def check_config_tts(c): check_argument('model', c, enum_list=['tacotron', 'tacotron2', 'glow_tts', 'speedy_speech'], restricted=True, val_type=str) check_argument('run_name', c, restricted=True, val_type=str) check_argument('run_description', c, val_type=str) # AUDIO check_argument('audio', c, restricted=True, val_type=dict) # audio processing parameters check_argument('num_mels', c['audio'], restricted=True, val_type=int, min_val=10, max_val=2056) check_argument('fft_size', c['audio'], restricted=True, val_type=int, min_val=128, max_val=4058) check_argument('sample_rate', c['audio'], restricted=True, val_type=int, min_val=512, max_val=100000) check_argument('frame_length_ms', c['audio'], restricted=True, val_type=float, min_val=10, max_val=1000, alternative='win_length') check_argument('frame_shift_ms', c['audio'], restricted=True, val_type=float, min_val=1, max_val=1000, alternative='hop_length') check_argument('preemphasis', c['audio'], restricted=True, val_type=float, min_val=0, max_val=1) check_argument('min_level_db', c['audio'], restricted=True, val_type=int, min_val=-1000, max_val=10) check_argument('ref_level_db', c['audio'], restricted=True, val_type=int, min_val=0, max_val=1000) check_argument('power', c['audio'], restricted=True, val_type=float, min_val=1, max_val=5) check_argument('griffin_lim_iters', c['audio'], restricted=True, val_type=int, min_val=10, max_val=1000) # vocabulary parameters check_argument('characters', c, restricted=False, val_type=dict) check_argument('pad', c['characters'] if 'characters' in c.keys() else {}, restricted='characters' in c.keys(), val_type=str) check_argument('eos', c['characters'] if 'characters' in c.keys() else {}, restricted='characters' in c.keys(), val_type=str) check_argument('bos', c['characters'] if 'characters' in c.keys() else {}, restricted='characters' in c.keys(), val_type=str) check_argument('characters', c['characters'] if 'characters' in c.keys() else {}, restricted='characters' in c.keys(), val_type=str) check_argument('phonemes', c['characters'] if 'characters' in c.keys() else {}, restricted='characters' in c.keys(), val_type=str) check_argument('punctuations', c['characters'] if 'characters' in c.keys() else {}, restricted='characters' in c.keys(), val_type=str) # normalization parameters check_argument('signal_norm', c['audio'], restricted=True, val_type=bool) check_argument('symmetric_norm', c['audio'], restricted=True, val_type=bool) check_argument('max_norm', c['audio'], restricted=True, val_type=float, min_val=0.1, max_val=1000) check_argument('clip_norm', c['audio'], restricted=True, val_type=bool) check_argument('mel_fmin', c['audio'], restricted=True, val_type=float, min_val=0.0, max_val=1000) check_argument('mel_fmax', c['audio'], restricted=True, val_type=float, min_val=500.0) check_argument('spec_gain', c['audio'], restricted=True, val_type=[int, float], min_val=1, max_val=100) check_argument('do_trim_silence', c['audio'], restricted=True, val_type=bool) check_argument('trim_db', c['audio'], restricted=True, val_type=int) # training parameters check_argument('batch_size', c, restricted=True, val_type=int, min_val=1) check_argument('eval_batch_size', c, restricted=True, val_type=int, min_val=1) check_argument('r', c, restricted=True, val_type=int, min_val=1) check_argument('gradual_training', c, restricted=False, val_type=list) check_argument('mixed_precision', c, restricted=False, val_type=bool) # check_argument('grad_accum', c, restricted=True, val_type=int, min_val=1, max_val=100) # loss parameters check_argument('loss_masking', c, restricted=True, val_type=bool) if c['model'].lower() in ['tacotron', 'tacotron2']: check_argument('decoder_loss_alpha', c, restricted=True, val_type=float, min_val=0) check_argument('postnet_loss_alpha', c, restricted=True, val_type=float, min_val=0) check_argument('postnet_diff_spec_alpha', c, restricted=True, val_type=float, min_val=0) check_argument('decoder_diff_spec_alpha', c, restricted=True, val_type=float, min_val=0) check_argument('decoder_ssim_alpha', c, restricted=True, val_type=float, min_val=0) check_argument('postnet_ssim_alpha', c, restricted=True, val_type=float, min_val=0) check_argument('ga_alpha', c, restricted=True, val_type=float, min_val=0) if