def test_pqmf(): w, sr = load(WAV_FILE) layer = PQMF(N=4, taps=62, cutoff=0.15, beta=9.0) w, sr = load(WAV_FILE) w2 = torch.from_numpy(w[None, None, :]) b2 = layer.analysis(w2) w2_ = layer.synthesis(b2) print(w2_.max()) print(w2_.min()) print(w2_.mean()) sf.write('pqmf_output.wav', w2_.flatten().detach(), sr)
def __init__(self, in_channels=80, out_channels=4, proj_kernel=7, base_channels=384, upsample_factors=(2, 8, 2, 2), res_kernel=3, num_res_blocks=3): super(MultibandMelganGenerator, self).__init__(in_channels=in_channels, out_channels=out_channels, proj_kernel=proj_kernel, base_channels=base_channels, upsample_factors=upsample_factors, res_kernel=res_kernel, num_res_blocks=num_res_blocks) self.pqmf_layer = PQMF(N=4, taps=62, cutoff=0.15, beta=9.0)