Example #1
0
    DROP = groups + ["$p$_{{{}}}".format(group) for group in groups]
    few = T.shape[0] / 15.
    Table = Table[Table['$N$'] > few]
    return Table.drop(DROP, 1)


def topcode(var, Nstd=3, drop=False):
    if drop: var[var > var.mean() + Nstd * var.std()] = np.nan
    else:
        var[var > var.mean() +
            Nstd * var.std()] = var.mean() + Nstd * var.std()
    return var


if True:  #~ Make DataFrame
    D = full_data(DIR=DATADIR)

    D['livestock_val_m'] = D.filter(
        regex='^asset_val_(cows|smallanimals|chickens|ducks|poultry)_m').sum(
            axis=1)
    D['livestock_val'] = D.filter(
        regex='^asset_val_(cows|smallanimals|chickens|ducks|poultry)').sum(
            axis=1) - D['livestock_val_m']

    A = asset_vars(D, year=2013)[0]
    D['Asset Tot'] = A['Total']
    D["Cash Savings"] = D.filter(regex="^savings_.*_b$").sum(axis=1)
    C = consumption_data(D)[0].ix[2013]
    food = [
        'c_cereals', 'c_maize', 'c_sorghum', 'c_millet', 'c_potato',
        'c_sweetpotato', 'c_rice', 'c_bread', 'c_beans', 'c_oil', 'c_salt',
import statsmodels.api as sm
from matplotlib import pyplot as plt
import sys
sys.path.append("../../data")
from TUP import full_data, regressions, reg_table, df_to_orgtbl
"""
Note that topcoding has a large effect on the distribution here, and we see only a small (presumably non-random) portion of actual income for each household.
"""

# Top-Code or censor outliers?
def topcode(var, Nstd=3, drop=False):
    if drop: var[var>var.mean()+Nstd*var.std()] = np.nan
    else: var[var>var.mean()+Nstd*var.std()] = var.mean()+Nstd*var.std() 
    return var

D = full_data(balance=[])
keep = D.index

I_file = '../../data/Endline/sections_8_17.csv'
I = pd.read_csv(I_file).rename(columns={"id":"HH"}).set_index("HH", drop=True).ix[keep]

#~Getting non-agriculture income data is easy
I = I.filter(regex="^s16")
Imonths    = I.filter(regex="s16_\dc").rename(columns=lambda x: x[:-1])
Ipermonth  = I.filter(regex="s16_\dd").rename(columns=lambda x: x[:-1])
Income_12m = Imonths.mul(Ipermonth).sum(axis=1)
Iyear      = I.filter(regex="s16_\de").rename(columns=lambda x: x[:-1]).sum(axis=1)

A_file = "../../data/Endline/Agriculture_cleaned.csv"
A = pd.read_csv(A_file).rename(columns={"id":"HH"}).set_index("HH",drop=False).ix[keep]
unit_prices = A.groupby(["harvest_type", "harvest_price_unit"])["harvest_price"].median()
Example #3
0
            pval = round(pval,3)
            Table.ix[var,'$p$_{{{}}}'.format(group)]+= pval
            nstar=sum(pval<threshold for threshold in p_stars)
            if nstar: Table.ix[var,'$\Delta${}'.format(group)]+="^{{{}}}".format("*"*nstar)
    DROP=groups+["$p$_{{{}}}".format(group) for group in groups]
    few=T.shape[0]/15.
    Table = Table[Table['$N$']>few]
    return Table.drop(DROP,1)

def topcode(var, Nstd=3, drop=False):
    if drop: var[var>var.mean()+Nstd*var.std()] = np.nan
    else: var[var>var.mean()+Nstd*var.std()] = var.mean()+Nstd*var.std() 
    return var

if True: #~ Make DataFrame
    D = full_data(DIR=DATADIR)

    D['livestock_val_m'] = D.filter(regex='^asset_val_(cows|smallanimals|chickens|ducks|poultry)_m').sum(axis=1)
    D['livestock_val'] = D.filter(regex='^asset_val_(cows|smallanimals|chickens|ducks|poultry)').sum(axis=1) - D['livestock_val_m']

