Example #1
0
def generalGreedy(G, k, p):
    ''' Finds initial seed set S using general greedy heuristic
    Input: G -- networkx Graph object
    k -- number of initial nodes needed
    p -- propagation probability
    Output: S -- initial set of k nodes to propagate
    '''
    import time
    start = time.time()
    R = 1  # number of times to run Random Cascade
    S = []  # set of selected nodes
    # add node to S if achieves maximum propagation for current chosen + this node
    for i in range(k):
        s = PQ()  # priority queue
        for v in G.nodes():
            if v not in S:
                s.add_task(v, 0)  # initialize spread value
                for j in range(R):  # run R times Random Cascade
                    [priority, count, task] = s.entry_finder[v]
                    s.add_task(v, priority - runICmodel_n(G, S + [v], p)[0] /
                               R)  # add normalized spread value
        task, priority = s.pop_item()
        S.append(task)
        # print(i, k, time.time() - start)
    return S
Example #2
0
def degreeDiscountIC(G, k, Ep=0):
    ''' Finds initial set of nodes to propagate in Independent Cascade model (with priority queue)
    Input: G -- networkx graph object
    k -- number of nodes needed
    p -- propagation probability
    Output:
    S -- chosen k nodes
    '''
    S = []
    dd = PQ() # degree discount
    t = dict() # number of adjacent vertices that are in S
    d = dict() # degree of each vertex

    # initialize degree discount
    for u in G.nodes():
        d[u] = sum([G[u][v]['weight'] for v in G[u]]) # each edge adds degree 1
        # d[u] = len(G[u]) # each neighbor adds degree 1
        dd.add_task(u, -d[u]) # add degree of each node
        t[u] = 0

    # add vertices to S greedily
    for i in range(k):
        u, priority = dd.pop_item() # extract node with maximal degree discount
        S.append(u)
        for v in G[u]:
            if v not in S:
                t[v] += G[u][v]['weight'] # increase number of selected neighbors
                # print(t[v])
                p = Ep[u][v]['weight']
                priority = d[v] - 2*t[v] - (d[v] - t[v])*t[v]*p # discount of degree
                dd.add_task(v, -priority)
    return S
Example #3
0
def degreeDiscountIAC3(G, k, Ep):
    ''' Finds initial set of nodes to propagate in Independent Cascade model (with priority queue)
    Input: G -- networkx graph object
    k -- number of nodes needed
    Ep -- propagation probability graph
    Output:
    S -- chosen k nodes
    '''
    S = []
    dd = PQ()  # degree discount
    t = dict()  # number of adjacent vertices that are in S
    d = dict()  # degree of each vertex

    # initialize degree discount
    for u in G.nodes():
        d[u] = sum([G[u][v]['weight'] * Ep[u][v]['weight']
                    for v in G[u]])  # each edge adds degree 1
        # d[u] = len(G[u]) # each neighbor adds degree 1
        dd.add_task(u, -d[u])  # add degree of each node
        t[u] = 0

    # add vertices to S greedily
    for i in range(k):
        u, priority = dd.pop_item(
        )  # extract node with maximal degree discount
        S.append(u)
        for v in G[u]:
            if v not in S:
                multi = 1
                add = 0
                for n in G.predecessors(v):
                    if n in S:
                        multi *= (1 - Ep[n][v])
                for n in G[v]:
                    if n in S:
                        add -= Ep[v][n]
                    else:
                        add += Ep[v][n]
                add += 1
                priority = add * multi
                dd.add_task(v, -priority)
    return S
Example #4
0
def degreeDiscountStar(G,k,Ep):
    
    S = []
    scores = PQ()
    d = dict()
    t = dict()
    for u in G:
        d[u] = sum([G[u][v]['weight']*Ep[u][v]['weight'] for v in G[u]])
        t[u] = 0
        score = -((1-Ep[u][v]['weight'])**t[u])*(1+(d[u]-t[u])*Ep[u][v]['weight'])
        scores.add_task(u, score)
    for iteration in range(k):
        u, priority = scores.pop_item()
        print(iteration, -priority)
        S.append(u)
        for v in G[u]:
            if v not in S:
                t[v] += G[u][v]['weight']
                score = -((1-p)**t[u])*(1+(d[u]-t[u])*Ep[u][v]['weight'])
                scores.add_task(v, score)
    return S
Example #5
0
def degreeDiscountIAC3(G, k, Ep): # config中默认配置这个为oracle
    ''' Finds initial set of nodes to propagate in Independent Cascade model (with priority queue)
    Input: G -- networkx graph object
    k -- number of nodes needed
    Ep -- propagation probability graph, 传播概率图
    Output:
    S -- chosen k nodes
    '''
    S = []
    dd = PQ() # degree discount
    t = dict() # number of adjacent vertices that are in S
    d = dict() # degree of each vertex

    # initialize degree discount
    for u in G.nodes():
        d[u] = sum([G[u][v]['weight']*Ep[u][v]['weight'] for v in G[u]]) + 1 # each edge adds degree 1
        # d[u] = len(G[u]) # each neighbor adds degree 1
        dd.add_task(u, -d[u]) # add degree of each node. degree最大,则-d[u]最小,则排在heap的前面(默认小根堆min-heap)
        t[u] = 0

    # add vertices to S greedily
    for i in range(k):
        u, priority = dd.pop_item() # extract node with maximal degree discount
        S.append(u)
        for v in G[u]:
            if v not in S:
                multi = 1
                add = 0
                for n in G.predecessors(v): # 前缀结点(有边指向v的结点)
                    if n in S: # 这些结点在S中,但是并没有激活v,的概率
                        multi *= (1 - Ep[n][v]['weight'])
                for n in G[v]:
                    if n in S:
                        continue
                    else:
                        add += Ep[v][n]['weight']
                add += 1
                priority = add * multi
                dd.add_task(v, -priority)
    return S
def Greedy(G, k, p):
    """
    Input: G -- networkx Graph object
    k -- number of initial nodes needed
    p -- propagation probability
    Output: S -- initial set of k nodes to propagate
    """
    R = 1  # number of times to run Random Cascade
    S = []  # set of selected nodes
    # add node to S if achieves maximum propagation for current chosen + this node
    for i in range(k):
        s = PQ()  # priority queue
        for v in G.nodes():
            if v not in S:
                s.add_task(v, 0)  # initialize spread value
                for j in range(R):  # run R times Random Cascade
                    [priority, count, task] = s.entry_finder[v]
                    s.add_task(v, priority - runIC(G, S + [v], p)[0] /
                               R)  # add normalized spread value
        task, priority = s.pop_item()
        S.append(task)
    return S