c['model'].lower == "speedy_speech": check_argument('ssim_alpha', c, restricted=True, val_type=float, min_val=0) check_argument('l1_alpha', c, restricted=True, val_type=float, min_val=0) check_argument('huber_alpha', c, restricted=True, val_type=float, min_val=0) # validation parameters check_argument('run_eval', c, restricted=True, val_type=bool) check_argument('test_delay_epochs', c, restricted=True, val_type=int, min_val=0) check_argument('test_every_epochs', c, restricted=True, val_type=int, min_val=0) check_argument('test_sentences_file', c, restricted=False, val_type=str) # optimizer check_argument('noam_schedule', c, restricted=False, val_type=bool) check_argument('grad_clip', c, restricted=True, val_type=float, min_val=0.0) check_argument('epochs', c, restricted=True, val_type=int, min_val=1) check_argument('lr', c, restricted=True, val_type=float, min_val=0) check_argument('wd', c, restricted=is_tacotron(c), val_type=float, min_val=0) check_argument('warmup_steps', c, restricted=True, val_type=int, min_val=0) check_argument('seq_len_norm', c, restricted=is_tacotron(c), val_type=bool) # tacotron prenet check_argument('memory_size', c, restricted=is_tacotron(c), val_type=int, min_val=-1) check_argument('prenet_type', c, restricted=is_tacotron(c), val_type=str, enum_list=['original', 'bn']) check_argument('prenet_dropout', c, restricted=is_tacotron(c), val_type=bool) # attention check_argument('attention_type', c, restricted=is_tacotron(c), val_type=str, enum_list=['graves', 'original', 'dynamic_convolution']) check_argument('attention_heads', c, restricted=is_tacotron(c), val_type=int) check_argument('attention_norm', c, restricted=is_tacotron(c), val_type=str, enum_list=['sigmoid', 'softmax']) check_argument('windowing', c, restricted=is_tacotron(c), val_type=bool) check_argument('use_forward_attn', c, restricted=is_tacotron(c), val_type=bool) check_argument('forward_attn_mask', c, restricted=is_tacotron(c), val_type=bool) check_argument('transition_agent', c, restricted=is_tacotron(c), val_type=bool) check_argument('transition_agent', c, restricted=is_tacotron(c), val_type=bool) check_argument('location_attn', c, restricted=is_tacotron(c), val_type=bool) check_argument('bidirectional_decoder', c, restricted=is_tacotron(c), val_type=bool) check_argument('double_decoder_consistency', c, restricted=is_tacotron(c), val_type=bool) check_argument('ddc_r', c, restricted='double_decoder_consistency' in c.keys(), min_val=1, max_val=7, val_type=int) if c['model'].lower() in ['tacotron', 'tacotron2']: # stopnet check_argument('stopnet', c, restricted=is_tacotron(c), val_type=bool) check_argument('separate_stopnet', c, restricted=is_tacotron(c), val_type=bool) # Model Parameters for non-tacotron models if c['model'].lower == "speedy_speech": check_argument('positional_encoding', c, restricted=True, val_type=type) check_argument('encoder_type', c, restricted=True, val_type=str) check_argument('encoder_params', c, restricted=True, val_type=dict) check_argument('decoder_residual_conv_bn_params', c, restricted=True, val_type=dict) # GlowTTS parameters check_argument('encoder_type', c, restricted=not is_tacotron(c), val_type=str) # tensorboard check_argument('print_step', c, restricted=True, val_type=int, min_val=1) check_argument('tb_plot_step', c, restricted=True, val_type=int, min_val=1) check_argument('save_step', c, restricted=True, val_type=int, min_val=1) check_argument('checkpoint', c, restricted=True, val_type=bool) check_argument('tb_model_param_stats', c, restricted=True, val_type=bool) # dataloading # pylint: disable=import-outside-toplevel from TTS.tts.utils.text import cleaners