def preprocessWrapper(file_and_location, args): starttime = time.time() filename, location_str = file_and_location if args["bcf"]: int_suffix = "bcf" else: int_suffix = "vcf.gz" tf = tempfile.NamedTemporaryFile(delete=False, prefix="input.%s" % location_str, suffix=".prep." + int_suffix) tf.close() to_run = "preprocess %s:* %s-o %s -V %i -L %i -r %s" % \ (pipes.quote(filename), ("-l %s " % pipes.quote(location_str)) if location_str else "", tf.name, args["decompose"], args["leftshift"], pipes.quote(args["reference"])) if args["haploid_x"]: to_run += " --haploid-x 1" tfe = tempfile.NamedTemporaryFile(delete=False, prefix="stderr", suffix=".log") tfo = tempfile.NamedTemporaryFile(delete=False, prefix="stdout", suffix=".log") finished = False try: logging.info("Running '%s'" % to_run) subprocess.check_call(to_run, shell=True, stdout=tfo, stderr=tfe) finished = True finally: if finished: tfo.close() tfe.close() with open(tfo.name) as f: for l in f: logging.info(l.replace("\n", "")) os.unlink(tfo.name) with open(tfe.name) as f: for l in f: logging.warn(l.replace("\n", "")) os.unlink(tfe.name) else: logging.error("Preprocess command %s failed. Outputs are here %s / %s" % (to_run, tfo.name, tfe.name)) with open(tfo.name) as f: for l in f: logging.error(l.replace("\n", "")) with open(tfe.name) as f: for l in f: logging.error(l.replace("\n", "")) elapsed = time.time() - starttime logging.info("preprocess for %s -- time taken %.2f" % (location_str, elapsed)) runBcftools("index", tf.name) return tf.name
def preprocessWrapper(file_and_location, args): starttime = time.time() filename, location_str = file_and_location if args["bcf"]: int_suffix = "bcf" else: int_suffix = "vcf.gz" tf = tempfile.NamedTemporaryFile(delete=False, prefix="input.%s" % location_str, suffix=".prep." + int_suffix) tf.close() to_run = "preprocess %s:* %s-o %s -V %i -L %i -r %s" % ( filename.replace(" ", "\\ "), ("-l %s " % location_str) if location_str else "", tf.name, args["decompose"], args["leftshift"], args["reference"], ) tfe = tempfile.NamedTemporaryFile(delete=False, prefix="stderr", suffix=".log") tfo = tempfile.NamedTemporaryFile(delete=False, prefix="stdout", suffix=".log") try: logging.info("Running '%s'" % to_run) subprocess.check_call(to_run, shell=True, stdout=tfo, stderr=tfe) finally: tfo.close() tfe.close() with open(tfo.name) as f: for l in f: logging.info(l.replace("\n", "")) os.unlink(tfo.name) with open(tfe.name) as f: for l in f: logging.warn(l.replace("\n", "")) os.unlink(tfe.name) elapsed = time.time() - starttime logging.info("preprocess for %s -- time taken %.2f" % (location_str, elapsed)) runBcftools("index", tf.name) return tf.name
def runSCmp(vcf1, vcf2, target, args): """ Runs scmp, which outputs a file quantify can produce counts on vcf1 and vcf2 must be indexed and only contain a single sample column. """ try: if args.engine == "scmp-distance": cmode = "distance" else: cmode = "alleles" tf = tempfile.NamedTemporaryFile(delete=False) tf.close() try: # change GTs so we can compare them vargs = ["merge", "--force-samples", vcf1, vcf2, "-o", tf.name] runBcftools(*vargs) vargs = ["view", tf.name, "|", "scmp", "-M", cmode, "-", "-r", args.ref, "--threads", str(args.threads), "-o", target] if args.roc: vargs += ["--q", args.roc] vargs += ["--distance-maxdist", str(args.engine_scmp_distance)] runBcftools(*vargs) finally: os.remove(tf.name) if target.endswith(".vcf.gz"): runBcftools("index", "-t", target) return [target, target + ".tbi"] else: runBcftools("index", target) return [target, target + ".csi"] except Exception as e: logging.error("Exception when running scmp: %s" % str(e)) logging.error('-'*60) traceback.print_exc(file=LoggingWriter(logging.ERROR)) logging.error('-'*60) raise except BaseException as e: logging.error("Exception when running scmp: %s" % str(e)) logging.error('-'*60) traceback.print_exc(file=LoggingWriter(logging.ERROR)) logging.error('-'*60) raise
def runSCmp(vcf1, vcf2, target, args): """ Runs scmp, which outputs a file quantify can produce counts on vcf1 and vcf2 must be indexed and only contain a single sample column. """ try: if args.engine == "scmp-distance": cmode = "distance" else: cmode = "alleles" tf = tempfile.NamedTemporaryFile(delete=False) tf.close() try: # change GTs so we can compare them vargs = ["merge", "--force-samples", vcf1, vcf2, "-o", tf.name] runBcftools(*vargs) vargs = [ "view", tf.name, "|", "scmp", "-M", cmode, "-", "-r", args.ref, "--threads", str(args.threads), "-o", target ] if args.roc: vargs += ["--q", args.roc] vargs += ["--distance-maxdist", str(args.engine_scmp_distance)] runBcftools(*vargs) finally: os.remove(tf.name) if target.endswith(".vcf.gz"): runBcftools("index", "-t", target) return [target, target + ".tbi"] else: runBcftools("index", target) return [target, target + ".csi"] except Exception as e: logging.error("Exception when running scmp: %s" % str(e)) logging.error('-' * 60) traceback.print_exc(file=LoggingWriter(logging.ERROR)) logging.error('-' * 60) raise except BaseException as e: logging.error("Exception when running scmp: %s" % str(e)) logging.error('-' * 60) traceback.print_exc(file=LoggingWriter(logging.ERROR)) logging.error('-' * 60) raise
def runSCmp(vcf1, vcf2, target, args): """ Runs scmp, which outputs a file quantify can produce counts on vcf1 and vcf2 must be indexed and only contain a single sample column. """ try: # change GTs so we can compare them vargs = [ "merge", "--force-samples", vcf1, vcf2, "|", "scmp", "-", "-r", args.ref, "--threads", str(args.threads), "-o", target ] if args.roc: vargs += ["--q", args.roc] runBcftools(*vargs) if target.endswith(".vcf.gz"): runBcftools("index", "-t", target) return [target, target + ".tbi"] else: runBcftools("index", target) return [target, target + ".csi"] except Exception as e: logging.error("Exception when running scmp: %s" % str(e)) logging.error('-' * 60) traceback.print_exc(file=LoggingWriter(logging.ERROR)) logging.error('-' * 60) raise except BaseException as e: logging.error("Exception when running scmp: %s" % str(e)) logging.error('-' * 60) traceback.print_exc(file=LoggingWriter(logging.ERROR)) logging.error('-' * 60) raise
def main(): parser = argparse.ArgumentParser("Somatic VCF Feature Extraction") parser.add_argument("input", help="Input VCF file") parser.add_argument("-o", "--output", dest="output", required=True, help="Output file name. Output will be in CSV format") parser.add_argument("-l", "--location", dest="location", default="", help="Location for bcftools view (e.g. chr1)") parser.add_argument( "-R", "--restrict-regions", dest="regions_bedfile", default=None, type=str, help= "Restrict analysis to given (sparse) regions (using -R in bcftools).") parser.add_argument( "-T", "--target-regions", dest="targets_bedfile", default=None, type=str, help= "Restrict analysis to given (dense) regions (using -T in bcftools).") parser.add_argument("-P", "--include-nonpass", dest="inc_nonpass", action="store_true", default=False, help="Use to include failing variants in comparison.") parser.add_argument( "--feature-table", dest="features", default="generic", help="Select a feature table to output. Options are: %s" % str(Somatic.FeatureSet.sets.keys())) parser.add_argument( "--feature-label", dest="label", default=None, help= "We will output a lable column, this value will go in there -- default is " "the input filename.") parser.add_argument( "--bam", dest="bams", default=[], action="append", help="pass one or more BAM files for feature table extraction") parser.add_argument("-r", "--reference", dest="ref", default=Tools.defaultReference(), help="Specify a reference file for normalization.") parser.add_argument( "--normalize", dest="normalize", default=False, action="store_true", help="Enable running of bcftools norm on the input file.") parser.add_argument( "--fix-chr", dest="fixchr", default=False, action="store_true", help="Replace numeric chromosome names in the query by chr*-type names" ) args = parser.parse_args() scratch = tempfile.mkdtemp() try: logging.info("Scratch path is %s" % scratch) if not args.label: args.label = os.path.basename(args.input) bams = [] md = None for x in args.bams: bams.append(bamStats(x)) if bams: bres = pandas.concat(bams).groupby("CHROM").mean() md = {} for x in bres.index: logging.info("Mean coverage on %s is %f" % (x, bres.loc[x]["COVERAGE"])) md[x] = float(bres.loc[x]["COVERAGE"]) * 3.0 nqpath = os.path.join(scratch, "normalized_query.vcf.gz") logging.info("Preprocessing input...") preprocessVCF( args.input, nqpath, args.location, not args.inc_nonpass, # pass_only args.fixchr, # chrprefix args.normalize, # norm, args.regions_bedfile, args.targets_bedfile, args.ref) runBcftools("index", nqpath) logging.info("Extracting features...") fset = Somatic.FeatureSet.make(args.features) fset.setChrDepths(md) featuretable = fset.collect(nqpath, args.label) if not args.output.endswith(".csv"): args.output += ".csv" logging.info("Saving feature table %s..." % args.output) featuretable.to_csv(args.output) finally: logging.info("Deleting scratch folder %s " % scratch) shutil.rmtree(scratch)
def partialCredit(vcfname, outputname, reference, locations, threads=1, window=10000, leftshift=True, decompose=True, haploid_x=False): """ Partial-credit-process a VCF file according to our args """ pool = getPool(int(threads)) if threads > 1: logging.info("Partial credit processing uses %i parallel processes." % threads) if not locations: h = extractHeadersJSON(vcfname) if not h["tabix"]["chromosomes"]: logging.warn("Empty input or not tabix indexed") if outputname.endswith(".bcf"): runBcftools("view", "-O", "b", "-o", outputname, vcfname) runBcftools("index", outputname) else: runBcftools("view", "-O", "z", "-o", outputname, vcfname) runBcftools("index", "-t", outputname) # just return the same file return locations = h["tabix"]["chromosomes"] elif type(locations) is str or type(locations) is unicode: locations = locations.split(",") # use blocksplit to subdivide input res = runParallel(pool, blocksplitWrapper, locations, {"vcf": vcfname, "dist": window, "pieces": min(40, threads*4)}) if None in res: raise Exception("One of the blocksplit processes failed.") locations = list(itertools.chain.from_iterable(res)) if not len(locations): logging.warn("Blocksplit returned no blocks. This can happen when " "an input contains no valid variants.") locations = [""] else: locations = [""] res = [] try: res = runParallel(pool, preprocessWrapper, itertools.izip(itertools.repeat(vcfname), locations), {"reference": reference, "decompose": decompose, "leftshift": leftshift, "haploid_x": haploid_x, "bcf": outputname.endswith(".bcf")}) if None in res: raise Exception("One of the preprocess jobs failed") if not res: raise Exception("No blocks were processed. List of locations: %s" % str(list(locations))) concatenateParts(outputname, *res) if outputname.endswith(".vcf.gz"): runBcftools("index", "-f", "-t", outputname) else: # use bcf runBcftools("index", "-f", outputname) finally: for r in res: try: os.unlink(r) except: pass try: os.unlink(r + ".tbi") except: pass try: os.unlink(r + ".csi") except: pass
def main(): parser = argparse.ArgumentParser("Haplotype Comparison") # input parser.add_argument("-v", "--version", dest="version", action="store_true", help="Show version number and exit.") parser.add_argument("-r", "--reference", dest="ref", default=None, help="Specify a reference file.") # output parser.add_argument("-o", "--report-prefix", dest="reports_prefix", default=None, help="Filename prefix for report output.") parser.add_argument("--scratch-prefix", dest="scratch_prefix", default=None, help="Directory for scratch files.") parser.add_argument("--keep-scratch", dest="delete_scratch", default=True, action="store_false", help="Filename prefix for scratch report output.") # add quantification args qfy.updateArgs(parser) # control preprocessing pre.updateArgs(parser) parser.add_argument( '--convert-gvcf-truth', dest='convert_gvcf_truth', action="store_true", default=False, help= 'Convert the truth set from genome VCF format to a VCF before processing.' ) parser.add_argument( '--convert-gvcf-query', dest='convert_gvcf_query', action="store_true", default=False, help= 'Convert the query set from genome VCF format to a VCF before processing.' ) parser.add_argument( "--preprocess-truth", dest="preprocessing_truth", action="store_true", default=False, help= "Preprocess truth file with same settings as query (default is to accept truth in original format)." ) parser.add_argument( "--usefiltered-truth", dest="usefiltered_truth", action="store_true", default=False, help= "Use filtered variant calls in truth file (by default, only PASS calls in the truth file are used)" ) parser.add_argument( "--preprocessing-window-size", dest="preprocess_window", default=10000, type=int, help= "Preprocessing window size (variants further apart than that size are not expected to interfere)." ) parser.add_argument( "--adjust-conf-regions", dest="preprocessing_truth_confregions", action="store_true", default=True, help= "Adjust confident regions to include variant locations. Note this will only include variants " "that are included in the CONF regions already when viewing with bcftools; this option only " "makes sure insertions are padded correctly in the CONF regions (to capture these, both the " "base before and after must be contained in the bed file).") parser.add_argument("--no-adjust-conf-regions", dest="preprocessing_truth_confregions", action="store_false", help="Do not adjust confident regions for insertions.") # detailed control of comparison parser.add_argument( "--unhappy", "--no-haplotype-comparison", dest="no_hc", action="store_true", default=False, help= "Disable haplotype comparison (only count direct GT matches as TP).") parser.add_argument( "-w", "--window-size", dest="window", default=50, type=int, help= "Minimum distance between variants such that they fall into the same superlocus." ) # xcmp-specific stuff parser.add_argument( "--xcmp-enumeration-threshold", dest="max_enum", default=16768, type=int, help= "Enumeration threshold / maximum number of sequences to enumerate per block." ) parser.add_argument( "--xcmp-expand-hapblocks", dest="hb_expand", default=30, type=int, help="Expand haplotype blocks by this many basepairs left and right.") parser.add_argument("--threads", dest="threads", default=multiprocessing.cpu_count(), type=int, help="Number of threads to use.") parser.add_argument( "--engine", dest="engine", default="xcmp", choices=["xcmp", "vcfeval", "scmp-somatic", "scmp-distance"], help="Comparison engine to use.") parser.add_argument( "--engine-vcfeval-path", dest="engine_vcfeval", required=False, default=Haplo.vcfeval.findVCFEval(), help="This parameter should give the path to the \"rtg\" executable. " "The default is %s" % Haplo.vcfeval.findVCFEval()) parser.add_argument( "--engine-vcfeval-template", dest="engine_vcfeval_template", required=False, help= "Vcfeval needs the reference sequence formatted in its own file format " "(SDF -- run rtg format -o ref.SDF ref.fa). You can specify this here " "to save time when running hap.py with vcfeval. If no SDF folder is " "specified, hap.py will create a temporary one.") parser.add_argument( "--scmp-distance", dest="engine_scmp_distance", required=False, default=30, type=int, help= "For distance-based matching (vcfeval and scmp), this is the distance between variants to use." ) parser.add_argument( "--lose-match-distance", dest="engine_scmp_distance", required=False, type=int, help= "For distance-based matching (vcfeval and scmp), this is the distance between variants to use." ) if Tools.has_sge: parser.add_argument( "--force-interactive", dest="force_interactive", default=False, action="store_true", help= "Force running interactively (i.e. when JOB_ID is not in the environment)" ) parser.add_argument("_vcfs", help="Two VCF files.", default=[], nargs="*") parser.add_argument( "--logfile", dest="logfile", default=None, help="Write logging information into file rather than to stderr") verbosity_options = parser.add_mutually_exclusive_group(required=False) verbosity_options.add_argument( "--verbose", dest="verbose", default=False, action="store_true", help="Raise logging level from warning to info.") verbosity_options.add_argument( "--quiet", dest="quiet", default=False, action="store_true", help="Set logging level to output errors only.") args, unknown_args = parser.parse_known_args() if not Tools.has_sge: args.force_interactive = True if args.verbose: loglevel = logging.INFO elif args.quiet: loglevel = logging.ERROR else: loglevel = logging.WARNING # reinitialize logging for handler in logging.root.handlers[:]: logging.root.removeHandler(handler) logging.basicConfig(filename=args.logfile, format='%(asctime)s %(levelname)-8s %(message)s', level=loglevel) # remove some safe unknown args unknown_args = [ x for x in unknown_args if x not in ["--force-interactive"] ] if len(sys.argv) < 2 or len(unknown_args) > 0: if unknown_args: logging.error("Unknown arguments specified : %s " % str(unknown_args)) parser.print_help() exit(1) print "Hap.py %s" % Tools.version if args.version: exit(0) if args.roc: args.write_vcf = True # sanity-check regions bed file (HAP-57) if args.regions_bedfile: logging.info("Checking input regions.") if bedOverlapCheck(args.regions_bedfile): raise Exception( "The regions bed file (specified using -R) has overlaps, this will not work with xcmp." " You can either use -T, or run the file through bedtools merge" ) if args.fp_bedfile and not os.path.exists(args.fp_bedfile): raise Exception("FP/confident call region bed file does not exist.") if not args.force_interactive and "JOB_ID" not in os.environ: parser.print_help() raise Exception( "Please qsub me so I get approximately 1 GB of RAM per thread.") if not args.ref: args.ref = Tools.defaultReference() if not args.ref or not os.path.exists(args.ref): raise Exception("Please specify a valid reference path using -r.") if not args.reports_prefix: raise Exception("Please specify an output prefix using -o ") if not os.path.exists(os.path.dirname(os.path.abspath( args.reports_prefix))): raise Exception( "The output path does not exist. Please specify a valid output path and prefix using -o" ) if os.path.basename(args.reports_prefix) == "" or os.path.isdir( args.reports_prefix): raise Exception( "The output path should specify a file name prefix. Please specify a valid output path " "and prefix using -o. For example, -o /tmp/test will create files named /tmp/test* ." ) # noinspection PyProtectedMember if not args._vcfs or len(args._vcfs) != 2: raise Exception("Please specify exactly two input VCFs.") # noinspection PyProtectedMember args.vcf1 = args._vcfs[0] # noinspection PyProtectedMember args.vcf2 = args._vcfs[1] if not os.path.exists(args.vcf1): raise Exception("Input file %s does not exist." % args.vcf1) if not os.path.exists(args.vcf2): raise Exception("Input file %s does not exist." % args.vcf2) tempfiles = [] # turn on allele conversion if (args.engine == "scmp-somatic" or args.engine == "scmp-distance") \ and not args.somatic_allele_conversion: args.somatic_allele_conversion = True if args.engine == "scmp-distance": args.somatic_allele_conversion = "first" # somatic allele conversion should also switch off decomposition if args.somatic_allele_conversion and ("-D" not in sys.argv and "--decompose" not in sys.argv): args.preprocessing_decompose = False # xcmp/scmp support bcf; others don't if args.engine in ["xcmp", "scmp-somatic", "scmp-distance"] \ and (args.bcf or (args.vcf1.endswith(".bcf") and args.vcf2.endswith(".bcf"))): internal_format_suffix = ".bcf" else: internal_format_suffix = ".vcf.gz" # write session info and args file session = sessionInfo() session["final_args"] = args.