#! /usr/bin/env python from TensorflowToolbox.utility import file_io import sys if __name__ == "__main__": if len(sys.argv) < 2: exit(1) file_name = sys.argv[1] file_list = file_io.read_file(file_name) file_list.sort() file_io.save_file(file_list, file_name)
def save_file(file_list, file_name): file_io.save_file(file_list, file_list_dir + file_name, True)
data_list = [trancos_data_path + t for t in data_list] data_list = file_list_to_list(data_list, unroll_num) desmap_list = [d.replace(data_ext, desmap_ext) for d in \ data_list] mask_list = [d.replace(data_ext, mask_ext) for d in \ data_list] file_list = [i + " " + d + " " + m for i, d, m in \ zip(data_list, desmap_list, mask_list)] return file_list if __name__ == "__main__": data_ext = ".jpg" desmap_ext = ".desmap" mask_ext = "_mask.npy" unroll_num = 5 file_list_dir = "../file_list/" save_train_file_name = "trancos_train_list1.txt" save_test_file_name = "trancos_test_list1.txt" train_file = file_list_to_train_list("../file_list/trancos_org_trainval.txt") test_file = file_list_to_train_list("../file_list/trancos_org_test.txt") file_io.save_file(train_file, file_list_dir + save_train_file_name, True) file_io.save_file(test_file, file_list_dir + save_test_file_name, True)
import numpy as np import cv2 from TensorflowToolbox.utility import file_io desmap_dir = "/media/dog/data/UCSD/gtDensities/" desmap_list = file_io.get_listfile(desmap_dir, "desmap") new_list = list() for f in desmap_list: num = np.sum(np.fromfile(f, np.float32)) format_num = "%.2f" % num new_list.append(f + " " + format_num) new_list.sort() file_io.save_file(new_list, "ucsd_file_label_num.txt")
if __name__ == "__main__": unroll_num = 5 for i in range(2): if i == 0: file_list_name = "/home/shanghang/video_analysis/file_list/world_expo_train_list1.txt" save_file_name = "../file_list/world_expo_train_list1.txt" else: file_list_name = "/home/shanghang/video_analysis/file_list/world_expo_test_list1.txt" save_file_name = "../file_list/world_expo_test_list1.txt" file_list = file_io.read_file(file_list_name) file_list.sort() unrolled_list = list() for i, f in enumerate(file_list): if i == 0: start_video = f.split("/")[0][:6] start_i = i else: video = f.split("/")[0][:6] if start_video != video or i == len(file_list) - 1: new_list = file_list_to_list(file_list[start_i:i], unroll_num) unrolled_list += new_list unrolled_list = [reorder_str(f) for f in unrolled_list] file_io.save_file(unrolled_list, save_file_name, True)
data_list += curr_data_list desmap_list += curr_desmap_list mask_list += curr_mask_list #partition = 0.7 #train_data_len = int(len(data_list) * partition) #random.shuffle(data_list) #train_data = data_list[:train_data_len] #test_data = data_list[train_data_len:] #train_list += [d + " " + d.replace(data_ext, label_ext) for d in train_data] #test_list += [d + " " + d.replace(data_ext, label_ext) for d in test_data] full_file_list = [i + " "+ d + " " + m for i, d, m in \ zip(data_list, desmap_list, mask_list)] file_num = len(full_file_list) train_file_list_name = 'train_list1.txt' train_len = int(file_num * 0.7) train_file_list = full_file_list[:train_len] file_io.save_file(train_file_list, file_list_dir + train_file_list_name, True) test_file_list_name = 'test_list1.txt' test_file_list = full_file_list[train_len:] file_io.save_file(test_file_list, file_list_dir + test_file_list_name, True)
file_list = train_list else: file_list = test_list img_list = file_io.get_listfile(img_dir, ".jpg") scale_str = str(new_dsize[0]) for img_name in img_list: if not img_name.endswith("_" + scale_str + ".jpg"): continue label_name = img_name.replace(img_dir, desmap_dir).replace(".jpg", ".npy") mask_name = mask_dir + img_name.split("/")[-1][:6] \ + "_mask_" + scale_str + ".npy" if not os.path.exists(label_name): print(label_name, "is not exist") exit(1) if not os.path.exists(mask_name): print(mask_name, "is not exist") exit(1) file_list.append(" ".join([img_name, label_name, mask_name])) train_file_name = "../file_list/world_expo_train_list1.txt" test_file_name = "../file_list/world_expo_test_list1.txt" file_io.save_file(train_list, train_file_name, True) file_io.save_file(test_list, test_file_name, True)