check_argument('text_cleaner', c, restricted=True, val_type=str, enum_list=dir(cleaners)) check_argument('enable_eos_bos_chars', c, restricted=True, val_type=bool) check_argument('num_loader_workers', c, restricted=True, val_type=int, min_val=0) check_argument('num_val_loader_workers', c, restricted=True, val_type=int, min_val=0) check_argument('batch_group_size', c, restricted=True, val_type=int, min_val=0) check_argument('min_seq_len', c, restricted=True, val_type=int, min_val=0) check_argument('max_seq_len', c, restricted=True, val_type=int, min_val=10) check_argument('compute_input_seq_cache', c, restricted=True, val_type=bool) # paths check_argument('output_path', c, restricted=True, val_type=str) # multi-speaker and gst check_argument('use_speaker_embedding', c, restricted=True, val_type=bool) check_argument('use_external_speaker_embedding_file', c, restricted=c['use_speaker_embedding'], val_type=bool) check_argument('external_speaker_embedding_file', c, restricted=c['use_external_speaker_embedding_file'], val_type=str) if c['model'].lower() in ['tacotron', 'tacotron2'] and c['use_gst']: check_argument('use_gst', c, restricted=is_tacotron(c), val_type=bool) check_argument('gst', c, restricted=is_tacotron(c), val_type=dict) check_argument('gst_style_input', c['gst'], restricted=is_tacotron(c), val_type=[str, dict]) check_argument('gst_embedding_dim', c['gst'], restricted=is_tacotron(c), val_type=int, min_val=0, max_val=1000) check_argument('gst_use_speaker_embedding', c['gst'], restricted=is_tacotron(c), val_type=bool) check_argument('gst_num_heads', c['gst'], restricted=is_tacotron(c), val_type=int, min_val=2, max_val=10) check_argument('gst_style_tokens', c['gst'], restricted=is_tacotron(c), val_type=int, min_val=1, max_val=1000) # datasets - checking only the first entry check_argument('datasets', c, restricted=True, val_type=list) for dataset_entry in c['datasets']: check_argument('name', dataset_entry, restricted=True, val_type=str) check_argument('path', dataset_entry, restricted=True, val_type=str) check_argument('meta_file_train', dataset_entry, restricted=True, val_type=[str, list]) check_argument('meta_file_val', dataset_entry, restricted=True, val_type=str)
def check_config_tts(c): check_argument( "model", c, enum_list=[ "tacotron", "tacotron2", "glow_tts", "speedy_speech", "align_tts" ], restricted=True, val_type=str, ) check_argument("run_name", c, restricted=True, val_type=str) check_argument("run_description", c, val_type=str) # AUDIO check_argument("audio", c, restricted=True, val_type=dict) # audio processing parameters check_argument("num_mels", c["audio"], restricted=True, val_type=int, min_val=10, max_val=2056) check_argument("fft_size", c["audio"], restricted=True, val_type=int, min_val=128, max_val=4058) check_argument("sample_rate", c["audio"], restricted=True, val_type=int, min_val=512, max_val=100000) check_argument( "frame_length_ms", c["audio"], restricted=True, val_type=float, min_val=10, max_val=1000, alternative="win_length", ) check_argument("frame_shift_ms", c["audio"], restricted=True, val_type=float, min_val=1, max_val=1000, alternative="hop_length") check_argument("preemphasis", c["audio"], restricted=True, val_type=float, min_val=0, max_val=1) check_argument("min_level_db", c["audio"], restricted=True, val_type=int, min_val=-1000, max_val=10) check_argument("ref_level_db", c["audio"], restricted=True, val_type=int, min_val=0, max_val=1000) check_argument("power", c["audio"], restricted=True, val_type=float, min_val=1, max_val=5) check_argument("griffin_lim_iters", c["audio"], restricted=True, val_type=int, min_val=10, max_val=1000) # vocabulary parameters check_argument("characters", c, restricted=False, val_type=dict) check_argument("pad", c["characters"] if "characters" in c.keys() else {}, restricted="characters" in c.keys(), val_type=str) check_argument("eos", c["characters"] if "characters" in c.keys() else {}, restricted="characters" in c.keys(), val_type=str) check_argument("bos", c["characters"] if "characters" in c.keys() else {}, restricted="characters" in c.keys(), val_type=str) check_argument( "characters", c["characters"] if "characters" in c.keys() else {}, restricted="characters" in c.keys(), val_type=str, ) check_argument( "phonemes", c["characters"] if "characters" in c.keys() else {}, restricted="characters" in c.keys() and c["use_phonemes"], val_type=str, ) check_argument( "punctuations", c["characters"] if "characters" in c.keys() else {}, restricted="characters" in c.keys(), val_type=str, ) # normalization parameters check_argument("signal_norm", c["audio"], restricted=True, val_type=bool) check_argument("symmetric_norm", c["audio"], restricted=True, val_type=bool) check_argument("max_norm", c["audio"], restricted=True, val_type=float, min_val=0.1, max_val=1000) check_argument("clip_norm", c["audio"], restricted=True, val_type=bool) check_argument("mel_fmin", c["audio"], restricted=True, val_type=float, min_val=0.0, max_val=1000) check_argument("mel_fmax", c["audio"], restricted=True, val_type=float, min_val=500.0) check_argument("spec_gain", c["audio"], restricted=True, val_type=[int, float], min_val=1, max_val=100) check_argument("do_trim_silence", c["audio"], restricted=True, val_type=bool) check_argument("trim_db", c["audio"], restricted=True, val_type=int) # training parameters check_argument("batch_size", c, restricted=True, val_type=int, min_val=1) check_argument("eval_batch_size", c, restricted=True, val_type=int, min_val=1) check_argument("r", c, restricted=True, val_type=int, min_val=1) check_argument("gradual_training", c, restricted=False, val_type=list) check_argument("mixed_precision", c, restricted=False, val_type=bool) # check_argument('grad_accum', c, restricted=True, val_type=int, min_val=1, max_val=100) # loss parameters check_argument("loss_masking", c, restricted=True, val_type=bool) if c["model"].lower() in ["tacotron", "tacotron2"]: check_argument("decoder_loss_alpha", c, restricted=True, val_type=float, min_val=0) check_argument("postnet_loss_alpha", c, restricted=True, val_type=float, min_val=0) check_argument("postnet_diff_spec_alpha", c, restricted=True, val_type=float, min_val=0) check_argument("decoder_diff_spec_alpha", c, restricted=True, val_type=float, min_val=0) check_argument("decoder_ssim_alpha", c, restricted=True, val_type=float, min_val=0) check_argument("postnet_ssim_alpha", c, restricted=True, val_type=float, min_val=0) check_argument("ga_alpha", c, restricted=True, val_type=float, min_val=0) if c["model"].lower in ["speedy_speech", "align_tts"]: check_argument("ssim_alpha", c, restricted=True, val_type=float, min_val=0) check_argument("l1_alpha", c, restricted=True, val_type=float, min_val=0) check_argument("huber_alpha", c, restricted=True, val_type=float, min_val=0) # validation parameters check_argument("run_eval", c, restricted=True, val_type=bool) check_argument("test_delay_epochs", c, restricted=True, val_type=int, min_val=0) check_argument("test_sentences_file", c, restricted=False, val_type=str) # optimizer check_argument("noam_schedule", c, restricted=False, val_type=bool) check_argument("grad_clip", c, restricted=True, val_type=float, min_val=0.0) check_argument("epochs", c, restricted=True, val_type=int, min_val=1) check_argument("lr", c, restricted=True, val_type=float, min_val=0) check_argument("wd", c, restricted=is_tacotron(c), val_type=float, min_val=0) check_argument("warmup_steps", c, restricted=True, val_type=int, min_val=0) check_argument("seq_len_norm", c, restricted=is_tacotron(c), val_type=bool) # tacotron prenet check_argument("memory_size", c, restricted=is_tacotron(c), val_type=int, min_val=-1) check_argument("prenet_type", c, restricted=is_tacotron(c), val_type=str, enum_list=["original", "bn"]) check_argument("prenet_dropout", c, restricted=is_tacotron(c), val_type=bool) # attention