__dict__ with open(args.reports_prefix + ".runinfo.json", "w") as sessionfile: json.dump(session, sessionfile) try: logging.info("Comparing %s and %s" % (args.vcf1, args.vcf2)) logging.info("Preprocessing truth: %s" % args.vcf1) starttime = time.time() ttf = tempfile.NamedTemporaryFile(delete=False, dir=args.scratch_prefix, prefix="truth.pp", suffix=internal_format_suffix) ttf.close() if args.engine.endswith("somatic") and \ args.preprocessing_truth and \ (args.preprocessing_leftshift or args.preprocessing_norm or args.preprocessing_decompose): args.preprocessing_truth = False logging.info( "Turning off pre.py preprocessing for somatic comparisons") if args.preprocessing_truth: if args.filter_nonref: logging.info( "Filtering out any variants genotyped as <NON_REF>") ## Only converting truth gvcf to vcf if both arguments are true convert_gvcf_truth = False if args.convert_gvcf_truth or args.convert_gvcf_to_vcf: logging.info("Converting genome VCF to VCF") convert_gvcf_truth = True tempfiles.append(ttf.name) tempfiles.append(ttf.name + ".csi") tempfiles.append(ttf.name + ".tbi") args.gender = pre.preprocess( args.vcf1, ttf.name, args.ref, args.locations, None if args.usefiltered_truth else "*", # filters args.fixchr, args.regions_bedfile, args.targets_bedfile, args.preprocessing_leftshift if args.preprocessing_truth else False, args.preprocessing_decompose if args.preprocessing_truth else False, args.preprocessing_norm if args.preprocessing_truth else False, args.preprocess_window, args.threads, args.gender, args.somatic_allele_conversion, "TRUTH", filter_nonref=args.filter_nonref if args.preprocessing_truth else False, convert_gvcf_to_vcf=convert_gvcf_truth) args.vcf1 = ttf.name if args.fp_bedfile and args.preprocessing_truth_confregions: conf_temp = Haplo.gvcf2bed.gvcf2bed(args.vcf1, args.ref, args.fp_bedfile, args.scratch_prefix) tempfiles.append(conf_temp) args.strat_regions.append("CONF_VARS:" + conf_temp) h1 = vcfextract.extractHeadersJSON(args.vcf1) elapsed = time.time() - starttime logging.info("preprocess for %s -- time taken %.2f" % (args.vcf1, elapsed)) # once we have preprocessed the truth file we can resolve the locations # doing this here improves the time for query preprocessing below reference_contigs = set(fastaContigLengths(args.ref).keys()) if not args.locations: # default set of locations is the overlap between truth and reference args.locations = list(reference_contigs & set(h1["tabix"]["chromosomes"])) if not args.locations: raise Exception( "Truth and reference have no chromosomes in common!") elif type(args.locations) is not list: args.locations = args.locations.split(",") args.locations = sorted(args.locations) logging.info("Preprocessing query: %s" % args.vcf2) if args.filter_nonref: logging.info("Filtering out any variants genotyped as <NON_REF>") ## Only converting truth gvcf to vcf if both arguments are true convert_gvcf_query = False if args.convert_gvcf_query or args.convert_gvcf_to_vcf: logging.info("Converting genome VCF to VCF") convert_gvcf_query = True starttime = time.time() if args.pass_only: filtering = "*" else: filtering = args.filters_only qtf = tempfile.NamedTemporaryFile(delete=False, dir=args.scratch_prefix, prefix="query.pp", suffix=internal_format_suffix) qtf.close() tempfiles.append(qtf.name) tempfiles.append(qtf.name + ".csi") tempfiles.append(qtf.name + ".tbi") if args.engine.endswith("somatic") and \ (args.preprocessing_leftshift or args.preprocessing_norm or args.preprocessing_decompose): args.preprocessing_leftshift = False args.preprocessing_norm = False args.preprocessing_decompose = False logging.info( "Turning off pre.py preprocessing (query) for somatic comparisons" ) pre.preprocess( args.vcf2, qtf.name, args.ref, str(",".join(args.locations)), filtering, args.fixchr, args.regions_bedfile, args.targets_bedfile, args.preprocessing_leftshift, args.preprocessing_decompose, args.preprocessing_norm, args.preprocess_window, args.threads, args.gender, # same gender as truth above args.somatic_allele_conversion, "QUERY", filter_nonref=args.filter_nonref, convert_gvcf_to_vcf=convert_gvcf_query) args.vcf2 = qtf.name h2 = vcfextract.extractHeadersJSON(args.vcf2) elapsed = time.time() - starttime logging.info("preprocess for %s -- time taken %.2f" % (args.vcf2, elapsed)) if not h1["tabix"]: raise Exception("Truth file is not indexed after preprocesing.") if not h2["tabix"]: raise Exception("Query file is not indexed after preprocessing.") for _xc in args.locations: if _xc not in h2["tabix"]["chromosomes"]: logging.warn("No calls for location %s in query!" % _xc) pool = getPool(args.threads) if args.threads > 1 and args.engine == "xcmp": logging.info("Running using %i parallel processes." % args.threads) # find balanced pieces # cap parallelism at 64 since otherwise bcftools concat below might run out # of file handles args.pieces = min(args.threads, 64) res = runParallel(pool, Haplo.blocksplit.blocksplitWrapper, args.locations, args) if None in res: raise Exception("One of the blocksplit processes failed.") tempfiles += res args.locations = [] for f in res: with open(f) as fp: for l in fp: ll = l.strip().split("\t", 3) if len(ll) < 3: continue xchr = ll[0] start = int(ll[1]) + 1 end = int(ll[2]) args.locations.append("%s:%i-%i" % (xchr, start, end)) # count variants before normalisation if "samples" not in h1 or not h1["samples"]: raise Exception("Cannot read sample names from truth VCF file") if "samples" not in h2 or not h2["samples"]: raise Exception("Cannot read sample names from query VCF file") tf = tempfile.NamedTemporaryFile(delete=False, dir=args.scratch_prefix, prefix="hap.py.result.", suffix=internal_format_suffix) tf.close() tempfiles.append(tf.name) tempfiles.append(tf.name + ".tbi") tempfiles.append(tf.name + ".csi") output_name = tf.name if args.engine == "xcmp": # do xcmp logging.info("Using xcmp for comparison") res = runParallel(pool, Haplo.xcmp.xcmpWrapper, args.locations, args) tempfiles += [x for x in res if x is not None] # VCFs if None in res: raise Exception("One of the xcmp jobs failed.") if len(res) == 0: raise Exception( "Input files/regions do not contain variants (0 haplotype blocks were processed)." ) # concatenate + index logging.info("Concatenating variants...") runme_list = [x for x in res if x is not None] if len(runme_list) == 0: raise Exception("No outputs to concatenate!") logging.info("Concatenating...") bcftools.concatenateParts(output_name, *runme_list) logging.info("Indexing...") bcftools.runBcftools("index", output_name) # passed to quantify args.type = "xcmp" # xcmp extracts whichever field we're using into the QQ info field args.roc_header = args.roc args.roc = "IQQ" elif args.engine == "vcfeval": tempfiles += Haplo.vcfeval.runVCFEval(args.vcf1, args.vcf2, output_name, args) # passed to quantify args.type = "ga4gh" elif args.engine.startswith("scmp"): tempfiles += Haplo.scmp.runSCmp(args.vcf1, args.vcf2, output_name, args) # passed to quantify args.type = "ga4gh" else: raise Exception("Unknown comparison engine: %s" % args.engine) if args.preserve_info and args.engine == "vcfeval": # if we use vcfeval we need to merge the INFO fields back in. tf = tempfile.NamedTemporaryFile(suffix=".txt", delete=False) tempfiles.append(tf) print >> tf, "TRUTH_IN" print >> tf, "QUERY_IN" tf.close() info_file = tempfile.NamedTemporaryFile(suffix=".vcf.gz", delete=False) tempfiles.append(info_file.name) info_file.close() bcftools.runBcftools("merge", args.vcf1, args.vcf2, "--force-samples", "-m", "all", "|", "bcftools", "reheader", "-s", tf.name, "|", "bcftools", "view", "-o", info_file.name, "-O", "z") bcftools.runBcftools("index", info_file.name) merged_info_file = tempfile.NamedTemporaryFile(suffix=".vcf.gz", delete=False) tempfiles.append(merged_info_file.name) merged_info_file.close() bcftools.runBcftools("merge", output_vcf, info_file.name, "-m", "all", "|", "bcftools", "view", "-s", "^TRUTH_IN,QUERY_IN", "-X", "-U", "-o", merged_info_file.name, "-O", "z") output_name = merged_info_file.name args.in_vcf = [output_name] args.runner = "hap.py" qfy.quantify(args) finally: if args.delete_scratch: for x in tempfiles: try: os.remove(x) except: pass else: logging.info("Scratch files kept : %s" % (str(tempfiles)))
def run_quantify(filename, output_file=None, write_vcf=False, regions=None, reference=Tools.defaultReference(), locations=None, threads=1, output_vtc=False, output_rocs=False, qtype=None, roc_file=None, roc_val=None, roc_header=None, roc_filter=None, roc_delta=None, roc_regions=None, clean_info=True, strat_fixchr=False): """Run quantify and return parsed JSON :param filename: the VCF file name :param output_file: output file name (if None, will use a temp file) :param write_vcf: write annotated VCF (give filename) :type write_vcf: str :param regions: dictionary of stratification region names and file names :param reference: reference fasta path :param locations: a location to use :param output_vtc: enable / disable the VTC field :param output_rocs: enable / disable output of ROCs by QQ level :param roc_file: filename for a TSV file with ROC observations :param roc_val: field to use for ROC QQ :param roc_header: name of ROC value for tables :param roc_filter: ROC filtering settings :param roc_delta: ROC minimum spacing between levels :param roc_regions: List of regions to output full ROCs for :param clean_info: remove unused INFO fields :param strat_fixchr: fix chr naming in stratification regions :returns: parsed counts JSON """ if not output_file: output_file = tempfile.NamedTemporaryFile().name run_str = "quantify %s -o %s" % (pipes.quote(filename), pipes.quote(output_file)) run_str += " -r %s" % pipes.quote(reference) run_str += " --threads %i" % threads if output_vtc: run_str += " --output-vtc 1" else: run_str += " --output-vtc 0" if output_rocs: run_str += " --output-rocs 1" else: run_str += " --output-rocs 0" if qtype: run_str += " --type %s" % qtype if roc_file: run_str += " --output-roc %s" % pipes.quote(roc_file) if roc_val: run_str += " --qq %s" % pipes.quote(roc_val) if roc_header != roc_val: # for xcmp, we extract the QQ value into the IQQ INFO field # we pass the original name along here run_str += " --qq-header %s" % pipes.quote(roc_header) if roc_filter: run_str += " --roc-filter '%s'" % pipes.quote(roc_filter) if roc_delta: run_str += " --roc-delta %f" % roc_delta if clean_info: run_str += " --clean-info 1" else: run_str += " --clean-info 0" if strat_fixchr: run_str += " --fix-chr-regions 1" else: run_str += " --fix-chr-regions 0" if write_vcf: if not write_vcf.endswith(".vcf.gz") and not write_vcf.endswith( ".bcf"): write_vcf += ".vcf.gz" run_str += " -v %s" % pipes.quote(write_vcf) if regions: for k, v in regions.iteritems(): run_str += " -R '%s:%s'" % (k, v) if roc_regions: for r in roc_regions: run_str += " --roc-regions '%s'" % r location_file = None if locations: location_file = _locations_tmp_bed_file(locations) run_str += " --only '%s'" % location_file tfe = tempfile.NamedTemporaryFile(delete=False, prefix="stderr", suffix=".log") tfo = tempfile.NamedTemporaryFile(delete=False, prefix="stdout", suffix=".log") logging.info("Running '%s'" % run_str) try: subprocess.check_call(run_str, shell=True, stdout=tfo, stderr=tfe) except: tfo.close() tfe.close() with open(tfo.name) as f: for l in f: logging.error("[stdout] " + l.replace("\n", "")) os.unlink(tfo.name) with open(tfe.name) as f: for l in f: logging.error("[stderr] " + l.replace("\n", "")) os.unlink(tfe.name) if location_file: os.unlink(location_file) raise tfo.close() tfe.close() with open(tfo.name) as f: for l in f: logging.info("[stdout] " + l.replace("\n", "")) os.unlink(tfo.name) with open(tfe.name) as f: for l in f: logging.info("[stderr] " + l.replace("\n", "")) os.unlink(tfe.name) if location_file: os.unlink(location_file) if write_vcf and write_vcf.endswith(".bcf"): runBcftools("index", write_vcf) elif write_vcf: to_run = "tabix -p vcf %s" % pipes.quote(write_vcf) logging.info("Running '%s'" % to_run) subprocess.check_call(to_run, shell=True)
def main(): parser = argparse.ArgumentParser("Somatic Comparison") parser.add_argument("truth", help="Truth VCF file") parser.add_argument("query", help="Query VCF file") parser.add_argument("-o", "--output", dest="output", required=True, help="Output file prefix for statistics and feature table (when selected)") parser.add_argument("-l", "--location", dest="location", default="", help="Location for bcftools view (e.g. chr1)") parser.add_argument("-R", "--restrict-regions", dest="regions_bedfile", default=None, type=str, help="Restrict analysis to given (sparse) regions (using -R in bcftools).") parser.add_argument("-T", "--target-regions", dest="targets_bedfile", default=None, type=str, help="Restrict analysis to given (dense) regions (using -T in bcftools).") parser.add_argument("-f", "--false-positives", dest="FP", help="False-positive region bed file to distinguish UNK from FP") parser.add_argument("-a", "--ambiguous", dest="ambi", action='append', help="Ambiguous region bed file(s) to distinguish from FP (e.g. variant only observed " "in some replicates)") parser.add_argument("--ambi-fp", dest="ambi_fp", action='store_true', default=False, help="Use FP calls from ambiguous region files also.") parser.add_argument("--no-ambi-fp", dest="ambi_fp", action='store_false', help="Do not use FP calls from ambiguous region files also.") parser.add_argument("--count-unk", dest="count_unk", action='store_true', default=False, help="Assume the truth set covers the whole genome and only count FPs in regions " "specified by the truth VCF or ambiguous/false-positive regions.") parser.add_argument("--no-count-unk", dest="count_unk", action='store_false', help="Do not use FP calls from ambiguous region files also.") parser.add_argument("-e", "--explain_ambiguous", dest="explain_ambiguous", required=False, default=False, action="store_true", help="print a table giving the number of ambiguous events per category") parser.add_argument("-r", "--reference", dest="ref", default=Tools.defaultReference(), help="Specify a reference file.") parser.add_argument("--scratch-prefix", dest="scratch_prefix", default=None, help="Filename prefix for scratch report output.") parser.add_argument("--keep-scratch", dest="delete_scratch", default=True, action="store_false", help="Filename prefix for scratch report output.") parser.add_argument("--continue", dest="cont", default=False, action="store_true", help="Continue from scratch space (i.e. use VCFs in there if they already exist).") parser.add_argument("-P", "--include-nonpass", dest="inc_nonpass", action="store_true", default=False, help="Use to include failing variants in comparison.") parser.add_argument("--feature-table", dest="features", default=False, choices=Somatic.FeatureSet.sets.keys(), help="Select a feature table to output.") parser.add_argument("--bam", dest="bams", default=[], action="append", help="pass one or more BAM files for feature table extraction") parser.add_argument("--normalize-truth", dest="normalize_truth", default=False, action="store_true", help="Enable running of bcftools norm on the truth file.") parser.add_argument("--normalize-query", dest="normalize_query", default=False, action="store_true", help="Enable