    A = asset_vars(D,year=2013)[0]
    D['Asset Tot'] = A['Total']
    D["Cash Savings"] = D.filter(regex="^savings_.*_b$").sum(axis=1)
    C = consumption_data(D)[0].ix[2013]
    food = ['c_cereals', 'c_maize', 'c_sorghum', 'c_millet', 'c_potato', 'c_sweetpotato', 'c_rice', 'c_bread', 'c_beans', 'c_oil', 'c_salt', 'c_sugar', 'c_meat', 'c_livestock', 'c_poultry', 'c_fish', 'c_egg', 'c_nuts', 'c_milk', 'c_vegetables', 'c_fruit', 'c_tea', 'c_spices', 'c_alcohol', 'c_otherfood']
    month = ['c_fuel', 'c_medicine', 'c_airtime', 'c_cosmetics', 'c_soap', 'c_transport', 'c_entertainment', 'c_childcare', 'c_tobacco', 'c_batteries', 'c_church', 'c_othermonth']    
    year = ['c_clothesfootwear', 'c_womensclothes', 'c_childrensclothes', 'c_shoes', 'c_homeimprovement', 'c_utensils', 'c_furniture', 'c_textiles', 'c_ceremonies', 'c_funerals', 'c_charities', 'c_dowry', 'c_other']    
    C["Food"]  = C[[item for item in food  if item in C]].sum(axis=1).replace(0,np.nan)
    C["Month"] = C[[item for item in month if item in C]].sum(axis=1).replace(0,np.nan)
    C["Year"]  = C[[item for item in year  if item in C]].sum(axis=1).replace(0,np.nan)
    C["Tot"]   = C[["Food","Month","Year"]].sum(axis=1)
Example #4
0
    Table['Diff.'] = map(str,Table['TUP']-Table['CTL'])
    Table['$p$-val'] = 0
    Table['$N$']=(T>0).sum()
    Table.drop('TUP', inplace=True)

    for var in T:
        if var in ('$N$','group','TUP'): continue
        pval = ttest_ind(treat[var].dropna(), control[var].dropna())[1]
        pval = round(pval,3)
        Table.ix[var,'$p$-val']+= pval
        for threshold in (.1, .05, .01):
            if pval < threshold: Table.ix[var,'Diff.']+="*"
    return Table

if True: #~ Make DataFrame
    D = full_data(balance=[])

    D['livestock_val_m'] = D.filter(regex='^asset_val_(cows|smallanimals|chickens|ducks|poultry)_m').sum(axis=1)
    D['livestock_val'] = D.filter(regex='^asset_val_(cows|smallanimals|chickens|ducks|poultry)').sum(axis=1) - D['livestock_val_m']
    A = asset_vars(D,year=2013)[0]
    D['Asset Tot'] = A['Total']
    D['Asset Prod'] = A['Productive']
    D["Cash Savings"] = D.filter(regex="^savings_.*_b$").sum(axis=1)
    D["Land Access (fedan)"] = D.filter(regex="^land_.*_b$").sum(axis=1)
    C = consumption_data(D)[0].ix[2013]
    food = ['c_cereals', 'c_maize', 'c_sorghum', 'c_millet', 'c_potato', 'c_sweetpotato', 'c_rice', 'c_bread', 'c_beans', 'c_oil', 'c_salt', 'c_sugar', 'c_meat', 'c_livestock', 'c_poultry', 'c_fish', 'c_egg', 'c_nuts', 'c_milk', 'c_vegetables', 'c_fruit', 'c_tea', 'c_spices', 'c_alcohol', 'c_otherfood']
    month = ['c_fuel', 'c_medicine', 'c_airtime', 'c_cosmetics', 'c_soap', 'c_transport', 'c_entertainment', 'c_childcare', 'c_tobacco', 'c_batteries', 'c_church', 'c_othermonth']    
    year = ['c_clothesfootwear', 'c_womensclothes', 'c_childrensclothes', 'c_shoes', 'c_homeimprovement', 'c_utensils', 'c_furniture', 'c_textiles', 'c_ceremonies', 'c_funerals', 'c_charities', 'c_dowry', 'c_other']    
    C["Food"]  = C[[item for item in food  if item in C]].sum(axis=1).replace(0,np.nan)
    C["Month"] = C[[item for item in month if item in C]].sum(axis=1).replace(0,np.nan)
    C["Year"]  = C[[item for item in year  if item in C]].sum(axis=1).replace(0,np.nan)