check_argument( "attention_type", c, restricted=is_tacotron(c), val_type=str, enum_list=["graves", "original", "dynamic_convolution"], ) check_argument("attention_heads", c, restricted=is_tacotron(c), val_type=int) check_argument("attention_norm", c, restricted=is_tacotron(c), val_type=str, enum_list=["sigmoid", "softmax"]) check_argument("windowing", c, restricted=is_tacotron(c), val_type=bool) check_argument("use_forward_attn", c, restricted=is_tacotron(c), val_type=bool) check_argument("forward_attn_mask", c, restricted=is_tacotron(c), val_type=bool) check_argument("transition_agent", c, restricted=is_tacotron(c), val_type=bool) check_argument("transition_agent", c, restricted=is_tacotron(c), val_type=bool) check_argument("location_attn", c, restricted=is_tacotron(c), val_type=bool) check_argument("bidirectional_decoder", c, restricted=is_tacotron(c), val_type=bool) check_argument("double_decoder_consistency", c, restricted=is_tacotron(c), val_type=bool) check_argument("ddc_r", c, restricted="double_decoder_consistency" in c.keys(), min_val=1, max_val=7, val_type=int) if c["model"].lower() in ["tacotron", "tacotron2"]: # stopnet check_argument("stopnet", c, restricted=is_tacotron(c), val_type=bool) check_argument("separate_stopnet", c, restricted=is_tacotron(c), val_type=bool) # Model Parameters for non-tacotron models if c["model"].lower in ["speedy_speech", "align_tts"]: check_argument("positional_encoding", c, restricted=True, val_type=type) check_argument("encoder_type", c, restricted=True, val_type=str) check_argument("encoder_params", c, restricted=True, val_type=dict) check_argument("decoder_residual_conv_bn_params", c, restricted=True, val_type=dict) # GlowTTS parameters check_argument("encoder_type", c, restricted=not is_tacotron(c), val_type=str) # tensorboard check_argument("print_step", c, restricted=True, val_type=int, min_val=1) check_argument("tb_plot_step", c, restricted=True, val_type=int, min_val=1) check_argument("save_step", c, restricted=True, val_type=int, min_val=1) check_argument("checkpoint", c, restricted=True, val_type=bool) check_argument("tb_model_param_stats", c, restricted=True, val_type=bool) # dataloading # pylint: disable=import-outside-toplevel from TTS.tts.utils.text import cleaners check_argument("text_cleaner", c, restricted=True, val_type=str, enum_list=dir(cleaners)) check_argument("enable_eos_bos_chars", c, restricted=True, val_type=bool) check_argument("num_loader_workers", c, restricted=True, val_type=int, min_val=0) check_argument("num_val_loader_workers", c, restricted=True, val_type=int, min_val=0) check_argument("batch_group_size", c, restricted=True, val_type=int, min_val=0) check_argument("min_seq_len", c, restricted=True, val_type=int, min_val=0) check_argument("max_seq_len", c, restricted=True, val_type=int, min_val=10) check_argument("compute_input_seq_cache", c, restricted=True, val_type=bool) # paths check_argument("output_path", c, restricted=True, val_type=str) # multi-speaker and gst check_argument("use_speaker_embedding", c, restricted=True, val_type=bool) check_argument("use_external_speaker_embedding_file", c, restricted=c["use_speaker_embedding"], val_type=bool) check_argument("external_speaker_embedding_file", c, restricted=c["use_external_speaker_embedding_file"], val_type=str) if c["model"].lower() in ["tacotron", "tacotron2"] and c["use_gst"]: check_argument("use_gst", c, restricted=is_tacotron(c), val_type=bool) check_argument("gst", c, restricted=is_tacotron(c), val_type=dict) check_argument("gst_style_input", c["gst"], restricted=is_tacotron(c), val_type=[str, dict]) check_argument("gst_embedding_dim", c["gst"], restricted=is_tacotron(c), val_type=int, min_val=0, max_val=1000) check_argument("gst_use_speaker_embedding", c["gst"], restricted=is_tacotron(c), val_type=bool) check_argument("gst_num_heads", c["gst"], restricted=is_tacotron(c), val_type=int, min_val=2, max_val=10) check_argument("gst_style_tokens", c["gst"], restricted=is_tacotron(c), val_type=int, min_val=1, max_val=1000) # datasets - checking only the first entry check_argument("datasets", c, restricted=True, val_type=list) for dataset_entry in c["datasets"]: check_argument("name", dataset_entry, restricted=True, val_type=str) check_argument("path", dataset_entry, restricted=True, val_type=str) check_argument("meta_file_train", dataset_entry, restricted=True, val_type=[str, list]) check_argument("meta_file_val", dataset_entry, restricted=True, val_type=str)