running of bcftools norm on the query file.") parser.add_argument("-N", "--normalize-all", dest="normalize_all", default=False, action="store_true", help="Enable running of bcftools norm on both truth and query file.") parser.add_argument("--fixchr-truth", dest="fixchr_truth", action="store_true", default=True, help="Add chr prefix to truth file (default: true).") parser.add_argument("--fixchr-query", dest="fixchr_query", action="store_true", default=True, help="Add chr prefix to query file (default: true).") parser.add_argument("--fix-chr-truth", dest="fixchr_truth", action="store_true", default=None, help="Same as --fixchr-truth.") parser.add_argument("--fix-chr-query", dest="fixchr_query", action="store_true", default=None, help="Same as --fixchr-query.") parser.add_argument("--no-fixchr-truth", dest="fixchr_truth", action="store_false", default=False, help="Disable chr replacement for truth (default: false).") parser.add_argument("--no-fixchr-query", dest="fixchr_query", action="store_false", default=False, help="Add chr prefix to query file (default: false).") parser.add_argument("--no-order-check", dest="disable_order_check", default=False, action="store_true", help="Disable checking the order of TP features (dev feature).") parser.add_argument("--roc", dest="roc", default=None, choices=ROC.list(), help="Create a ROC-style table. This is caller specific " " - this will override the --feature-table switch!") parser.add_argument("--bin-afs", dest="af_strat", default=None, action="store_true", help="Stratify into different AF buckets. This needs to have features available" "for getting the AF both in truth and query variants.") parser.add_argument("--af-binsize", dest="af_strat_binsize", default=0.2, help="Bin size for AF binning (should be < 1). Multiple bin sizes can be specified using a comma, " "e.g. 0.1,0.2,0.5,0.2 will split at 0.1, 0.3, 0.8 and 1.0.") parser.add_argument("--af-truth", dest="af_strat_truth", default="I.T_ALT_RATE", help="Feature name to use for retrieving AF for truth variants (TP and FN)") parser.add_argument("--af-query", dest="af_strat_query", default="T_AF", help="Feature name to use for retrieving AF for query variants (FP/UNK/AMBI)") parser.add_argument("-FN", "--count-filtered-fn", dest="count_filtered_fn", action="store_true", help="Count filtered vs. absent FN numbers. This requires the -P switch (to use all " "variants) and either the --feature-table or --roc switch.") parser.add_argument("--fp-region-size", dest="fpr_size", help="How to obtain the normalisation constant for FP rate. By default, this will use the FP region bed file size when using" " --count-unk and the size of all reference contigs that overlap with the location specified in -l otherwise." " This can be overridden with: 1) a number of nucleotides, or 2) \"auto\" to use the lengths of all contigs that have calls." " The resulting value is used as fp.region.size.") parser.add_argument("--ci-level", dest="ci_level", default=0.95, type = float, help="Confidence level for precision/recall confidence intervals (default: 0.95)") parser.add_argument("--logfile", dest="logfile", default=None, help="Write logging information into file rather than to stderr") verbosity_options = parser.add_mutually_exclusive_group(required=False) verbosity_options.add_argument("--verbose", dest="verbose", default=False, action="store_true", help="Raise logging level from warning to info.") verbosity_options.add_argument("--quiet", dest="quiet", default=False, action="store_true", help="Set logging level to output errors only.") args = parser.parse_args() if args.verbose: loglevel = logging.INFO elif args.quiet: loglevel = logging.ERROR else: loglevel = logging.WARNING try: if type(args.af_strat_binsize) is str: args.af_strat_binsize = map(float, args.af_strat_binsize.split(",")) else: args.af_strat_binsize = map(float, [args.af_strat_binsize]) if not args.af_strat_binsize: raise Exception("Bin size list is empty") except: logging.error("Failed to parse stratification bin size: %s" % str(args.af_strat_binsize)) exit(1) # reinitialize logging for handler in logging.root.handlers[:]: logging.root.removeHandler(handler) logging.basicConfig(filename=args.logfile, format='%(asctime)s %(levelname)-8s %(message)s', level=loglevel) if args.normalize_all: args.normalize_truth = True args.normalize_query = True if args.roc: args.roc = ROC.make(args.roc) args.features = args.roc.ftname if not args.inc_nonpass: logging.warn("When creating ROCs without the -P switch, the ROC data points will only " "include filtered variants (i.e. they will normally end at the caller's " "quality threshold).") if not (args.ci_level > 0.0 and args.ci_level < 1.0): raise Exception("Confidence interval level must be > 0.0 and < 1.0.") if args.af_strat and not args.features: raise Exception("To stratify by AFs, a feature table must be selected -- use this switch together " "with --feature-table or --roc") if args.count_filtered_fn and (not args.inc_nonpass or not args.features): raise Exception("Counting filtered / unfiltered FNs only works when a feature table is selected, " "and when using unfiltered variants. Specify -P --feature-table <...> or use " "--roc to select a ROC type.") if args.scratch_prefix: scratch = os.path.abspath(args.scratch_prefix) args.delete_scratch = False Tools.mkdir_p(scratch) else: scratch = tempfile.mkdtemp() logging.info("Scratch path is %s" % scratch) try: bams = [] md = None for x in args.bams: bams.append(bamStats(x)) if bams: bres = pandas.concat(bams).groupby("CHROM").mean() md = {} for x in bres.index: logging.info("Mean coverage on %s is %f" % (x, bres.loc[x]["COVERAGE"])) md[x] = float(bres.loc[x]["COVERAGE"]) * 3.0 logging.info("Normalizing/reading inputs") ntpath = os.path.join(scratch, "normalized_truth.vcf.gz") if not (args.cont and os.path.exists(ntpath)): preprocessVCF(args.truth, ntpath, args.location, True, # pass_only args.fixchr_truth, # chrprefix args.normalize_truth, # norm, args.regions_bedfile, args.targets_bedfile, args.ref) else: logging.info("Continuing from %s" % ntpath) if not (args.cont and os.path.exists(ntpath + ".csi")): runBcftools("index", ntpath) nqpath = os.path.join(scratch, "normalized_query.vcf.gz") if not (args.cont and os.path.exists(nqpath)): preprocessVCF(args.query, nqpath, args.location, not args.inc_nonpass, # pass_only args.fixchr_query, # chrprefix args.normalize_query, # norm, args.regions_bedfile, args.targets_bedfile, args.ref) else: logging.info("Continuing from %s" % nqpath) if not (args.cont and os.path.exists(nqpath + ".csi")): runBcftools("index", nqpath) logging.info("Intersecting") tpfn_files = all([os.path.exists(os.path.join(scratch, "tpfn", "0000.vcf.gz")), os.path.exists(os.path.join(scratch, "tpfn", "0001.vcf.gz")), os.path.exists(os.path.join(scratch, "tpfn", "0002.vcf.gz"))]) tpfn_r_files = all([os.path.exists(os.path.join(scratch, "tpfn", "0000.vcf.gz")), os.path.exists(os.path.join(scratch, "tpfn", "0001.vcf.gz")), os.path.exists(os.path.join(scratch, "tpfn", "0002.vcf.gz"))]) if not (args.cont and tpfn_files): runBcftools("isec", ntpath, nqpath, "-p", os.path.join(scratch, "tpfn"), "-O", "z") else: logging.info("Continuing from %s" % os.path.join(scratch, "tpfn")) if args.features and not (args.cont and tpfn_r_files): # only need to do this for getting the feature table runBcftools("isec", nqpath, ntpath, "-p", os.path.join(scratch, "tpfn_r"), "-O", "z") logging.info("Getting FPs / Ambi / Unk") fppath = os.path.join(scratch, "fp.vcf.gz") unkpath = os.path.join(scratch, "unk.vcf.gz") ambipath = os.path.join(scratch, "ambi.vcf.gz") # get header to print to unk and ambi VCFs rununiquepath = os.path.join(scratch, "tpfn", "0001.vcf.gz") header = runBcftools("view", rununiquepath, "--header-only") fp = Tools.BGZipFile(fppath, True) fp.write(header) unk = Tools.BGZipFile(unkpath, True) unk.write(header) ambi = Tools.BGZipFile(ambipath, True) ambi.write(header) ambiClasses = Counter() ambiReasons = Counter() fpclasses = BedIntervalTree() if args.ambi: # can have multiple ambiguous BED files for aBED in args.ambi: # auto-label from first value after chr start end # new ambi files have the label in position 4 # old ones will look weird here. fpclasses.addFromBed(aBED, lambda xe: xe[4], args.fixchr_truth) if args.FP: fpclasses.addFromBed(args.FP, "FP", args.fixchr_truth) # split VCF into FP, UNK and AMBI toProcess = gzip.open(rununiquepath, "rb") for entry in toProcess: if entry[0] == '#': continue fields = entry.strip().split("\t") chrom = fields[0] start = int(fields[1]) stop = int(fields[1]) + len(fields[3]) overlap = fpclasses.intersect(chrom, start, stop) is_fp = False is_ambi = False classes_this_pos = set() for o in overlap: reason = o.value[0] if reason == "fp" and args.ambi_fp: reason = "FP" elif reason == "fp": reason = "ambi-fp" elif reason == "unk": reason = "ambi-unk" classes_this_pos.add(reason) try: ambiReasons["%s: rep. count %s" % (reason, o.value[1])] += 1 except IndexError: ambiReasons["%s: rep. count *" % reason] += 1 for x in o.value[3:]: ambiReasons["%s: %s" % (reason, x)] += 1 if reason == "FP": is_fp = True else: is_ambi = True for reason in classes_this_pos: ambiClasses[reason] += 1 if is_fp: fp.write(entry) elif is_ambi: ambi.write(entry) elif not args.count_unk: # when we don't have FP regions, unk stuff becomes FP fp.write(entry) else: unk.write(entry) toProcess.close() # since 0001.vcf.gz should already be sorted, we can just convert to bgzipped vcf # and create index fp.close() ambi.close() unk.close() runBcftools("index", "--tbi", fppath) runBcftools("index", "--tbi", unkpath) runBcftools("index", "--tbi", ambipath) logging.info("Counting variants...") truthcounts = parseStats(runBcftools("stats", ntpath), "total.truth") querycounts = parseStats(runBcftools("stats", nqpath), "total.query") tpcounts = parseStats(runBcftools("stats", os.path.join(scratch, "tpfn", "0002.vcf.gz")), "tp") fncounts = parseStats(runBcftools("stats", os.path.join(scratch, "tpfn", "0000.vcf.gz")), "fn") fpcounts = parseStats(runBcftools("stats", fppath), "fp") ambicounts = parseStats(runBcftools("stats", ambipath), "ambi") unkcounts = parseStats(runBcftools("stats", unkpath), "unk") res = pandas.merge(truthcounts, querycounts, on="type") res = pandas.merge(res, tpcounts, on="type") res = pandas.merge(res, fpcounts, on="type") res = pandas.merge(res, fncounts, on="type") res = pandas.merge(res, unkcounts, on="type") res = pandas.merge(res, ambicounts, on="type") # no explicit guarantee that total.query is equal to unk + ambi + fp + tp # testSum = res["fp"] + res["tp"] + res["unk"] + res["ambi"] # filter and relabel res = res[res["type"] != "samples"] res = res[res["type"] != "multiallelic SNP sites"] res = res[res["type"] != "multiallelic sites"] res.loc[res["type"] == "SNPs", "type"] = "SNVs" metrics_output = makeMetricsObject("som.py.comparison") if args.ambi and args.explain_ambiguous: ac = list(ambiClasses.iteritems()) if ac: ambie = pandas.DataFrame(ac, columns=["class", "count"]) ambie.sort(["class"], inplace=True) pandas.set_option("display.max_rows", 1000) pandas.set_option("display.max_columns", 1000) pandas.set_option("display.width", 1000) pandas.set_option("display.height", 1100) logging.info("FP/ambiguity classes with info (multiple classes can " "overlap):\n" + ambie.to_string(index=False)) # in default mode, print result summary to stdout if not args.quiet and not args.verbose: print "FP/ambiguity classes with info (multiple classes can " \ "overlap):\n" + ambie.to_string(index=False) ambie.to_csv(args.output + ".ambiclasses.csv") metrics_output["metrics"].append(dataframeToMetricsTable("ambiclasses", ambie)) else: logging.info("No ambiguous variants.") ar = list(ambiReasons.iteritems()) if ar: ambie = pandas.DataFrame(ar, columns=["reason", "count"]) ambie.sort(["reason"], inplace=True) pandas.set_option("display.max_rows", 1000) pandas.set_option("display.max_columns", 1000) pandas.set_option("display.width", 1000) pandas.set_option("display.height", 1100) logging.info("Reasons for defining as ambiguous (multiple reasons can overlap):\n" + ambie.to_string( formatters={'reason': '{{:<{}s}}'.format(ambie['reason'].str.len().max()).format}, index=False)) # in default mode, print result summary to stdout if not args.quiet and not args.verbose: print "Reasons for defining as ambiguous (multiple reasons can overlap):\n" + ambie.to_string( formatters={'reason': '{{:<{}s}}'.format(ambie['reason'].str.len().max()).format}, index=False) ambie.to_csv(args.output + ".ambireasons.csv") metrics_output["metrics"].append(dataframeToMetricsTable("ambireasons", ambie)) else: logging.info("No ambiguous variants.") if args.features: logging.info("Extracting features...") fset = Somatic.FeatureSet.make(args.features) fset.setChrDepths(md) logging.info("Collecting TP info (1)...") tps = fset.collect(os.path.join(scratch, "tpfn", "0002.vcf.gz"), "TP") # TP_r is a hint for fset, they are both TPs logging.info("Collecting TP info (2)...") tps2 = fset.collect(os.path.join(scratch, "tpfn_r", "0002.vcf.gz"), "TP_r") # this is slow because it tries to sort # ... which we don't need to do since tps1 and tps2 have the same ordering logging.info("Sorting...") tps.sort(["CHROM", "POS"], inplace=True) tps2.sort(["CHROM", "POS"], inplace=True) tps = tps.reset_index(drop=True) tps2 = tps2.reset_index(drop=True) logging.info("Merging TP info...") columns_tps = list(tps) columns_tps2 = list(tps2) len1 = tps.shape[0] len2 = tps2.shape[0] if len1 != len2: raise Exception("Cannot read TP features, lists have different lengths : %i != %i" % (len1, len2)) if not args.disable_order_check: logging.info("Checking order %i / %i" % (len1, len2)) for x in xrange(0, len1): for a in ["CHROM", "POS"]: if tps.loc[x][a] != tps2.loc[x][a]: raise Exception("Cannot merge TP features, inputs are out of order at %s / %s" % ( str(tps[x:x + 1]), str(tps2[x:x + 1]))) logging.info("Merging...") cdata = { "CHROM": tps["CHROM"], "POS": tps["POS"], "tag": tps["tag"] } tpc = pandas.DataFrame(cdata, columns=["CHROM", "POS", "tag"]) all_columns = list(set(columns_tps + columns_tps2)) for a in all_columns: if a in columns_tps and a not in columns_tps2: tpc[a] = tps[a] elif a not in columns_tps and a in columns_tps2: tpc[a] = tps2[a] elif a not in ["CHROM", "POS", "tag"]: tpc[a] = tps2[a] tpc[a + ".truth"] = tps[a] logging.info("Collecting FP info...") fps = fset.collect(fppath, "FP") ambs = fset.collect(ambipath, "AMBI") logging.info("Collecting FN info...") fns = fset.collect(os.path.join(scratch, "tpfn", "0000.vcf.gz"), "FN") renamed = {} tp_cols = list(tpc) for col in list(fns): if col + ".truth" in tp_cols: renamed[col] = col + ".truth" fns.rename(columns=renamed, inplace=True) featurelist = [tpc, fps, fns, ambs] if unkpath is not None: logging.info("Collecting UNK info...") unk = fset.collect(unkpath, "UNK") featurelist.append(unk) logging.info("Making feature table...") featuretable = pandas.concat(featurelist) # reorder to make more legible first_columns = ["CHROM", "POS", "tag"] # noinspection PyTypeChecker all_columns = list(featuretable) if "REF" in all_columns: first_columns.append("REF") if "REF.truth" in all_columns: first_columns.append("REF.truth") if "ALT" in all_columns: first_columns.append("ALT") if "ALT.truth" in all_columns: first_columns.append("ALT.truth") ordered_columns = first_columns + sorted([x for x in all_columns if x not in first_columns]) featuretable = featuretable[ordered_columns] # make sure positions are integers featuretable["POS"] = featuretable["POS"].astype(int) logging.info("Saving feature table...") featuretable.to_csv(args.output + ".features.csv", float_format='%.8f') if args.roc is not None: roc_table = args.roc.from_table(featuretable) roc_table.to_csv(args.output + ".roc.csv", float_format='%.8f') featuretable["FILTER"].fillna("", inplace=True) featuretable.ix[featuretable["REF"].str.len() < 1, "absent"] = True featuretable.ix[featuretable["tag"] == "FN", "REF"] = featuretable.ix[featuretable["tag"] == "FN", "REF.truth"] featuretable.ix[featuretable["tag"] == "FN", "ALT"] = featuretable.ix[featuretable["tag"] == "FN", "ALT.truth"] af_t_feature = args.af_strat_truth af_q_feature = args.af_strat_query for vtype in ["records", "SNVs", "indels"]: if vtype == "SNVs": featuretable_this_type = featuretable[(featuretable["REF"].str.len() > 0) & (featuretable["ALT"].str.len() == featuretable["REF"].str.len())] elif vtype == "indels": featuretable_this_type = featuretable[(featuretable["REF"].str.len() != 1) | (featuretable["ALT"].str.len() != 1)] else: featuretable_this_type = featuretable if args.count_filtered_fn: res.ix[res["type"] == vtype, "fp.filtered"] = featuretable_this_type[ (featuretable_this_type["tag"] == "FP") & (featuretable_this_type["FILTER"] != "")].shape[0] res.ix[res["type"] == vtype, "tp.filtered"] = featuretable_this_type[ (featuretable_this_type["tag"] == "TP") & (featuretable_this_type["FILTER"] != "")].shape[0] res.ix[res["type"] == vtype, "unk.filtered"] = featuretable_this_type[ (featuretable_this_type["tag"] == "UNK") & (featuretable_this_type["FILTER"] != "")].shape[0] res.ix[res["type"] == vtype, "ambi.filtered"] = featuretable_this_type[ (featuretable_this_type["tag"] == "AMBI") & (featuretable_this_type["FILTER"] != "")].shape[0] if args.af_strat: start = 0.0 current_binsize = args.af_strat_binsize[0] next_binsize = 0 while start < 1.0: # include 1 in last interval end = min(1.000000001, start + current_binsize) n_tp = featuretable_this_type[(featuretable_this_type["tag"] == "TP") & (featuretable_this_type[af_t_feature] >= start) & (featuretable_this_type[af_t_feature] < end)] n_fn = featuretable_this_type[(featuretable_this_type["tag"] == "FN") & (featuretable_this_type[af_t_feature] >= start) & (featuretable_this_type[af_t_feature] < end)] n_fp = featuretable_this_type[(featuretable_this_type["tag"] == "FP") & (featuretable_this_type[af_q_feature] >= start) & (featuretable_this_type[af_q_feature] < end)] n_ambi = featuretable_this_type[(featuretable_this_type["tag"] == "AMBI") & (featuretable_this_type[af_q_feature] >= start) & (featuretable_this_type[af_q_feature] < end)] n_unk = featuretable_this_type[(featuretable_this_type["tag"] == "UNK") & (featuretable_this_type[af_q_feature] >= start) & (featuretable_this_type[af_q_feature] < end)] r = {"type": "%s.