root_path = dataset['path']
        meta_file_train = dataset['meta_file_train']
        meta_file_val = dataset['meta_file_val']
        preprocessor = get_preprocessor_by_name(name)

        meta_data_train = preprocessor(root_path, meta_file_train)
        if meta_file_val is None:
            meta_data_eval, meta_data_train = split_dataset(meta_data_train)
        else:
            meta_data_eval = preprocessor(root_path, meta_file_val)
        meta_data_train_all += meta_data_train
        meta_data_eval_all += meta_data_eval
    return meta_data_train_all, meta_data_eval_all
Example #2
0
def load_meta_data(datasets):
    meta_data_train_all = []
    meta_data_eval_all = []
    for dataset in datasets:
        name = dataset['name']
        root_path = dataset['path']
        meta_file_train = dataset['meta_file_train']
        meta_file_val = dataset['meta_file_val']
        preprocessor = get_preprocessor_by_name(name)
        meta_data_train = preprocessor(root_path, meta_file_train)
        print(
            f" | > Found {len(meta_data_train)} files in {Path(root_path).resolve()}"
        )
        if meta_file_val is None:
            meta_data_eval, meta_data_train = split_dataset(meta_data_train)
        else:
            meta_data_eval = preprocessor(root_path, meta_file_val)
        meta_data_train_all += meta_data_train
        meta_data_eval_all += meta_data_eval
    return meta_data_train_all, meta_data_eval_all
Example #3
0
def load_meta_data(datasets, eval_split=True):
    meta_data_train_all = []
    meta_data_eval_all = [] if eval_split else None
    for dataset in datasets:
        name = dataset['name']
        root_path = dataset['path']
        meta_file_train = dataset['meta_file_train']
        meta_file_val = dataset['meta_file_val']
        # setup the right data processor
        preprocessor = get_preprocessor_by_name(name)
        # load train set
        meta_data_train = preprocessor(root_path, meta_file_train)
        print(
            f" | > Found {len(meta_data_train)} files in {Path(root_path).resolve()}"
        )
        # load evaluation split if set
        if eval_split:
            if meta_file_val is None:
                meta_data_eval, meta_data_train = split_dataset(
                    meta_data_train)
            else:
                meta_data_eval = preprocessor(root_path, meta_file_val)
            meta_data_eval_all += meta_data_eval
        meta_data_train_all += meta_data_train
        # load attention masks for duration predictor training
        if 'meta_file_attn_mask' in dataset and dataset[
                'meta_file_attn_mask'] is not None:
            meta_data = dict(
                load_attention_mask_meta_data(dataset['meta_file_attn_mask']))
            for idx, ins in enumerate(meta_data_train_all):
                attn_file = meta_data[ins[1]].strip()
                meta_data_train_all[idx].append(attn_file)
            if meta_data_eval_all is not None:
                for idx, ins in enumerate(meta_data_eval_all):
                    attn_file = meta_data[ins[1]].strip()
                    meta_data_eval_all[idx].append(attn_file)
    return meta_data_train_all, meta_data_eval_all