def check_config_speaker_encoder(c): """Check the config.json file of the speaker encoder""" check_argument("run_name", c, restricted=True, val_type=str) check_argument("run_description", c, val_type=str) # audio processing parameters check_argument("audio", c, restricted=True, val_type=dict) check_argument("num_mels", c["audio"], restricted=True, val_type=int, min_val=10, max_val=2056) check_argument("fft_size", c["audio"], restricted=True, val_type=int, min_val=128, max_val=4058) check_argument("sample_rate", c["audio"], restricted=True, val_type=int, min_val=512, max_val=100000) check_argument( "frame_length_ms", c["audio"], restricted=True, val_type=float, min_val=10, max_val=1000, alternative="win_length", ) check_argument("frame_shift_ms", c["audio"], restricted=True, val_type=float, min_val=1, max_val=1000, alternative="hop_length") check_argument("preemphasis", c["audio"], restricted=True, val_type=float, min_val=0, max_val=1) check_argument("min_level_db", c["audio"], restricted=True, val_type=int, min_val=-1000, max_val=10) check_argument("ref_level_db", c["audio"], restricted=True, val_type=int, min_val=0, max_val=1000) check_argument("power", c["audio"], restricted=True, val_type=float, min_val=1, max_val=5) check_argument("griffin_lim_iters", c["audio"], restricted=True, val_type=int, min_val=10, max_val=1000) # training parameters check_argument("loss", c, enum_list=["ge2e", "angleproto"], restricted=True, val_type=str) check_argument("grad_clip", c, restricted=True, val_type=float) check_argument("epochs", c, restricted=True, val_type=int, min_val=1) check_argument("lr", c, restricted=True, val_type=float, min_val=0) check_argument("lr_decay", c, restricted=True, val_type=bool) check_argument("warmup_steps", c, restricted=True, val_type=int, min_val=0) check_argument("tb_model_param_stats", c, restricted=True, val_type=bool) check_argument("num_speakers_in_batch", c, restricted=True, val_type=int) check_argument("num_loader_workers", c, restricted=True, val_type=int) check_argument("wd", c, restricted=True, val_type=float, min_val=0.0, max_val=1.0) # checkpoint and output parameters check_argument("steps_plot_stats", c, restricted=True, val_type=int) check_argument("checkpoint", c, restricted=True, val_type=bool) check_argument("save_step", c, restricted=True, val_type=int) check_argument("print_step", c, restricted=True, val_type=int) check_argument("output_path", c, restricted=True, val_type=str) # model parameters check_argument("model", c, restricted=True, val_type=dict) check_argument("input_dim", c["model"], restricted=True, val_type=int) check_argument("proj_dim", c["model"], restricted=True, val_type=int) check_argument("lstm_dim", c["model"], restricted=True, val_type=int) check_argument("num_lstm_layers", c["model"], restricted=True, val_type=int) check_argument("use_lstm_with_projection", c["model"], restricted=True, val_type=bool) # in-memory storage parameters check_argument("storage", c, restricted=True, val_type=dict) check_argument("sample_from_storage_p", c["storage"], restricted=True, val_type=float, min_val=0.0, max_val=1.0) check_argument("storage_size", c["storage"], restricted=True, val_type=int, min_val=1, max_val=100) check_argument("additive_noise", c["storage"], restricted=True, val_type=float, min_val=0.0, max_val=1.0) # datasets - checking only the first entry check_argument("datasets", c, restricted=True, val_type=list) for dataset_entry in c["datasets"]: check_argument("name", dataset_entry, restricted=True, val_type=str) check_argument("path", dataset_entry, restricted=True, val_type=str) check_argument("meta_file_train", dataset_entry, restricted=True, val_type=[str, list]) check_argument("meta_file_val", dataset_entry, restricted=True, val_type=str)