%f-%f" % (vtype, start, end), "total.truth": n_tp.shape[0] + n_fn.shape[0], "total.query": n_tp.shape[0] + n_fp.shape[0] + n_ambi.shape[0] + n_unk.shape[0], "tp": n_tp.shape[0], "fp": n_fp.shape[0], "fn": n_fn.shape[0], "unk": n_unk.shape[0], "ambi": n_ambi.shape[0], } if args.count_filtered_fn: r["fp.filtered"] = n_fp[n_fp["FILTER"] != ""].shape[0] r["tp.filtered"] = n_tp[n_tp["FILTER"] != ""].shape[0] r["unk.filtered"] = n_unk[n_unk["FILTER"] != ""].shape[0] r["ambi.filtered"] = n_ambi[n_ambi["FILTER"] != ""].shape[0] res = pandas.concat([res, pandas.DataFrame([r])]) if args.roc is not None and (n_tp.shape[0] + n_fn.shape[0] + n_fp.shape[0]) > 0: roc_table_strat = args.roc.from_table(pandas.concat([n_tp, n_fp, n_fn])) rtname = "%s.%s.%f-%f.roc.csv" % (args.output, vtype, start, end) roc_table_strat.to_csv(rtname, float_format='%.8f') start += current_binsize next_binsize += 1 if next_binsize >= len(args.af_strat_binsize): next_binsize = 0 current_binsize = args.af_strat_binsize[next_binsize] # remove things where we haven't seen any variants in truth and query res = res[(res["total.truth"] > 0) & (res["total.query"] > 0)] # summary metrics with confidence intervals ci_alpha = 1.0 - args.ci_level recall = binomialCI(res["tp"], res["tp"]+res["fn"], ci_alpha) precision = binomialCI(res["tp"], res["tp"]+res["fp"], ci_alpha) res["recall"], res["recall_lower"], res["recall_upper"] = recall res["recall2"] = res["tp"] / (res["total.truth"]) res["precision"], res["precision_lower"], res["precision_upper"] = precision res["na"] = res["unk"] / (res["total.query"]) res["ambiguous"] = res["ambi"] / res["total.query"] any_fp = fpclasses.countbases(label="FP") fp_region_count = 0 auto_size = True if args.fpr_size: try: fp_region_count = int(args.fpr_size) auto_size = False except: pass if auto_size: if any_fp: if args.location: chrom, _, rest = args.location.partition(":") if rest: start, _, end = rest.partition("_") if start: start = int(start) if end: end = int(end) else: fp_region_count += fpclasses.countbases(chrom, label="FP") else: fp_region_count = any_fp else: cs = fastaContigLengths(args.ref) if args.location: fp_region_count = calculateLength(cs, args.location) else: # use all locations we saw calls on h1 = Tools.vcfextract.extractHeadersJSON(ntpath) h1_chrs = h1["tabix"]["chromosomes"] if not h1_chrs: logging.warn("ntpath is empty") h1_chrs = [] h2 = Tools.vcfextract.extractHeadersJSON(nqpath) h2_chrs = h2["tabix"]["chromosomes"] if not h2_chrs: logging.warn("nqpath is empty") h2_chrs = [] combined_chrs = list(set(h1_chrs + h2_chrs)) if len(combined_chrs) > 0: qlocations = " ".join(combined_chrs) fp_region_count = calculateLength(cs, qlocations) else: fp_region_count = 0 res["fp.region.size"] = fp_region_count res["fp.rate"] = 1e6 * res["fp"] / res["fp.region.size"] if args.count_filtered_fn: res["recall.filtered"] = (res["tp"] - res["tp.filtered"]) / (res["tp"] + res["fn"]) res["precision.filtered"] = (res["tp"] - res["tp.filtered"]) / (res["tp"] - res["tp.filtered"] + res["fp"] - res["fp.filtered"]) res["fp.rate.filtered"] = 1e6 * (res["fp"] - res["fp.filtered"]) / res["fp.region.size"] res["na.filtered"] = (res["unk"] - res["unk.filtered"]) / (res["total.query"]) res["ambiguous.filtered"] = (res["ambi"] - res["ambi.filtered"]) / res["total.query"] # HAP-162 remove inf values res.replace([np.inf, -np.inf], 0) metrics_output["metrics"].append(dataframeToMetricsTable("result", res)) vstring = "som.py-%s" % Tools.version logging.info("\n" + res.to_string()) # in default mode, print result summary to stdout if not args.quiet and not args.verbose: print "\n" + res.to_string() res["sompyversion"] = vstring vstring = " ".join(sys.argv) res["sompycmd"] = vstring res.to_csv(args.output + ".stats.csv") with open(args.output + ".metrics.json", "w") as fp: json.dump(metrics_output, fp) finally: if args.delete_scratch: shutil.rmtree(scratch) else: logging.info("Scratch kept at %s" % scratch)
def run_quantify( filename, output_file=None, write_vcf=False, regions=None, reference=Tools.defaultReference(), locations=None, threads=1, output_vtc=False, output_rocs=False, qtype=None, roc_file=None, roc_val=None, roc_filter=None, roc_delta=None, clean_info=True, strat_fixchr=False, ): """Run quantify and return parsed JSON :param filename: the VCF file name :param output_file: output file name (if None, will use a temp file) :param write_vcf: write annotated VCF (give filename) :type write_vcf: str :param regions: dictionary of stratification region names and file names :param reference: reference fasta path :param locations: a location to use :param output_vtc: enable / disable the VTC field :param output_rocs: enable / disable output of ROCs by QQ level :param roc_file: filename for a TSV file with ROC observations :param roc_val: field to use for ROC QQ :param roc_filter: ROC filtering settings :param roc_delta: ROC minimum spacing between levels :param clean_info: remove unused INFO fields :param strat_fixchr: fix chr naming in stratification regions :returns: parsed counts JSON """ if not output_file: output_file = tempfile.NamedTemporaryFile().name run_str = "quantify '%s' -o '%s'" % (filename.replace(" ", "\\ "), output_file) run_str += " -r '%s'" % reference.replace(" ", "\\ ") run_str += " --threads %i" % threads if output_vtc: run_str += " --output-vtc 1" else: run_str += " --output-vtc 0" if output_rocs: run_str += " --output-rocs 1" else: run_str += " --output-rocs 0" if qtype: run_str += " --type %s" % qtype if roc_file: run_str += " --output-roc %s" % roc_file if roc_val: run_str += " --qq %s" % roc_val if roc_filter: run_str += " --roc-filter '%s'" % roc_filter if roc_delta: run_str += " --roc-delta %f" % roc_delta if clean_info: run_str += " --clean-info 1" else: run_str += " --clean-info 0" if strat_fixchr: run_str += " --fix-chr-regions 1" else: run_str += " --fix-chr-regions 0" if write_vcf: if not write_vcf.endswith(".vcf.gz") and not write_vcf.endswith(".bcf"): write_vcf += ".vcf.gz" run_str += " -v '%s'" % write_vcf if regions: for k, v in regions.iteritems(): run_str += " -R '%s:%s'" % (k, v) location_file = None if locations: location_file = _locations_tmp_bed_file(locations) run_str += " --only '%s'" % location_file tfe = tempfile.NamedTemporaryFile(delete=False, prefix="stderr", suffix=".log") tfo = tempfile.NamedTemporaryFile(delete=False, prefix="stdout", suffix=".log") logging.info("Running '%s'" % run_str) try: subprocess.check_call(run_str, shell=True, stdout=tfo, stderr=tfe) except: tfo.close() tfe.close() with open(tfo.name) as f: for l in f: logging.error("[stdout] " + l.replace("\n", "")) os.unlink(tfo.name) with open(tfe.name) as f: for l in f: logging.error("[stderr] " + l.replace("\n", "")) os.unlink(tfe.name) if location_file: os.unlink(location_file) raise tfo.close() tfe.close() with open(tfo.name) as f: for l in f: logging.info("[stdout] " + l.replace("\n", "")) os.unlink(tfo.name) with open(tfe.name) as f: for l in f: logging.info("[stderr] " + l.replace("\n", "")) os.unlink(tfe.name) if location_file: os.unlink(location_file) if write_vcf and write_vcf.endswith(".bcf"): runBcftools("index", write_vcf) else: to_run = "tabix -p vcf '%s'" % write_vcf logging.info("Running '%s'" % to_run) subprocess.check_call(to_run, shell=True)
def main(): parser = argparse.ArgumentParser("Somatic Comparison") parser.add_argument("truth", help="Truth VCF file") parser.add_argument("query", help="Query VCF file") parser.add_argument( "-o", "--output", dest="output", required=True, help="Output file prefix for statistics and feature table (when selected)", ) parser.add_argument("-l", "--location", dest="location", default="", help="Location for bcftools view (e.g. chr1)") parser.add_argument( "-R", "--restrict-regions", dest="regions_bedfile", default=None, type=str, help="Restrict analysis to given (sparse) regions (using -R in bcftools).", ) parser.add_argument( "-T", "--target-regions", dest="targets_bedfile", default=None, type=str, help="Restrict analysis to given (dense) regions (using -T in bcftools).", ) parser.add_argument( "-f", "--false-positives", dest="FP", help="False-positive region bed file to distinguish UNK from FP" ) parser.add_argument( "-a", "--ambiguous", dest="ambi", action="append", help="Ambiguous region bed file(s) to distinguish from FP (e.g. variant only observed " "in some replicates)", ) parser.add_argument( "--ambiguous-fp", dest="ambi_fp", action="store_true", default=False, help="Use FP calls from ambiguous region files also.", ) parser.add_argument( "-e", "--explain_ambiguous", dest="explain_ambiguous", required=False, default=False, action="store_true", help="print a table giving the number of ambiguous events per category", ) parser.add_argument( "-r", "--reference", dest="ref", default=Tools.defaultReference(), help="Specify a reference file." ) parser.add_argument( "--scratch-prefix", dest="scratch_prefix", default=None, help="Filename prefix for scratch report output." ) parser.add_argument( "--keep-scratch", dest="delete_scratch", default=True, action="store_false", help="Filename prefix for scratch report output.", ) parser.add_argument( "--continue", dest="cont", default=False, action="store_true", help="Continue from scratch space (i.e. use VCFs in there if they already exist).", ) parser.add_argument( "-P", "--include-nonpass", dest="inc_nonpass", action="store_true", default=False, help="Use to include failing variants in comparison.", ) parser.add_argument( "--feature-table", dest="features", default=False, choices=Somatic.FeatureSet.sets.keys(), help="Select a feature table to output.", ) parser.add_argument( "--bam", dest="bams", default=[], action="append", help="pass one or more BAM files for feature table extraction", ) parser.add_argument( "--normalize-truth", dest="normalize_truth", default=False, action="store_true", help="Enable running of bcftools norm on the truth file.", ) parser.add_argument( "--normalize-query", dest="normalize_query", default=False, action="store_true", help="Enable running of bcftools norm on the query file.", ) parser.add_argument( "-N", "--normalize-all", dest="normalize_all", default=False, action="store_true", help="Enable running of bcftools norm on both truth and query file.", ) parser.add_argument( "--fix-chr-query", dest="fixchr_query", default=False, action="store_true", help="Replace numeric chromosome names in the query by chr*-type names", ) parser.add_argument( "--fix-chr-truth", dest="fixchr_truth", default=False, action="store_true", help="Replace numeric chromosome names in the truth by chr*-type names", ) parser.add_argument( "--no-order-check", dest="disable_order_check", default=False, action="store_true", help="Disable checking the order of TP features (dev feature).", ) parser.add_argument( "--roc", dest="roc", default=None, choices=ROC.list(), help="Create a ROC-style table. This is caller specific " " - this will override the --feature-table switch!", ) parser.add_argument( "--logfile", dest="logfile", default=None, help="Write logging information into file rather than to stderr" ) verbosity_options = parser.add_mutually_exclusive_group(required=False) verbosity_options.add_argument( "--verbose", dest="verbose", default=False, action="store_true", help="Raise logging level from warning to info.", ) verbosity_options.add_argument( "--quiet", dest="quiet", default=False, action="store_true", help="Set logging level to output errors only." ) args = parser.parse_args() if args.verbose: loglevel = logging.INFO elif args.quiet: loglevel = logging.ERROR else: loglevel = logging.WARNING # reinitialize logging for handler in logging.root.handlers[:]: logging.root.removeHandler(handler) logging.basicConfig(filename=args.logfile, format="%(asctime)s %(levelname)-8s %(message)s", level=loglevel) if args.normalize_all: args.normalize_truth = True args.normalize_query = True if args.roc: args.roc = ROC.make(args.roc) args.features = args.roc.ftname if args.scratch_prefix: scratch = os.path.abspath(args.scratch_prefix) args.delete_scratch = False Tools.mkdir_p(scratch) else: scratch = tempfile.mkdtemp() logging.info("Scratch path is %s" % scratch) try: bams = [] md = None for x in args.bams: bams.append(bamStats(x)) if bams: bres = pandas.concat(bams).groupby("CHROM").mean() md = {} for x in bres.index: logging.info("Mean coverage on %s is %f" % (x, bres.loc[x]["COVERAGE"])) md[x] = float(bres.loc[x]["COVERAGE"]) * 3.0 logging.info("Normalizing/reading inputs") ntpath = os.path.join(scratch, "normalized_truth.vcf.gz") if not (args.cont and os.path.exists(ntpath)): preprocessVCF( args.truth, ntpath, args.location, True, # pass_only args.fixchr_truth, # chrprefix args.normalize_truth, # norm, args.regions_bedfile, args.targets_bedfile, args.ref, ) else: logging.info("Continuing from %s" % ntpath) if not (args.cont and os.path.exists(ntpath + ".csi")): runBcftools("index", ntpath) nqpath = os.path.join(scratch, "normalized_query.vcf.gz") if not (args.cont and os.path.exists(nqpath)): preprocessVCF( args.query, nqpath, args.location, not args.inc_nonpass, # pass_only args.fixchr_query, # chrprefix args.normalize_query, # norm, args.regions_bedfile, args.targets_bedfile, args.ref, ) else: logging.info("Continuing from %s" % nqpath) if not (args.cont and os.path.exists(nqpath + ".csi")): runBcftools("index", nqpath) logging.info("Intersecting") tpfn_files = all( [ os.path.exists(os.path.join(scratch, "tpfn", "0000.vcf.gz")), os.path.exists(os.path.join(scratch, "tpfn", "0001.vcf.gz")), os.path.exists(os.path.join(scratch, "tpfn", "0002.vcf.gz")), ] ) tpfn_r_files = all( [ os.path.exists(os.path.join(scratch, "tpfn", "0000.vcf.gz")), os.path.exists(os.path.join(scratch, "tpfn", "0001.vcf.gz")), os.path.exists(os.path.join(scratch, "tpfn", "0002.vcf.gz")), ] ) if not (args.cont and tpfn_files): runBcftools("isec", ntpath, nqpath, "-p", os.path.join(scratch, "tpfn"), "-O", "z") else: logging.info("Continuing from %s" % os.path.join(scratch, "tpfn")) if args.features and not (args.cont and tpfn_r_files): # only need to do this for getting the feature table runBcftools("isec", nqpath, ntpath, "-p", os.path.join(scratch, "tpfn_r"), "-O", "z") logging.info("Getting FPs / Ambi / Unk") fppath = os.path.join(scratch, "fp.vcf.gz") unkpath = os.path.join(scratch, "unk.vcf.gz") ambipath = os.path.join(scratch, "ambi.vcf.gz") # get header to print to unk and ambi VCFs rununiquepath = os.path.join(scratch, "tpfn", "0001.vcf.gz") header = runBcftools("view", rununiquepath, "--header-only") fp = Tools.BGZipFile(fppath, True) fp.write(header) unk = Tools.BGZipFile(unkpath, True) unk.write(header) ambi = Tools.BGZipFile(ambipath, True) ambi.write(header) ambiClasses = Counter() ambiReasons = Counter() fpclasses = BedIntervalTree() if args.ambi: # can have multiple ambiguous BED files for aBED in args.ambi: # auto-label from first value after chr start end # new ambi files have the label in position 4 # old ones will look weird here. fpclasses.addFromBed(aBED, lambda xe: xe[4]) if args.FP: fpclasses.addFromBed(args.FP, "FP") has_fp = (fpclasses.count("FP") > 0) or (fpclasses.count("fp") > 0 and args.ambi_fp) # split VCF into FP, UNK and AMBI toProcess = gzip.open(rununiquepath, "rb") for entry in toProcess: if entry[0] == "#": continue fields = entry.strip().split("\t") chrom = fields[0] start = int(fields[1]) stop = int(fields[1]) + len(fields[3]) overlap = fpclasses.intersect(chrom, start, stop) is_fp = False is_ambi = False classes_this_pos = set() for o in overlap: reason = o.value[0] if reason == "fp" and args.ambi_fp: reason = "FP" elif reason == "fp": reason = "ambi-fp" elif reason == "unk": reason = "ambi-unk" classes_this_pos.add(reason) try: ambiReasons["%s: rep. count %s" % (reason, o.value[1])] += 1 except IndexError: ambiReasons["%s: rep. count *" % reason] += 1 for x in o.value[3:]: ambiReasons["%s: %s" % (reason, x)] += 1 if reason == "FP": is_fp = True else: is_ambi = True for reason in classes_this_pos: ambiClasses[reason] += 1 if is_fp: fp.write(entry) elif is_ambi: ambi.write(entry) elif not has_fp: # when we don't have FP regions, unk stuff becomes FP fp.write(entry) else: unk.write(entry) toProcess.close() # since 0001.vcf.gz should already be sorted, we can just convert to bgzipped vcf # and create index fp.close() ambi.close() unk.close() runBcftools("index", "--tbi", fppath) runBcftools("index", "--tbi", unkpath) runBcftools("index", "--tbi", ambipath) logging.info("Counting variants...") truthcounts = parseStats(runBcftools("stats", ntpath), "total.truth") querycounts = parseStats(runBcftools("stats", nqpath), "total.query") tpcounts = parseStats(runBcftools("stats", os.path.join(scratch, "tpfn", "0002.vcf.gz")), "tp") fncounts = parseStats(runBcftools("stats", os.path.join(scratch, "tpfn", "0000.vcf.gz")), "fn") fpcounts = parseStats(runBcftools("stats", fppath), "fp") ambicounts = parseStats(runBcftools("stats", ambipath), "ambi") unkcounts = parseStats(runBcftools("stats", unkpath), "unk") res = pandas.merge(truthcounts, querycounts, on="type") res = pandas.merge(res, tpcounts, on="type") res = pandas.merge(res, fpcounts, on="type") res = pandas.merge(res, fncounts, on="type") res = pandas.merge(res, unkcounts, on="type") res = pandas.merge(res, ambicounts, on="type") # no explicit guarantee that total.query is equal to unk + ambi + fp + tp # testSum = res["fp"] + res["tp"] + res["unk"] + res["ambi"] # filter and relabel res = res[res["type"] != "samples"] res = res[res["type"] != "multiallelic SNP sites"] res = res[res["type"] != "multiallelic sites"] res.loc[res["type"] == "SNPs", "type"] = "SNVs" res = res[(res["total.truth"] > 0) | (res["total.query"] > 0)] # use this to use plain row counts rather than stratified bcftools counts # truthcounts = countVCFRows(ntpath) # , "total.truth") # querycounts = countVCFRows(nqpath) # , "total.query") # # tpcounts = countVCFRows(os.path.join(scratch, "tpfn", "0002.vcf.gz")) #, "tp") # fncounts = countVCFRows(os.path.join(scratch, "tpfn", "0000.vcf.gz")) #, "fn") # fpcounts = countVCFRows(fppath) #, "fp") # ambicounts = countVCFRows(ambipath) #, "ambi") # unkcounts = countVCFRows(unkpath) #, "unk") # # res = pandas.DataFrame({ # "total.truth" : [ truthcounts ], # "total.query" : [ querycounts ], # "tp" : [ tpcounts ], # "fn" : [ fncounts ], # "fp" : [ fpcounts ], # "ambi" : [ ambicounts ], # "unk" : [ unkcounts ] # }) # # res["type"] = "records" # summary metrics res["recall"] = res["tp"] / (res["tp"] + res["fn"]) res["recall2"] = res["tp"] / (res["total.truth"]) res["precision"] = res["tp"] / (res["tp"] + res["fp"]) res["na"] = res["unk"] / (res["total.query"]) res["ambiguous"] = res["ambi"] / res["total.query"] metrics_output = makeMetricsObject("som.py.comparison") metrics_output["metrics"].append(dataframeToMetricsTable("result", res)) vstring = "som.py-%s" % Tools.version logging.info("\n" + res.to_string()) # in default mode, print result summary to stdout if not args.quiet and not args.verbose: print "\n" + res.to_string() res["sompyversion"] = vstring vstring = " ".join(sys.argv) res["sompycmd"] = vstring if args.ambi and args.explain_ambiguous: ac = list(ambiClasses.iteritems()) if ac: ambie = pandas.DataFrame(ac, columns=["class", "count"]) ambie.sort(["class"], inplace=True) pandas.set_option("display.max_rows", 1000) pandas.set_option("display.max_columns", 1000) pandas.set_option("display.width", 1000) pandas.set_option("display.height", 1100) logging.info( "FP/ambiguity classes with info (multiple classes can " "overlap):\n" + ambie.to_string(index=False) ) # in default mode, print result summary to stdout if not args.quiet and not args.verbose: print "FP/ambiguity classes with info (multiple classes can " "overlap):\n" + ambie.to_string( index=False ) ambie.to_csv(args.output + ".ambiclasses.csv") metrics_output["metrics"].append(dataframeToMetricsTable("ambiclasses", ambie)) else: logging.info("No ambiguous variants.") ar = list(ambiReasons.iteritems()) if ar: ambie = pandas.DataFrame(ar, columns=["reason", "count"]) ambie.sort(["reason"], inplace=True) pandas.set_option("display.max_rows", 1000) pandas.set_option("display.max_columns", 1000) pandas.set_option("display.width", 1000) pandas.set_option("display.height", 1100) logging.info( "Reasons for defining as ambiguous (multiple reasons can overlap):\n" + ambie.to_string( formatters={"reason": "{{:<{}s}}".format(ambie["reason"].str.len().max()).format}, index=False ) ) # in default mode, print result summary to stdout if not args.quiet and not args.verbose: print "Reasons for defining as ambiguous (multiple reasons can overlap):\n" + ambie.to_string( formatters={"reason": "{{:<{}s}}".format(ambie["reason"].str.len().max()).format}, index=False ) ambie.to_csv(args.output + ".ambireasons.csv") metrics_output["metrics"].append(dataframeToMetricsTable("ambireasons", ambie)) else: logging.info("No ambiguous variants.") res.to_csv(args.output + ".stats.csv") with open(args.output + ".metrics.json", "w") as fp: json.dump(metrics_output, fp) if args.features: logging.info("Extracting features...") fset = Somatic.FeatureSet.make(args.features) fset.setChrDepths(md) logging.info("Collecting TP info (1)...") tps = fset.collect(os.path.join(scratch, "tpfn", "0002.vcf.gz"), "TP") # TP_r is a hint for fset, they are both TPs logging.info("Collecting TP info (2)...") tps2 = fset.collect(os.path.join(scratch, "tpfn_r", "0002.vcf.gz"), "TP_r") # this is slow because it tries to sort # ... which we don't need to do since tps1 and tps2 have the same ordering logging.info("Sorting...") tps.sort(["CHROM", "POS"], inplace=True) tps2.sort(["CHROM", "POS"], inplace=True) tps = tps.reset_index(drop=True) tps2 = tps2.reset_index(drop=True) logging.info("Merging TP info...") columns_tps = list(tps) columns_tps2 = list(tps2) len1 = tps.shape[0] len2 = tps.shape[0] if len1 != len2: raise Exception("Cannot read TP features, lists have different lengths : %i != %i" % (len1, len2)) if not args.disable_order_check: logging.info("Checking order %i / %i" % (len1, len2)) for x in xrange(0, len1): for a in ["CHROM", "POS"]: if tps.loc[x][a] != tps2.loc[x][a]: raise Exception( "Cannot merge TP features, inputs are out of order at %s / %s" % (str(tps[x : x + 1]), str(tps2[x : x + 1])) ) logging.info("Merging...") cdata = {"CHROM": tps["CHROM"], "POS": tps["POS"], "tag": tps["tag"]} tpc = pandas.DataFrame(cdata, columns=["CHROM", "POS", "tag"]) all_columns = list(set(columns_tps + columns_tps2)) for a in all_columns: if a in columns_tps and not a in columns_tps2: tpc[a] = tps[a] elif not a in columns_tps and a in columns_tps2: tpc[a] = tps2[a] elif a not in ["CHROM", "POS", "tag"]: tpc[a] = tps2[a] tpc[a + ".truth"] = tps[a] logging.info("Collecting FP info...") fps = fset.collect(fppath, "FP") ambs = fset.collect(fppath, "AMBI") unks = fset.collect(fppath, "UNK") logging.info("Collecting FN info...") fns = fset.collect(os.path.join(scratch, "tpfn", "0000.vcf.gz"), "FN") renamed = {} tp_cols = list(tpc) for col in list(fns): if col + ".truth" in tp_cols: renamed[col] = col + ".truth" fns.rename(columns=renamed, inplace=True) featurelist = [tpc, fps, fns, ambs, unks] if unkpath is not None: logging.info("Collecting UNK info...") unk = fset.collect(unkpath, "UNK") featurelist.append(unk) logging.info("Making feature table...") featuretable = pandas.concat(featurelist) # reorder to make more legible first_columns = ["CHROM", "POS", "tag"] all_columns = list(featuretable) if "REF" in all_columns: first_columns.append("REF") if "REF.truth" in all_columns: first_columns.append("REF.truth") if "ALT" in all_columns: first_columns.append("ALT") if "ALT.truth" in all_columns: first_columns.append("ALT.truth") ordered_columns = first_columns + sorted([x for x in all_columns if x not in first_columns]) featuretable = featuretable[ordered_columns] # make sure positions are integers featuretable["POS"] = featuretable["POS"].astype(int) logging.info("Saving feature table...") featuretable.to_csv(args.output + ".features.csv", float_format="%.8f") if args.roc is not None: roc_table = args.roc.from_table(featuretable) roc_table.to_csv(args.output + ".roc.csv", float_format="%.8f") finally: if args.delete_scratch: shutil.rmtree(scratch) else: logging.info("Scratch kept at %s" % scratch)
def main(): parser = argparse.ArgumentParser("Haplotype Comparison") # input parser.add_argument("-v", "--version", dest="version", action="store_true", help="Show version number and exit.") parser.add_argument("-r", "--reference", dest="ref", default=None, help="Specify a reference file.") # output parser.add_argument("-o", "--report-prefix", dest="reports_prefix", default=None, help="Filename prefix for report output.") parser.add_argument("--scratch-prefix", dest="scratch_prefix", default=None, help="Directory for scratch files.") parser.add_argument("--keep-scratch", dest="delete_scratch", default=True, action="store_false", help="Filename prefix for scratch report output.") # add quantification args qfy.updateArgs(parser) # control preprocessing pre.updateArgs(parser) parser.add_argument("--preprocess-truth", dest="preprocessing_truth", action="store_true", default=False, help="Preprocess truth file with same settings as query (default is to accept truth in original format).") parser.add_argument("--usefiltered-truth", dest="usefiltered_truth", action="store_true", default=False, help="Preprocess truth file with same settings as query (default is to accept truth in original format).") parser.add_argument("--preprocessing-window-size", dest="preprocess_window", default=10000, type=int, help="Preprocessing window size (variants further apart than that size are not expected to interfere).") # detailed control of comparison parser.add_argument("--unhappy", "--no-haplotype-comparison", dest="no_hc", action="store_true", default=False, help="Disable haplotype comparison (only count direct GT matches as TP).") parser.add_argument("-w", "--window-size", dest="window", default=50, type=int, help="Minimum distance between variants such that they fall into the same superlocus.") # xcmp-specific stuff parser.add_argument("--xcmp-enumeration-threshold", dest="max_enum", default=16768, type=int, help="Enumeration threshold / maximum number of sequences to enumerate per block.") parser.add_argument("--xcmp-expand-hapblocks", dest="hb_expand", default=30, type=int, help="Expand haplotype blocks by this many basepairs left and right.") parser.add_argument("--threads", dest="threads", default=multiprocessing.cpu_count(), type=int, help="Number of threads to use.") parser.add_argument("--engine", dest="engine", default="xcmp", choices=["xcmp", "vcfeval"], help="Comparison engine to use.") parser.add_argument("--engine-vcfeval-path", dest="engine_vcfeval", required=False, default=Haplo.vcfeval.findVCFEval(), help="This parameter should give the path to the \"rtg\" executable. " "The default is %s" % Haplo.vcfeval.findVCFEval()) parser.add_argument("--engine-vcfeval-template", dest="engine_vcfeval_template", required=False, help="Vcfeval needs the reference sequence formatted in its own file format " "(SDF -- run rtg format -o ref.SDF ref.fa). You can specify this here " "to save time when running hap.py with vcfeval. If no SDF folder is " "specified, hap.py will create a temporary one.") if Tools.has_sge: parser.add_argument("--force-interactive", dest="force_interactive", default=False, action="store_true", help="Force running interactively (i.e. when JOB_ID is not in the environment)") parser.add_argument("_vcfs", help="Two VCF files.", default=[], nargs="*") parser.add_argument("--logfile", dest="logfile", default=None, help="Write logging information into file rather than to stderr") verbosity_options = parser.add_mutually_exclusive_group(required=False) verbosity_options.add_argument("--verbose", dest="verbose", default=False, action="store_true", help="Raise logging level from warning to info.") verbosity_options.add_argument("--quiet", dest="quiet", default=False, action="store_true", help="Set logging level to output errors only.") args, unknown_args = parser.parse_known_args() if not Tools.has_sge: args.force_interactive = True if args.verbose: loglevel = logging.INFO elif args.quiet: loglevel = logging.ERROR else: loglevel = logging.WARNING # reinitialize logging for handler in logging.root.handlers[:]: logging.root.removeHandler(handler) logging.basicConfig(filename=args.logfile, format='%(asctime)s %(levelname)-8s %(message)s', level=loglevel) # remove some safe unknown args unknown_args = [x for x in unknown_args if x not in ["--force-interactive"]] if len(sys.argv) < 2 or len(unknown_args) > 0: if unknown_args: logging.error("Unknown arguments specified : %s " % str(unknown_args)) parser.print_help() exit(1) if args.version: print "Hap.py %s" % Tools.version exit(0) if args.roc: args.write_vcf = True # sanity-check regions bed file (HAP-57) if args.regions_bedfile: logging.info("Checking input regions.") if bedOverlapCheck(args.regions_bedfile): raise Exception("The regions bed file (specified using -R) has overlaps, this will not work with xcmp." " You can either use -T, or run the file through bedtools merge") if args.fp_bedfile and not os.path.exists(args.fp_bedfile): raise Exception("FP/confident call region bed file does not exist.") if not args.force_interactive and "JOB_ID" not in os.environ: parser.print_help() raise Exception("Please qsub me so I get approximately 1 GB of RAM per thread.") if not args.ref: args.ref = Tools.defaultReference() if not os.path.exists(args.ref): raise Exception("Please specify a valid reference path using -r.") if not args.reports_prefix: raise Exception("Please specify an output prefix using -o ") if not os.path.exists(os.path.dirname(os.path.abspath(args.reports_prefix))): raise Exception("The output path does not exist. Please specify a valid output path and prefix using -o") if os.path.basename(args.reports_prefix) == "" or os.path.isdir(args.reports_prefix): raise Exception("The output path should specify a file name prefix. Please specify a valid output path " "and prefix using -o. For example, -o /tmp/test will create files named /tmp/test* .") # noinspection PyProtectedMember if not args._vcfs or len(args._vcfs) != 2: raise Exception("Please specify exactly two input VCFs.") # noinspection PyProtectedMember args.vcf1 = args._vcfs[0] # noinspection PyProtectedMember args.vcf2 = args._vcfs[1] if not os.path.exists(args.vcf1): raise Exception("Input file %s does not exist." % args.vcf1) if not os.path.exists(args.vcf2): raise Exception("Input file %s does not exist." % args.vcf2) tempfiles = [] # xcmp supports bcf; others don't if args.engine == "xcmp" and (args.bcf or (args.vcf1.endswith(".bcf") and args.vcf2.endswith(".bcf"))): internal_format_suffix = ".bcf" else: internal_format_suffix = ".vcf.gz" try: logging.info("Comparing %s and %s" % (args.vcf1, args.vcf2)) logging.info("Preprocessing truth: %s" % args.vcf1) starttime = time.time() ttf = tempfile.NamedTemporaryFile(delete=False, dir=args.scratch_prefix, prefix="truth.pp", suffix=internal_format_suffix) ttf.close() tempfiles.append(ttf.name) tempfiles.append(ttf.name + ".csi") tempfiles.append(ttf.name + ".tbi") pre.preprocess(args.vcf1, ttf.name, args.ref, args.locations, None if args.usefiltered_truth else "*", # filters args.fixchr, args.regions_bedfile, args.targets_bedfile, args.preprocessing_leftshift if args.preprocessing_truth else False, args.preprocessing_decompose if args.preprocessing_truth else False, args.preprocessing_norm if args.preprocessing_truth else False, args.preprocess_window, args.threads) args.vcf1 = ttf.name h1 = vcfextract.extractHeadersJSON(args.vcf1) elapsed = time.time() - starttime logging.info("preprocess for %s -- time taken %.2f" % (args.vcf1, elapsed)) # once we have preprocessed the truth file we can resolve the locations # doing this here improves the time for query preprocessing below reference_contigs = set(fastaContigLengths(args.ref).keys()) if not args.locations: # default set of locations is the overlap between truth and reference args.locations = list(reference_contigs & set(h1["tabix"]["chromosomes"])) if not args.locations: raise Exception("Truth and reference have no chromosomes in common!") elif type(args.locations) is not list: args.locations = [args.locations] args.locations = sorted(args.locations) logging.info("Preprocessing query: %s" % args.vcf2) starttime = time.time() if args.pass_only: filtering = "*" else: filtering = args.filters_only qtf = tempfile.NamedTemporaryFile(delete=False, dir=args.scratch_prefix, prefix="query.pp", suffix=internal_format_suffix) qtf.close() tempfiles.append(qtf.name) tempfiles.append(qtf.name + ".csi") tempfiles.append(qtf.name + ".tbi") pre.preprocess(args.vcf2, qtf.name, args.ref, str(",".join(args.locations)), filtering, args.fixchr, args.regions_bedfile, args.targets_bedfile, args.preprocessing_leftshift, args.preprocessing_decompose, args.preprocessing_norm, args.preprocess_window, args.threads) args.vcf2 = qtf.name h2 = vcfextract.extractHeadersJSON(args.vcf2) elapsed = time.time() - starttime logging.info("preprocess for %s -- time taken %.2f" % (args.vcf2, elapsed)) if not h1["tabix"]: raise Exception("Truth file is not indexed after preprocesing.") if not h2["tabix"]: raise Exception("Query file is not indexed after preprocessing.") for _xc in args.locations: if _xc not in h2["tabix"]["chromosomes"]: logging.warn("No calls for location %s in query!" % _xc) pool = getPool(args.threads) if args.threads > 1 and args.engine == "xcmp": logging.info("Running using %i parallel processes." % args.threads) # find balanced pieces # cap parallelism at 64 since otherwise bcftools concat below might run out # of file handles args.pieces = min(args.threads, 64) res = runParallel(pool, Haplo.blocksplit.blocksplitWrapper, args.locations, args) if None in res: raise Exception("One of the blocksplit processes failed.") tempfiles += res args.locations = [] for f in res: with open(f) as fp: for l in fp: ll = l.strip().split("\t", 3) if len(ll) < 3: continue xchr = ll[0] start = int(ll[1]) + 1 end = int(ll[2]) args.locations.append("%s:%i-%i" % (xchr, start, end)) # count variants before normalisation if "samples" not in h1 or not h1["samples"]: raise Exception("Cannot read sample names from truth VCF file") if "samples" not in h2 or not h2["samples"]: raise Exception("Cannot read sample names from query VCF file") tf = tempfile.NamedTemporaryFile(delete=False, dir=args.scratch_prefix, prefix="hap.py.result.", suffix=internal_format_suffix) tf.close() tempfiles.append(tf.name) tempfiles.append(tf.name + ".tbi") tempfiles.append(tf.name + ".csi") output_name = tf.name if args.engine == "xcmp": # do xcmp logging.info("Using xcmp for comparison") res = runParallel(pool, Haplo.xcmp.xcmpWrapper, args.locations, args) tempfiles += [x for x in res if x is not None] # VCFs if None in res: raise Exception("One of the xcmp jobs failed.") if len(res) == 0: raise Exception("Input files/regions do not contain variants (0 haplotype blocks were processed).") # concatenate + index logging.info("Concatenating variants...") runme_list = [x for x in res if x is not None] if len(runme_list) == 0: raise Exception("No outputs to concatenate!") logging.info("Concatenating...") bcftools.concatenateParts(output_name, *runme_list) logging.info("Indexing...") bcftools.runBcftools("index", output_name) # passed to quantify args.type = "xcmp" # xcmp extracts whichever field we're using into the QQ info field args.roc = "IQQ" elif args.engine == "vcfeval": tempfiles += Haplo.vcfeval.runVCFEval(args.vcf1, args.vcf2, output_name, args) # passed to quantify args.type = "ga4gh" else: raise Exception("Unknown comparison engine: %s" % args.engine) args.in_vcf = [output_name] args.runner = "hap.py" qfy.quantify(args) finally: if args.delete_scratch: for x in tempfiles: try: os.remove(x) except: pass else: logging.info("Scratch files kept : %s" % (str(tempfiles)))
def main(): args = parse_args() if args.scratch_prefix: scratch = os.path.abspath(args.scratch_prefix) args.delete_scratch = False Tools.mkdir_p(scratch) else: scratch = tempfile.mkdtemp() logging.info("Scratch path is %s" % scratch) try: bams = [] md = None for x in args.bams: bams.append(bamStats(x)) if bams: bres = pandas.concat(bams).groupby("CHROM").mean() md = {} for x in bres.index: logging.info("Mean coverage on %s is %f" % (x, bres.loc[x]["COVERAGE"])) md[x] = float(bres.loc[x]["COVERAGE"]) * 3.0 logging.info("Normalizing/reading inputs") ntpath = os.path.join(scratch, "normalized_truth.vcf.gz") if not (args.cont and os.path.exists(ntpath)): preprocessVCF( args.truth, ntpath, args.location, True, # pass_only args.fixchr_truth, # chrprefix args.normalize_truth, # norm, args.regions_bedfile, args.targets_bedfile, args.ref) else: logging.info("Continuing from %s" % ntpath) if not (args.cont and os.path.exists(ntpath + ".csi")): runBcftools("index", ntpath) nqpath = os.path.join(scratch, "normalized_query.vcf.gz") if not (args.cont and os.path.exists(nqpath)): preprocessVCF( args.query, nqpath, args.location, not args.inc_nonpass, # pass_only args.fixchr_query, # chrprefix args.normalize_query, # norm, args.regions_bedfile, args.targets_bedfile, args.ref) else: logging.info("Continuing from %s" % nqpath) if not (args.cont and os.path.exists(nqpath + ".csi")): runBcftools("index", nqpath) logging.info("Intersecting") tpfn_files = all([ os.path.exists(os.path.join(scratch, "tpfn", "0000.vcf.gz")), os.path.exists(os.path.join(scratch, "tpfn", "0001.vcf.gz")), os.path.exists(os.path.join(scratch, "tpfn", "0002.vcf.gz")) ]) tpfn_r_files = all([ os.path.exists(os.path.join(scratch, "tpfn", "0000.vcf.gz")), os.path.exists(os.path.join(scratch, "tpfn", "0001.vcf.gz")), os.path.exists(os.path.join(scratch, "tpfn", "0002.vcf.gz")) ]) if not (args.cont and tpfn_files): runBcftools("isec", ntpath, nqpath, "-p", os.path.join(scratch, "tpfn"), "-O", "z") else: logging.info("Continuing from %s" % os.path.join(scratch, "tpfn")) if args.features and not (args.cont and tpfn_r_files): # only need to do this for getting the feature table runBcftools("isec", nqpath, ntpath, "-p", os.path.join(scratch, "tpfn_r"), "-O", "z") logging.info("Getting FPs / Ambi / Unk") fppath = os.path.join(scratch, "fp.vcf.gz") unkpath = os.path.join(scratch, "unk.vcf.gz") ambipath = os.path.join(scratch, "ambi.vcf.gz") # get header to print to unk and ambi VCFs rununiquepath = os.path.join(scratch, "tpfn", "0001.vcf.gz") header = runBcftools("view", rununiquepath, "--header-only") fp = Tools.BGZipFile(fppath, True) fp.write(header) unk = Tools.BGZipFile(unkpath, True) unk.write(header) ambi = Tools.BGZipFile(ambipath, True) ambi.write(header) ambiClasses = Counter() ambiReasons = Counter() fpclasses = BedIntervalTree() if args.ambi: # can have multiple ambiguous BED files for aBED in args.ambi: # auto-label from first value after chr start end # new ambi files have the label in position 4 # old ones will look weird here. fpclasses.addFromBed(aBED, lambda xe: xe[4], args.fixchr_truth) if args.FP: fpclasses.addFromBed(args.FP, "FP", args.fixchr_truth) # split VCF into FP, UNK and AMBI toProcess = gzip.open(rununiquepath, "rb") for entry in toProcess: if entry[0] == '#': continue fields = entry.strip().split("\t") chrom = fields[0] start = int(fields[1]) stop = int(fields[1]) + len(fields[3]) overlap = fpclasses.intersect(chrom, start, stop) is_fp = False is_ambi = False classes_this_pos = set() for o in overlap: reason = o.value[0] if reason == "fp" and args.ambi_fp: reason = "FP" elif reason == "fp": reason = "ambi-fp" elif reason == "unk": reason = "ambi-unk" classes_this_pos.add(reason) try: ambiReasons["%s: rep. count %s" % (reason, o.value[1])] += 1 except IndexError: ambiReasons["%s: rep. count *" % reason] += 1 for x in o.value[3:]: ambiReasons["%s: %s" % (reason, x)] += 1 if reason == "FP": is_fp = True else: is_ambi = True for reason in classes_this_pos: ambiClasses[reason] += 1 if is_fp: fp.write(entry) elif is_ambi: ambi.write(entry) elif not args.count_unk: # when we don't have FP regions, unk stuff becomes FP fp.write(entry) else: unk.write(entry) toProcess.close() # since 0001.vcf.gz should already be sorted, we can just convert to bgzipped vcf # and create index fp.close() ambi.close() unk.close() runBcftools("index", "--tbi", fppath) runBcftools("index", "--tbi", unkpath) runBcftools("index", "--tbi", ambipath) logging.info("Counting variants...") truthcounts = parseStats(runBcftools("stats", ntpath), "total.truth") querycounts = parseStats(runBcftools("stats", nqpath), "total.query") tpcounts = parseStats( runBcftools("stats", os.path.join(scratch, "tpfn", "0002.vcf.gz")), "tp") fncounts = parseStats( runBcftools("stats", os.path.join(scratch, "tpfn", "0000.vcf.gz")), "fn") fpcounts = parseStats(runBcftools("stats", fppath), "fp") ambicounts = parseStats(runBcftools("stats", ambipath), "ambi") unkcounts = parseStats(runBcftools("stats", unkpath), "unk") res = pandas.merge(truthcounts, querycounts, on="type") res = pandas.merge(res, tpcounts, on="type") res = pandas.merge(res, fpcounts, on="type") res = pandas.merge(res, fncounts, on="type") res = pandas.merge(res, unkcounts, on="type") res = pandas.merge(res, ambicounts, on="type") # no explicit guarantee that total.query is equal to unk + ambi + fp + tp # testSum = res["fp"] + res["tp"] + res["unk"] + res["ambi"] # filter and relabel res = res[res["type"] != "samples"] res = res[res["type"] != "multiallelic SNP sites"] res = res[res["type"] != "multiallelic sites"] res.loc[res["type"] == "SNPs", "type"] = "SNVs" metrics_output = makeMetricsObject("som.py.comparison") if args.ambi and args.explain_ambiguous: ac = list(ambiClasses.iteritems()) if ac: ambie = pandas.DataFrame(ac, columns=["class", "count"]) ambie.sort_values(["class"], inplace=True) pandas.set_option("display.max_rows", 1000) pandas.set_option("display.max_columns", 1000) pandas.set_option("display.width", 1000) pandas.set_option("display.height", 1100) logging.info( "FP/ambiguity classes with info (multiple classes can " "overlap):\n" + ambie.to_string(index=False)) # in default mode, print result summary to stdout if not args.quiet and not args.verbose: print "FP/ambiguity classes with info (multiple classes can " \ "overlap):\n" + ambie.to_string(index=False) ambie.to_csv(args.output + ".ambiclasses.csv") metrics_output["metrics"].append( dataframeToMetricsTable("ambiclasses", ambie)) else: logging.info("No ambiguous variants.") ar = list(ambiReasons.iteritems()) if ar: ambie = pandas.DataFrame(ar, columns=["reason", "count"]) ambie.sort_values(["reason"], inplace=True) pandas.set_option("display.max_rows", 1000) pandas.set_option("display.max_columns", 1000) pandas.set_option("display.width", 1000) pandas.set_option("display.height", 1100) logging.info( "Reasons for defining as ambiguous (multiple reasons can overlap):\n" + ambie.to_string(formatters={ 'reason': '{{:<{}s}}'.format( ambie['reason'].str.len().max()).format }, index=False)) # in default mode, print result summary to stdout if not args.quiet and not args.verbose: print "Reasons for defining as ambiguous (multiple reasons can overlap):\n" + ambie.to_string( formatters={ 'reason': '{{:<{}s}}'.format( ambie['reason'].str.len().max()).format }, index=False) ambie.to_csv(args.output + ".ambireasons.csv") metrics_output["metrics"].append( dataframeToMetricsTable("ambireasons", ambie)) else: logging.info("No ambiguous variants.") if args.features: logging.info("Extracting features...") fset = Somatic.FeatureSet.make(args.features) fset.setChrDepths(md) logging.info("Collecting TP info (1)...") tps = fset.collect(os.path.join(scratch, "tpfn", "0002.vcf.gz"), "TP") # TP_r is a hint for fset, they are both TPs logging.info("Collecting TP info (2)...") tps2 = fset.collect(os.path.join(scratch, "tpfn_r", "0002.vcf.gz"), "TP_r") # this is slow because it tries to sort # ... which we don't need to do since tps1 and tps2 have the same ordering logging.info("Sorting...") tps.sort_values(["CHROM", "POS"], inplace=True) tps2.sort_values(["CHROM", "POS"], inplace=True) tps = tps.reset_index(drop=True) tps2 = tps2.reset_index(drop=True) logging.info("Merging TP info...") columns_tps = list(tps) columns_tps2 = list(tps2) len1 = tps.shape[0] len2 = tps2.shape[0] if len1 != len2: raise Exception( "Cannot read TP features, lists have different lengths : %i != %i" % (len1, len2)) if not args.disable_order_check: logging.info("Checking order %i / %i" % (len1, len2)) for x in xrange(0, len1): for a in ["CHROM", "POS"]: if tps.loc[x][a] != tps2.loc[x][a]: raise Exception( "Cannot merge TP features, inputs are out of order at %s / %s" % (str(tps[x:x + 1]), str(tps2[x:x + 1]))) logging.info("Merging...") cdata = { "CHROM": tps["CHROM"], "POS": tps["POS"], "tag": tps["tag"] } tpc = pandas.DataFrame(cdata, columns=["CHROM", "POS", "tag"]) all_columns = list(set(columns_tps + columns_tps2)) for a in all_columns: if a in columns_tps and a not in columns_tps2: tpc[a] = tps[a] elif a not in columns_tps and a in columns_tps2: tpc[a] = tps2[a] elif a not in ["CHROM", "POS", "tag"]: tpc[a] = tps2[a] tpc[a + ".truth"] = tps[a] logging.info("Collecting FP info...") fps = fset.collect(fppath, "FP") ambs = fset.collect(ambipath, "AMBI") logging.info("Collecting FN info...") fns = fset.collect(os.path.join(scratch, "tpfn", "0000.vcf.gz"), "FN") renamed = {} tp_cols = list(tpc) for col in list(fns): if col + ".truth" in tp_cols: renamed[col] = col + ".truth" fns.rename(columns=renamed, inplace=True) featurelist = [tpc, fps, fns, ambs] if unkpath is not None: logging.info("Collecting UNK info...") unk = fset.collect(unkpath, "UNK") featurelist.append(unk) logging.info("Making feature table...") featuretable = pandas.concat(featurelist) # reorder to make more legible first_columns = ["CHROM", "POS", "tag"] # noinspection PyTypeChecker all_columns = list(featuretable) if "REF" in all_columns: first_columns.append("REF") if "REF.truth" in all_columns: first_columns.append("REF.truth") if "ALT" in all_columns: first_columns.append("ALT") if "ALT.truth" in all_columns: first_columns.append("ALT.truth") ordered_columns = first_columns + sorted( [x for x in all_columns if x not in first_columns]) featuretable = featuretable[ordered_columns] # make sure positions are integers featuretable["POS"] = featuretable["POS"].astype(int) logging.info("Saving feature table...") featuretable.to_csv(args.output + ".features.csv", float_format='%.8f') if args.roc is not None: roc_table = args.roc.from_table(featuretable) roc_table.to_csv(args.output + ".roc.csv", float_format='%.8f') featuretable["FILTER"].fillna("", inplace=True) featuretable.ix[featuretable["REF"].str.len() < 1, "absent"] = True featuretable.ix[featuretable["tag"] == "FN", "REF"] = featuretable.ix[featuretable["tag"] == "FN", "REF.truth"] featuretable.ix[featuretable["tag"] == "FN", "ALT"] = featuretable.ix[featuretable["tag"] == "FN", "ALT.truth"] af_t_feature = args.af_strat_truth af_q_feature = args.af_strat_query for vtype in ["records", "SNVs", "indels"]: featuretable["vtype"] = resolve_vtype(args) featuretable_this_type = featuretable if args.count_filtered_fn: res.ix[res["type"] == vtype, "fp.filtered"] = featuretable_this_type[ (featuretable_this_type["tag"] == "FP") & (featuretable_this_type["FILTER"] != "" )].shape[0] res.ix[res["type"] == vtype, "tp.filtered"] = featuretable_this_type[ (featuretable_this_type["tag"] == "TP") & (featuretable_this_type["FILTER"] != "" )].shape[0] res.ix[res["type"] == vtype, "unk.filtered"] = featuretable_this_type[ (featuretable_this_type["tag"] == "UNK") & (featuretable_this_type["FILTER"] != "" )].shape[0] res.ix[res["type"] == vtype, "ambi.filtered"] = featuretable_this_type[ (featuretable_this_type["tag"] == "AMBI") & (featuretable_this_type["FILTER"] != "" )].shape[0] if args.af_strat: start = 0.0 end = 1.0 current_binsize = args.af_strat_binsize[0] next_binsize = 0 while start < 1.0: # include 1 in last interval end = start + current_binsize if end >= 1: end = 1.00000001 if start >= end: break n_tp = featuretable_this_type[ (featuretable_this_type["tag"] == "TP") & (featuretable_this_type[af_t_feature] >= start) & (featuretable_this_type[af_t_feature] < end)] n_fn = featuretable_this_type[ (featuretable_this_type["tag"] == "FN") & (featuretable_this_type[af_t_feature] >= start) & (featuretable_this_type[af_t_feature] < end)] n_fp = featuretable_this_type[ (featuretable_this_type["tag"] == "FP") & (featuretable_this_type[af_q_feature] >= start) & (featuretable_this_type[af_q_feature] < end)] n_ambi = featuretable_this_type[ (featuretable_this_type["tag"] == "AMBI") & (featuretable_this_type[af_q_feature] >= start) & (featuretable_this_type[af_q_feature] < end)] n_unk = featuretable_this_type[ (featuretable_this_type["tag"] == "UNK") & (featuretable_this_type[af_q_feature] >= start) & (featuretable_this_type[af_q_feature] < end)] r = { "type": "%s.%f-%f" % (vtype, start, end), "total.truth": n_tp.shape[0] + n_fn.shape[0], "total.query": n_tp.shape[0] + n_fp.shape[0] + n_ambi.shape[0] + n_unk.shape[0], "tp": n_tp.shape[0], "fp": n_fp.shape[0], "fn": n_fn.shape[0], "unk": n_unk.shape[0], "ambi": n_ambi.shape[0] } if args.count_filtered_fn: r["fp.filtered"] = n_fp[ n_fp["FILTER"] != ""].shape[0] r["tp.filtered"] = n_tp[ n_tp["FILTER"] != ""].shape[0] r["unk.filtered"] = n_unk[ n_unk["FILTER"] != ""].shape[0] r["ambi.filtered"] = n_ambi[ n_ambi["FILTER"] != ""].shape[0] res = pandas.concat([res, pandas.DataFrame([r])]) if args.roc is not None and (n_tp.shape[0] + n_fn.shape[0] + n_fp.shape[0]) > 0: roc_table_strat = args.roc.from_table( pandas.concat([n_tp, n_fp, n_fn])) rtname = "%s.%s.%f-%f.roc.csv" % ( args.output, vtype, start, end) roc_table_strat.to_csv(rtname, float_format='%.8f') start = end next_binsize += 1 if next_binsize >= len(args.af_strat_binsize): next_binsize = 0 current_binsize = args.af_strat_binsize[next_binsize] if not args.af_strat: res = res[(res["total.truth"] > 0)] # summary metrics with confidence intervals ci_alpha = 1.0 - args.ci_level recall = binomialCI(res["tp"], res["tp"] + res["fn"], ci_alpha) precision = binomialCI(res["tp"], res["tp"] + res["fp"], ci_alpha) res["recall"], res["recall_lower"], res["recall_upper"] = recall res["recall2"] = res["tp"] / (res["total.truth"]) res["precision"], res["precision_lower"], res[ "precision_upper"] = precision res["na"] = res["unk"] / (res["total.query"]) res["ambiguous"] = res["ambi"] / res["total.query"] any_fp = fpclasses.countbases(label="FP") fp_region_count = 0 auto_size = True if args.fpr_size: try: fp_region_count = int(args.fpr_size) auto_size = False except: pass if auto_size: if any_fp: if args.location: chrom, _, rest = args.location.partition(":") if rest: start, _, end = rest.partition("_") if start: start = int(start) if end: end = int(end) else: fp_region_count += fpclasses.countbases(chrom, label="FP") else: fp_region_count = any_fp else: cs = fastaContigLengths(args.ref) if args.location: fp_region_count = calculateLength(cs, args.location) else: # use all locations we saw calls on h1 = Tools.vcfextract.extractHeadersJSON(ntpath) h1_chrs = h1["tabix"]["chromosomes"] if not h1_chrs: logging.warn("No contigs in truth file") h1_chrs = [] if len(h1_chrs) > 0: qlocations = " ".join(h1_chrs) fp_region_count = calculateLength(cs, qlocations) else: fp_region_count = 0 res["fp.region.size"] = fp_region_count res["fp.rate"] = 1e6 * res["fp"] / res["fp.region.size"] if args.count_filtered_fn: res["recall.filtered"] = (res["tp"] - res["tp.filtered"]) / ( res["tp"] + res["fn"]) res["precision.filtered"] = (res["tp"] - res["tp.filtered"]) / ( res["tp"] - res["tp.filtered"] + res["fp"] - res["fp.filtered"]) res["fp.rate.filtered"] = 1e6 * ( res["fp"] - res["fp.filtered"]) / res["fp.region.size"] res["na.filtered"] = (res["unk"] - res["unk.filtered"]) / (res["total.query"]) res["ambiguous.filtered"] = ( res["ambi"] - res["ambi.filtered"]) / res["total.query"] # HAP-162 remove inf values res.replace([np.inf, -np.inf], 0) metrics_output["metrics"].append(dataframeToMetricsTable( "result", res)) vstring = "som.py-%s" % Tools.version logging.info("\n" + res.to_string()) # in default mode, print result summary to stdout if not args.quiet and not args.verbose: print "\n" + res.to_string() res["sompyversion"] = vstring vstring = " ".join(sys.argv) res["sompycmd"] = vstring # save results res.to_csv(args.output + ".stats.csv") with open(args.output + ".metrics.json", "w") as fp: json.dump(metrics_output, fp) if args.happy_stats: # parse saved feature table as the one in memory has been updated featuretable = pandas.read_csv(args.output + ".features.csv", low_memory=False, dtype={"FILTER": str}) # hap.py summary.csv summary = summary_from_featuretable(featuretable, args) summary.to_csv(args.output + ".summary.csv") # hap.py extended.csv if args.af_strat: extended = extended_from_featuretable(featuretable, args) extended.to_csv(args.output + ".extended.csv", index=False, na_rep="NA") finally: if args.delete_scratch: shutil.rmtree(scratch) else: logging.info("Scratch kept at %s" % scratch)