def check_config_speaker_encoder(c): """Check the config.json file of the speaker encoder""" check_argument('run_name', c, restricted=True, val_type=str) check_argument('run_description', c, val_type=str) # audio processing parameters check_argument('audio', c, restricted=True, val_type=dict) check_argument('num_mels', c['audio'], restricted=True, val_type=int, min_val=10, max_val=2056) check_argument('fft_size', c['audio'], restricted=True, val_type=int, min_val=128, max_val=4058) check_argument('sample_rate', c['audio'], restricted=True, val_type=int, min_val=512, max_val=100000) check_argument('frame_length_ms', c['audio'], restricted=True, val_type=float, min_val=10, max_val=1000, alternative='win_length') check_argument('frame_shift_ms', c['audio'], restricted=True, val_type=float, min_val=1, max_val=1000, alternative='hop_length') check_argument('preemphasis', c['audio'], restricted=True, val_type=float, min_val=0, max_val=1) check_argument('min_level_db', c['audio'], restricted=True, val_type=int, min_val=-1000, max_val=10) check_argument('ref_level_db', c['audio'], restricted=True, val_type=int, min_val=0, max_val=1000) check_argument('power', c['audio'], restricted=True, val_type=float, min_val=1, max_val=5) check_argument('griffin_lim_iters', c['audio'], restricted=True, val_type=int, min_val=10, max_val=1000) # training parameters check_argument('loss', c, enum_list=['ge2e', 'angleproto'], restricted=True, val_type=str) check_argument('grad_clip', c, restricted=True, val_type=float) check_argument('epochs', c, restricted=True, val_type=int, min_val=1) check_argument('lr', c, restricted=True, val_type=float, min_val=0) check_argument('lr_decay', c, restricted=True, val_type=bool) check_argument('warmup_steps', c, restricted=True, val_type=int, min_val=0) check_argument('tb_model_param_stats', c, restricted=True, val_type=bool) check_argument('num_speakers_in_batch', c, restricted=True, val_type=int) check_argument('num_loader_workers', c, restricted=True, val_type=int) check_argument('wd', c, restricted=True, val_type=float, min_val=0.0, max_val=1.0) # checkpoint and output parameters check_argument('steps_plot_stats', c, restricted=True, val_type=int) check_argument('checkpoint', c, restricted=True, val_type=bool) check_argument('save_step', c, restricted=True, val_type=int) check_argument('print_step', c, restricted=True, val_type=int) check_argument('output_path', c, restricted=True, val_type=str) # model parameters check_argument('model', c, restricted=True, val_type=dict) check_argument('input_dim', c['model'], restricted=True, val_type=int) check_argument('proj_dim', c['model'], restricted=True, val_type=int) check_argument('lstm_dim', c['model'], restricted=True, val_type=int) check_argument('num_lstm_layers', c['model'], restricted=True, val_type=int) check_argument('use_lstm_with_projection', c['model'], restricted=True, val_type=bool) # in-memory storage parameters check_argument('storage', c, restricted=True, val_type=dict) check_argument('sample_from_storage_p', c['storage'], restricted=True, val_type=float, min_val=0.0, max_val=1.0) check_argument('storage_size', c['storage'], restricted=True, val_type=int, min_val=1, max_val=100) check_argument('additive_noise', c['storage'], restricted=True, val_type=float, min_val=0.0, max_val=1.0) # datasets - checking only the first entry check_argument('datasets', c, restricted=True, val_type=list) for dataset_entry in c['datasets']: check_argument('name', dataset_entry, restricted=True, val_type=str) check_argument('path', dataset_entry, restricted=True, val_type=str) check_argument('meta_file_train', dataset_entry, restricted=True, val_type=[str, list]) check_argument('meta_file_val', dataset_entry, restricted=True, val_type=str)