def main(): parser = argparse.ArgumentParser("Somatic Comparison") parser.add_argument("truth", help="Truth VCF file") parser.add_argument("query", help="Query VCF file") parser.add_argument("-o", "--output", dest="output", required=True, help="Output file prefix for statistics and feature table (when selected)") parser.add_argument("-l", "--location", dest="location", default="", help="Location for bcftools view (e.g. chr1)") parser.add_argument("-R", "--restrict-regions", dest="regions_bedfile", default=None, type=str, help="Restrict analysis to given (sparse) regions (using -R in bcftools).") parser.add_argument("-T", "--target-regions", dest="targets_bedfile", default=None, type=str, help="Restrict analysis to given (dense) regions (using -T in bcftools).") parser.add_argument("-f", "--false-positives", dest="FP", help="False-positive region bed file to distinguish UNK from FP") parser.add_argument("-a", "--ambiguous", dest="ambi", action='append', help="Ambiguous region bed file(s) to distinguish from FP (e.g. variant only observed " "in some replicates)") parser.add_argument("--ambi-fp", dest="ambi_fp", action='store_true', default=False, help="Use FP calls from ambiguous region files also.") parser.add_argument("--no-ambi-fp", dest="ambi_fp", action='store_false', help="Do not use FP calls from ambiguous region files also.") parser.add_argument("--count-unk", dest="count_unk", action='store_true', default=False, help="Assume the truth set covers the whole genome and only count FPs in regions " "specified by the truth VCF or ambiguous/false-positive regions.") parser.add_argument("--no-count-unk", dest="count_unk", action='store_false', help="Do not use FP calls from ambiguous region files also.") parser.add_argument("-e", "--explain_ambiguous", dest="explain_ambiguous", required=False, default=False, action="store_true", help="print a table giving the number of ambiguous events per category") parser.add_argument("-r", "--reference", dest="ref", default=Tools.defaultReference(), help="Specify a reference file.") parser.add_argument("--scratch-prefix", dest="scratch_prefix", default=None, help="Filename prefix for scratch report output.") parser.add_argument("--keep-scratch", dest="delete_scratch", default=True, action="store_false", help="Filename prefix for scratch report output.") parser.add_argument("--continue", dest="cont", default=False, action="store_true", help="Continue from scratch space (i.e. use VCFs in there if they already exist).") parser.add_argument("-P", "--include-nonpass", dest="inc_nonpass", action="store_true", default=False, help="Use to include failing variants in comparison.") parser.add_argument("--feature-table", dest="features", default=False, choices=Somatic.FeatureSet.sets.keys(), help="Select a feature table to output.") parser.add_argument("--bam", dest="bams", default=[], action="append", help="pass one or more BAM files for feature table extraction") parser.add_argument("--normalize-truth", dest="normalize_truth", default=False, action="store_true", help="Enable running of bcftools norm on the truth file.") parser.add_argument("--normalize-query", dest="normalize_query", default=False, action="store_true", help="Enable running of bcftools norm on the query file.") parser.add_argument("-N", "--normalize-all", dest="normalize_all", default=False, action="store_true", help="Enable running of bcftools norm on both truth and query file.") parser.add_argument("--fixchr-truth", dest="fixchr_truth", action="store_true", default=True, help="Add chr prefix to truth file (default: true).") parser.add_argument("--fixchr-query", dest="fixchr_query", action="store_true", default=True, help="Add chr prefix to query file (default: true).") parser.add_argument("--fix-chr-truth", dest="fixchr_truth", action="store_true", default=None, help="Same as --fixchr-truth.") parser.add_argument("--fix-chr-query", dest="fixchr_query", action="store_true", default=None, help="Same as --fixchr-query.") parser.add_argument("--no-fixchr-truth", dest="fixchr_truth", action="store_false", default=False, help="Disable chr replacement for truth (default: false).") parser.add_argument("--no-fixchr-query", dest="fixchr_query", action="store_false", default=False, help="Add chr prefix to query file (default: false).") parser.add_argument("--no-order-check", dest="disable_order_check", default=False, action="store_true", help="Disable checking the order of TP features (dev feature).") parser.add_argument("--roc", dest="roc", default=None, choices=ROC.list(), help="Create a ROC-style table. This is caller specific " " - this will override the --feature-table switch!") parser.add_argument("--bin-afs", dest="af_strat", default=None, action="store_true", help="Stratify into different AF buckets. This needs to have features available" "for getting the AF both in truth and query variants.") parser.add_argument("--af-binsize", dest="af_strat_binsize", default=0.2, help="Bin size for AF binning (should be < 1). Multiple bin sizes can be specified using a comma, " "e.g. 0.1,0.2,0.5,0.2 will split at 0.1, 0.3, 0.8 and 1.0.") parser.add_argument("--af-truth", dest="af_strat_truth", default="I.T_ALT_RATE", help="Feature name to use for retrieving AF for truth variants (TP and FN)") parser.add_argument("--af-query", dest="af_strat_query", default="T_AF", help="Feature name to use for retrieving AF for query variants (FP/UNK/AMBI)") parser.add_argument("-FN", "--count-filtered-fn", dest="count_filtered_fn", action="store_true", help="Count filtered vs. absent FN numbers. This requires the -P switch (to use all " "variants) and either the --feature-table or --roc switch.") parser.add_argument("--fp-region-size", dest="fpr_size", help="How to obtain the normalisation constant for FP rate. By default, this will use the FP region bed file size when using" " --count-unk and the size of all reference contigs that overlap with the location specified in -l otherwise." " This can be overridden with: 1) a number of nucleotides, or 2) \"auto\" to use the lengths of all contigs that have calls." " The resulting value is used as fp.region.size.") parser.add_argument("--logfile", dest="logfile", default=None, help="Write logging information into file rather than to stderr") verbosity_options = parser.add_mutually_exclusive_group(required=False) verbosity_options.add_argument("--verbose", dest="verbose", default=False, action="store_true", help="Raise logging level from warning to info.") verbosity_options.add_argument("--quiet", dest="quiet", default=False, action="store_true", help="Set logging level to output errors only.") args = parser.parse_args() if args.verbose: loglevel = logging.INFO elif args.quiet: loglevel = logging.ERROR else: loglevel = logging.WARNING try: if type(args.af_strat_binsize) is str: args.af_strat_binsize = map(float, args.af_strat_binsize.split(",")) else: args.af_strat_binsize = map(float, [args.af_strat_binsize]) if not args.af_strat_binsize: raise Exception("Bin size list is empty") except: logging.error("Failed to parse stratification bin size: %s" % str(args.af_strat_binsize)) exit(1) # reinitialize logging for handler in logging.root.handlers[:]: logging.root.removeHandler(handler) logging.basicConfig(filename=args.logfile, format='%(asctime)s %(levelname)-8s %(message)s', level=loglevel) if args.normalize_all: args.normalize_truth = True args.normalize_query = True if args.roc: args.roc = ROC.make(args.roc) args.features = args.roc.ftname if not args.inc_nonpass: logging.warn("When creating ROCs without the -P switch, the ROC data points will only " "include filtered variants (i.e. they will normally end at the caller's " "quality threshold).") if args.af_strat and not args.features: raise Exception("To stratify by AFs, a feature table must be selected -- use this switch together " "with --feature-table or --roc") if args.count_filtered_fn and (not args.inc_nonpass or not args.features): raise Exception("Counting filtered / unfiltered FNs only works when a feature table is selected, " "and when using unfiltered variants. Specify -P --feature-table <...> or use " "--roc to select a ROC type.") if args.scratch_prefix: scratch = os.path.abspath(args.scratch_prefix) args.delete_scratch = False Tools.mkdir_p(scratch) else: scratch = tempfile.mkdtemp() logging.info("Scratch path is %s" % scratch) try: bams = [] md = None for x in args.bams: bams.append(bamStats(x)) if bams: bres = pandas.concat(bams).groupby("CHROM").mean() md = {} for x in bres.index: logging.info("Mean coverage on %s is %f" % (x, bres.loc[x]["COVERAGE"])) md[x] = float(bres.loc[x]["COVERAGE"]) * 3.0 logging.info("Normalizing/reading inputs") ntpath = os.path.join(scratch, "normalized_truth.vcf.gz") if not (args.cont and os.path.exists(ntpath)): preprocessVCF(args.truth, ntpath, args.location, True, # pass_only args.fixchr_truth, # chrprefix args.normalize_truth, # norm, args.regions_bedfile, args.targets_bedfile, args.ref) else: logging.info("Continuing from %s" % ntpath) if not (args.cont and os.path.exists(ntpath + ".csi")): runBcftools("index", ntpath) nqpath = os.path.join(scratch, "normalized_query.vcf.gz") if not (args.cont and os.path.exists(nqpath)): preprocessVCF(args.query, nqpath, args.location, not args.inc_nonpass, # pass_only args.fixchr_query, # chrprefix args.normalize_query, # norm, args.regions_bedfile, args.targets_bedfile, args.ref) else: logging.info("Continuing from %s" % nqpath) if not (args.cont and os.path.exists(nqpath + ".csi")): runBcftools("index", nqpath) logging.info("Intersecting") tpfn_files = all([os.path.exists(os.path.join(scratch, "tpfn", "0000.vcf.gz")), os.path.exists(os.path.join(scratch, "tpfn", "0001.vcf.gz")), os.path.exists(os.path.join(scratch, "tpfn", "0002.vcf.gz"))]) tpfn_r_files = all([os.path.exists(os.path.join(scratch, "tpfn", "0000.vcf.gz")), os.path.exists(os.path.join(scratch, "tpfn", "0001.vcf.gz")), os.path.exists(os.path.join(scratch, "tpfn", "0002.vcf.gz"))]) if not (args.cont and tpfn_files): runBcftools("isec", ntpath, nqpath, "-p", os.path.join(scratch, "tpfn"), "-O", "z") else: logging.info("Continuing from %s" % os.path.join(scratch, "tpfn")) if args.features and not (args.cont and tpfn_r_files): # only need to do this for getting the feature table runBcftools("isec", nqpath, ntpath, "-p", os.path.join(scratch, "tpfn_r"), "-O", "z") logging.info("Getting FPs / Ambi / Unk") fppath = os.path.join(scratch, "fp.vcf.gz") unkpath = os.path.join(scratch, "unk.vcf.gz") ambipath = os.path.join(scratch, "ambi.vcf.gz") # get header to print to unk and ambi VCFs rununiquepath = os.path.join(scratch, "tpfn", "0001.vcf.gz") header = runBcftools("view", rununiquepath, "--header-only") fp = Tools.BGZipFile(fppath, True) fp.write(header) unk = Tools.BGZipFile(unkpath, True) unk.write(header) ambi = Tools.BGZipFile(ambipath, True) ambi.write(header) ambiClasses = Counter() ambiReasons = Counter() fpclasses = BedIntervalTree() if args.ambi: # can have multiple ambiguous BED files for aBED in args.ambi: # auto-label from first value after chr start end # new ambi files have the label in position 4 # old ones will look weird here. fpclasses.addFromBed(aBED, lambda xe: xe[4], args.fixchr_truth) if args.FP: fpclasses.addFromBed(args.FP, "FP", args.fixchr_truth) # split VCF into FP, UNK and AMBI toProcess = gzip.open(rununiquepath, "rb") for entry in toProcess: if entry[0] == '#': continue fields = entry.strip().split("\t") chrom = fields[0] start = int(fields[1]) stop = int(fields[1]) + len(fields[3]) overlap = fpclasses.intersect(chrom, start, stop) is_fp = False is_ambi = False classes_this_pos = set() for o in overlap: reason = o.value[0] if reason == "fp" and args.ambi_fp: reason = "FP" elif reason == "fp": reason = "ambi-fp" elif reason == "unk": reason = "ambi-unk" classes_this_pos.add(reason) try: ambiReasons["%s: rep. count %s" % (reason, o.value[1])] += 1 except IndexError: ambiReasons["%s: rep. count *" % reason] += 1 for x in o.value[3:]: ambiReasons["%s: %s" % (reason, x)] += 1 if reason == "FP": is_fp = True else: is_ambi = True for reason in classes_this_pos: ambiClasses[reason] += 1 if is_fp: fp.write(entry) elif is_ambi: ambi.write(entry) elif not args.count_unk: # when we don't have FP regions, unk stuff becomes FP fp.write(entry) else: unk.write(entry) toProcess.close() # since 0001.vcf.gz should already be sorted, we can just convert to bgzipped vcf # and create index fp.close() ambi.close() unk.close() runBcftools("index", "--tbi", fppath) runBcftools("index", "--tbi", unkpath) runBcftools("index", "--tbi", ambipath) logging.info("Counting variants...") truthcounts = parseStats(runBcftools("stats", ntpath), "total.truth") querycounts = parseStats(runBcftools("stats", nqpath), "total.query") tpcounts = parseStats(runBcftools("stats", os.path.join(scratch, "tpfn", "0002.vcf.gz")), "tp") fncounts = parseStats(runBcftools("stats", os.path.join(scratch, "tpfn", "0000.vcf.gz")), "fn") fpcounts = parseStats(runBcftools("stats", fppath), "fp") ambicounts = parseStats(runBcftools("stats", ambipath), "ambi") unkcounts = parseStats(runBcftools("stats", unkpath), "unk") res = pandas.merge(truthcounts, querycounts, on="type") res = pandas.merge(res, tpcounts, on="type") res = pandas.merge(res, fpcounts, on="type") res = pandas.merge(res, fncounts, on="type") res = pandas.merge(res, unkcounts, on="type") res = pandas.merge(res, ambicounts, on="type") # no explicit guarantee that total.query is equal to unk + ambi + fp + tp # testSum = res["fp"] + res["tp"] + res["unk"] + res["ambi"] # filter and relabel res = res[res["type"] != "samples"] res = res[res["type"] != "multiallelic SNP sites"] res = res[res["type"] != "multiallelic sites"] res.loc[res["type"] == "SNPs", "type"] = "SNVs" metrics_output = makeMetricsObject("som.py.comparison") if args.ambi and args.explain_ambiguous: ac = list(ambiClasses.iteritems()) if ac: ambie = pandas.DataFrame(ac, columns=["class", "count"]) ambie.sort(["class"], inplace=True) pandas.set_option("display.max_rows", 1000) pandas.set_option("display.max_columns", 1000) pandas.set_option("display.width", 1000) pandas.set_option("display.height", 1100) logging.info("FP/ambiguity classes with info (multiple classes can " "overlap):\n" + ambie.to_string(index=False)) # in default mode, print result summary to stdout if not args.quiet and not args.verbose: print "FP/ambiguity classes with info (multiple classes can " \ "overlap):\n" + ambie.to_string(index=False) ambie.to_csv(args.output + ".ambiclasses.csv") metrics_output["metrics"].append(dataframeToMetricsTable("ambiclasses", ambie)) else: logging.info("No ambiguous variants.") ar = list(ambiReasons.iteritems()) if ar: ambie = pandas.DataFrame(ar, columns=["reason", "count"]) ambie.sort(["reason"], inplace=True) pandas.set_option("display.max_rows", 1000) pandas.set_option("display.max_columns", 1000) pandas.set_option("display.width", 1000) pandas.set_option("display.height", 1100) logging.info("Reasons for defining as ambiguous (multiple reasons can overlap):\n" + ambie.to_string( formatters={'reason': '{{:<{}s}}'.format(ambie['reason'].str.len().max()).format}, index=False)) # in default mode, print result summary to stdout if not args.quiet and not args.verbose: print "Reasons for defining as ambiguous (multiple reasons can overlap):\n" + ambie.to_string( formatters={'reason': '{{:<{}s}}'.format(ambie['reason'].str.len().max()).format}, index=False) ambie.to_csv(args.output + ".ambireasons.csv") metrics_output["metrics"].append(dataframeToMetricsTable("ambireasons", ambie)) else: logging.info("No ambiguous variants.") if args.features: logging.info("Extracting features...") fset = Somatic.FeatureSet.make(args.features) fset.setChrDepths(md) logging.info("Collecting TP info (1)...") tps = fset.collect(os.path.join(scratch, "tpfn", "0002.vcf.gz"), "TP") # TP_r is a hint for fset, they are both TPs logging.info("Collecting TP info (2)...") tps2 = fset.collect(os.path.join(scratch, "tpfn_r", "0002.vcf.gz"), "TP_r") # this is slow because it tries to sort # ... which we don't need to do since tps1 and tps2 have the same ordering logging.info("Sorting...") tps.sort(["CHROM", "POS"], inplace=True) tps2.sort(["CHROM", "POS"], inplace=True) tps = tps.reset_index(drop=True) tps2 = tps2.reset_index(drop=True) logging.info("Merging TP info...") columns_tps = list(tps) columns_tps2 = list(tps2) len1 = tps.shape[0] len2 = tps2.shape[0] if len1 != len2: raise Exception("Cannot read TP features, lists have different lengths : %i != %i" % (len1, len2)) if not args.disable_order_check: logging.info("Checking order %i / %i" % (len1, len2)) for x in xrange(0, len1): for a in ["CHROM", "POS"]: if tps.loc[x][a] != tps2.loc[x][a]: raise Exception("Cannot merge TP features, inputs are out of order at %s / %s" % ( str(tps[x:x + 1]), str(tps2[x:x + 1]))) logging.info("Merging...") cdata = { "CHROM": tps["CHROM"], "POS": tps["POS"], "tag": tps["tag"] } tpc = pandas.DataFrame(cdata, columns=["CHROM", "POS", "tag"]) all_columns = list(set(columns_tps + columns_tps2)) for a in all_columns: if a in columns_tps and a not in columns_tps2: tpc[a] = tps[a] elif a not in columns_tps and a in columns_tps2: tpc[a] = tps2[a] elif a not in ["CHROM", "POS", "tag"]: tpc[a] = tps2[a] tpc[a + ".truth"] = tps[a] logging.info("Collecting FP info...") fps = fset.collect(fppath, "FP") ambs = fset.collect(ambipath, "AMBI") logging.info("Collecting FN info...") fns = fset.collect(os.path.join(scratch, "tpfn", "0000.vcf.gz"), "FN") renamed = {} tp_cols = list(tpc) for col in list(fns): if col + ".truth" in tp_cols: renamed[col] = col + ".truth" fns.rename(columns=renamed, inplace=True) featurelist = [tpc, fps, fns, ambs] if unkpath is not None: logging.info("Collecting UNK info...") unk = fset.collect(unkpath, "UNK") featurelist.append(unk) logging.info("Making feature table...") featuretable = pandas.concat(featurelist) # reorder to make more legible first_columns = ["CHROM", "POS", "tag"] # noinspection PyTypeChecker all_columns = list(featuretable) if "REF" in all_columns: first_columns.append("REF") if "REF.truth" in all_columns: first_columns.append("REF.truth") if "ALT" in all_columns: first_columns.append("ALT") if "ALT.truth" in all_columns: first_columns.append("ALT.truth") ordered_columns = first_columns + sorted([x for x in all_columns if x not in first_columns]) featuretable = featuretable[ordered_columns] # make sure positions are integers featuretable["POS"] = featuretable["POS"].astype(int) logging.info("Saving feature table...") featuretable.to_csv(args.output + ".features.csv", float_format='%.8f') if args.roc is not None: roc_table = args.roc.from_table(featuretable) roc_table.to_csv(args.output + ".roc.csv", float_format='%.8f') featuretable["FILTER"].fillna("", inplace=True) featuretable.ix[featuretable["REF"].str.len() < 1, "absent"] = True featuretable.ix[featuretable["tag"] == "FN", "REF"] = featuretable.ix[featuretable["tag"] == "FN", "REF.truth"] featuretable.ix[featuretable["tag"] == "FN", "ALT"] = featuretable.ix[featuretable["tag"] == "FN", "ALT.truth"] af_t_feature = args.af_strat_truth af_q_feature = args.af_strat_query for vtype in ["records", "SNVs", "indels"]: if vtype == "SNVs": featuretable_this_type = featuretable[(featuretable["REF"].str.len() > 0) & (featuretable["ALT"].str.len() == featuretable["REF"].str.len())] elif vtype == "indels": featuretable_this_type = featuretable[(featuretable["REF"].str.len() != 1) | (featuretable["ALT"].str.len() != 1)] else: featuretable_this_type = featuretable if args.count_filtered_fn: res.ix[res["type"] == vtype, "fp.filtered"] = featuretable_this_type[ (featuretable_this_type["tag"] == "FP") & (featuretable_this_type["FILTER"] != "")].shape[0] res.ix[res["type"] == vtype, "tp.filtered"] = featuretable_this_type[ (featuretable_this_type["tag"] == "TP") & (featuretable_this_type["FILTER"] != "")].shape[0] res.ix[res["type"] == vtype, "unk.filtered"] = featuretable_this_type[ (featuretable_this_type["tag"] == "UNK") & (featuretable_this_type["FILTER"] != "")].shape[0] res.ix[res["type"] == vtype, "ambi.filtered"] = featuretable_this_type[ (featuretable_this_type["tag"] == "AMBI") & (featuretable_this_type["FILTER"] != "")].shape[0] if args.af_strat: start = 0.0 current_binsize = args.af_strat_binsize[0] next_binsize = 0 while start < 1.0: # include 1 in last interval end = min(1.000000001, start + current_binsize) n_tp = featuretable_this_type[(featuretable_this_type["tag"] == "TP") & (featuretable_this_type[af_t_feature] >= start) & (featuretable_this_type[af_t_feature] < end)] n_fn = featuretable_this_type[(featuretable_this_type["tag"] == "FN") & (featuretable_this_type[af_t_feature] >= start) & (featuretable_this_type[af_t_feature] < end)] n_fp = featuretable_this_type[(featuretable_this_type["tag"] == "FP") & (featuretable_this_type[af_q_feature] >= start) & (featuretable_this_type[af_q_feature] < end)] n_ambi = featuretable_this_type[(featuretable_this_type["tag"] == "AMBI") & (featuretable_this_type[af_q_feature] >= start) & (featuretable_this_type[af_q_feature] < end)] n_unk = featuretable_this_type[(featuretable_this_type["tag"] == "UNK") & (featuretable_this_type[af_q_feature] >= start) & (featuretable_this_type[af_q_feature] < end)] r = {"type": "%s.%f-%f" % (vtype, start, end), "total.truth": n_tp.shape[0] + n_fn.shape[0], "total.query": n_tp.shape[0] + n_fp.shape[0] + n_ambi.shape[0] + n_unk.shape[0], "tp": n_tp.shape[0], "fp": n_fp.shape[0], "fn": n_fn.shape[0], "unk": n_unk.shape[0], "ambi": n_ambi.shape[0], } if args.count_filtered_fn: r["fp.filtered"] = n_fp[n_fp["FILTER"] != ""].shape[0] r["tp.filtered"] = n_tp[n_tp["FILTER"] != ""].shape[0] r["unk.filtered"] = n_unk[n_unk["FILTER"] != ""].shape[0] r["ambi.filtered"] = n_ambi[n_ambi["FILTER"] != ""].shape[0] res = pandas.concat([res, pandas.DataFrame([r])]) if args.roc is not None and (n_tp.shape[0] + n_fn.shape[0] + n_fp.shape[0]) > 0: roc_table_strat = args.roc.from_table(pandas.concat([n_tp, n_fp, n_fn])) rtname = "%s.%s.%f-%f.roc.csv" % (args.output, vtype, start, end) roc_table_strat.to_csv(rtname, float_format='%.8f') start += current_binsize next_binsize += 1 if next_binsize >= len(args.af_strat_binsize): next_binsize = 0 current_binsize = args.af_strat_binsize[next_binsize] # remove things where we haven't seen any variants in truth and query res = res[(res["total.truth"] > 0) & (res["total.query"] > 0)] # summary metrics res["recall"] = res["tp"] / (res["tp"] + res["fn"]) res["recall2"] = res["tp"] / (res["total.truth"]) res["precision"] = res["tp"] / (res["tp"] + res["fp"]) res["na"] = res["unk"] / (res["total.query"]) res["ambiguous"] = res["ambi"] / res["total.query"] any_fp = fpclasses.countbases(label="FP") fp_region_count = 0 auto_size = True if args.fpr_size: try: fp_region_count = int(args.fpr_size) auto_size = False except: pass if auto_size: if any_fp: if args.location: chrom, _, rest = args.location.partition(":") if rest: start, _, end = rest.partition("_") if start: start = int(start) if end: end = int(end) else: fp_region_count += fpclasses.countbases(chrom, label="FP") else: fp_region_count = any_fp else: cs = fastaContigLengths(args.ref) if args.location: fp_region_count = calculateLength(cs, args.location) else: # use all locations we saw calls on h1 = Tools.vcfextract.extractHeadersJSON(ntpath) h1_chrs = h1["tabix"]["chromosomes"] if not h1_chrs: logging.warn("ntpath is empty") h1_chrs = [] h2 = Tools.vcfextract.extractHeadersJSON(nqpath) h2_chrs = h2["tabix"]["chromosomes"] if not h2_chrs: logging.warn("nqpath is empty") h2_chrs = [] combined_chrs = list(set(h1_chrs + h2_chrs)) if len(combined_chrs) > 0: qlocations = " ".join(combined_chrs) fp_region_count = calculateLength(cs, qlocations) else: fp_region_count = 0 res["fp.region.size"] = fp_region_count res["fp.rate"] = 1e6 * res["fp"] / res["fp.region.size"] if args.count_filtered_fn: res["recall.filtered"] = (res["tp"] - res["tp.filtered"]) / (res["tp"] + res["fn"]) res["precision.filtered"] = (res["tp"] - res["tp.filtered"]) / (res["tp"] - res["tp.filtered"] + res["fp"] - res["fp.filtered"]) res["fp.rate.filtered"] = 1e6 * (res["fp"] - res["fp.filtered"]) / res["fp.region.size"] res["na.filtered"] = (res["unk"] - res["unk.filtered"]) / (res["total.query"]) res["ambiguous.filtered"] = (res["ambi"] - res["ambi.filtered"]) / res["total.query"] # HAP-162 remove inf values res.replace([np.inf, -np.inf], 0) metrics_output["metrics"].append(dataframeToMetricsTable("result", res)) vstring = "som.py-%s" % Tools.version logging.info("\n" + res.to_string()) # in default mode, print result summary to stdout if not args.quiet and not args.verbose: print "\n" + res.to_string() res["sompyversion"] = vstring vstring = " ".join(sys.argv) res["sompycmd"] = vstring res.to_csv(args.output + ".stats.csv") with open(args.output + ".metrics.json", "w") as fp: json.dump(metrics_output, fp) finally: if args.delete_scratch: shutil.rmtree(scratch) else: logging.info("Scratch kept at %s" % scratch)
def preprocess(vcf_input, vcf_output, reference, locations=None, filters=None, fixchr=None, regions=None, targets=None, leftshift=True, decompose=True, bcftools_norm=False, windowsize=10000, threads=1, gender=None, somatic_allele_conversion=False, sample="SAMPLE"): """ Preprocess a single VCF file :param vcf_input: input file name :param vcf_output: output file name :param reference: reference fasta name :param locations: list of locations or None :param filters: list of filters to apply ("*" to only allow PASS) :param fixchr: None for auto, or True/False -- fix chr prefix to match reference :param regions: regions bed file :param targets: targets bed file :param leftshift: left-shift variants :param decompose: decompose variants :param bcftools_norm: use bcftools_norm :param windowsize: normalisation window size :param threads: number of threads to for preprcessing :param gender: the gender of the sample ("male" / "female" / "auto" / None) :param somatic_allele_conversion: convert somatic alleles -- False / half / het / hemi / hom :param sample: when using somatic_allele_conversion, name of the output sample :return: the gender if auto-determined (otherwise the same value as gender parameter) """ tempfiles = [] try: # If the input is in BCF format, we can continue to # process it in bcf # if it is in .vcf.gz, don't try to convert it to # bcf because there are a range of things that can # go wrong there (e.g. undefined contigs and bcftools # segfaults) if vcf_input.endswith(".bcf") or vcf_output.endswith(".bcf"): int_suffix = ".bcf" int_format = "b" if not vcf_input.endswith(".bcf") and vcf_output.endswith(".bcf"): logging.warn( "Turning vcf into bcf can cause problems when headers are not consistent with all " "records in the file. I will run vcfcheck to see if we will run into trouble. " "To save time in the future, consider converting your files into bcf using bcftools before" " running pre.py.") else: int_suffix = ".vcf.gz" int_format = "z" # HAP-317 always check for BCF errors since preprocessing tools now require valid headers mf = subprocess.check_output("vcfcheck %s --check-bcf-errors 1" % pipes.quote(vcf_input), shell=True) if gender == "auto": logging.info(mf) if "female" in mf: gender = "female" else: gender = "male" h = vcfextract.extractHeadersJSON(vcf_input) reference_contigs = set(fastaContigLengths(reference).keys()) reference_has_chr_prefix = hasChrPrefix(reference_contigs) allfilters = [] for f in h["fields"]: try: if f["key"] == "FILTER": allfilters.append(f["values"]["ID"]) except: logging.warn("ignoring header: %s" % str(f)) required_filters = None if filters: fts = filters.split(",") required_filters = ",".join( list( set(["PASS", "."] + [x for x in allfilters if x not in fts]))) if fixchr is None: try: if not h["tabix"]: logging.warn( "input file is not tabix indexed, consider doing this in advance for performance reasons" ) vtf = tempfile.NamedTemporaryFile(delete=False, suffix=int_suffix) vtf.close() tempfiles.append(vtf.name) runBcftools("view", "-o", vtf.name, "-O", int_format, vcf_input) runBcftools("index", vtf.name) h2 = vcfextract.extractHeadersJSON(vcf_input) chrlist = h2["tabix"]["chromosomes"] else: chrlist = h["tabix"]["chromosomes"] vcf_has_chr_prefix = hasChrPrefix(chrlist) if reference_has_chr_prefix and not vcf_has_chr_prefix: fixchr = True except: logging.warn("Guessing the chr prefix in %s has failed." % vcf_input) # all these require preprocessing vtf = vcf_input if leftshift or decompose: vtf = tempfile.NamedTemporaryFile(delete=False, suffix=int_suffix) vtf.close() tempfiles.append(vtf.name) vtf = vtf.name else: vtf = vcf_output preprocessVCF(vcf_input, vtf, locations, filters == "*", fixchr, bcftools_norm, regions, targets, reference, required_filters, somatic_allele_conversion=somatic_allele_conversion, sample=sample) if leftshift or decompose or gender == "male": Haplo.partialcredit.partialCredit(vtf, vcf_output, reference, locations, threads=threads, window=windowsize, leftshift=leftshift, decompose=decompose, haploid_x=gender == "male") finally: for t in tempfiles: try: os.unlink(t) except: pass return gender
def main(): parser = argparse.ArgumentParser("Somatic VCF Feature Extraction") parser.add_argument("input", help="Input VCF file") parser.add_argument("-o", "--output", dest="output", required=True, help="Output file name. Output will be in CSV format") parser.add_argument("-l", "--location", dest="location", default="", help="Location for bcftools view (e.g. chr1)") parser.add_argument("-R", "--restrict-regions", dest="regions_bedfile", default=None, type=str, help="Restrict analysis to given (sparse) regions (using -R in bcftools).") parser.add_argument("-T", "--target-regions", dest="targets_bedfile", default=None, type=str, help="Restrict analysis to given (dense) regions (using -T in bcftools).") parser.add_argument("-P", "--include-nonpass", dest="inc_nonpass", action="store_true", default=False, help="Use to include failing variants in comparison.") parser.add_argument("--feature-table", dest="features", default="generic", help="Select a feature table to output. Options are: %s" % str(Somatic.FeatureSet.sets.keys())) parser.add_argument("--feature-label", dest="label", default=None, help="We will output a lable column, this value will go in there -- default is " "the input filename.") parser.add_argument("--bam", dest="bams", default=[], action="append", help="pass one or more BAM files for feature table extraction") parser.add_argument("-r", "--reference", dest="ref", default=Tools.defaultReference(), help="Specify a reference file for normalization.") parser.add_argument("--normalize", dest="normalize", default=False, action="store_true", help="Enable running of bcftools norm on the input file.") parser.add_argument("--fix-chr", dest="fixchr", default=False, action="store_true", help="Replace numeric chromosome names in the query by chr*-type names") args = parser.parse_args() scratch = tempfile.mkdtemp() try: logging.info("Scratch path is %s" % scratch) if not args.label: args.label = os.path.basename(args.input) bams = [] md = None for x in args.bams: bams.append(bamStats(x)) if bams: bres = pandas.concat(bams).groupby("CHROM").mean() md = {} for x in bres.index: logging.info("Mean coverage on %s is %f" % (x, bres.loc[x]["COVERAGE"])) md[x] = float(bres.loc[x]["COVERAGE"])*3.0 nqpath = os.path.join(scratch, "normalized_query.vcf.gz") logging.info("Preprocessing input...") preprocessVCF(args.input, nqpath, args.location, not args.inc_nonpass, # pass_only args.fixchr, # chrprefix args.normalize, # norm, args.regions_bedfile, args.targets_bedfile, args.ref) runBcftools("index", nqpath) logging.info("Extracting features...") fset = Somatic.FeatureSet.make(args.features) fset.setChrDepths(md) featuretable = fset.collect(nqpath, args.label) if not args.output.endswith(".csv"): args.output += ".csv" logging.info("Saving feature table %s..." % args.output) featuretable.to_csv(args.output) finally: logging.info("Deleting scratch folder %s " % scratch) shutil.rmtree(scratch)
def partialCredit(vcfname, outputname, reference, locations, threads=1, window=10000, leftshift=True, decompose=True): """ Partial-credit-process a VCF file according to our args """ pool = getPool(int(threads)) if threads > 1: logging.info("Partial credit processing uses %i parallel processes." % threads) if not locations: h = extractHeadersJSON(vcfname) if not h["tabix"]["chromosomes"]: logging.warn("Empty input or not tabix indexed") if outputname.endswith(".bcf"): runBcftools("view", "-O", "b", "-o", outputname, vcfname) runBcftools("index", outputname) else: runBcftools("view", "-O", "z", "-o", outputname, vcfname) runBcftools("index", "-t", outputname) # just return the same file return locations = h["tabix"]["chromosomes"] elif type(locations) is str or type(locations) is unicode: locations = locations.split(",") # use blocksplit to subdivide input res = runParallel( pool, blocksplitWrapper, locations, {"vcf": vcfname, "dist": window, "pieces": min(40, threads * 4)} ) if None in res: raise Exception("One of the blocksplit processes failed.") locations = list(itertools.chain.from_iterable(res)) if not len(locations): logging.warn("Blocksplit returned no blocks. This can happen when " "an input contains no valid variants.") locations = [""] else: locations = [""] res = [] try: res = runParallel( pool, preprocessWrapper, itertools.izip(itertools.repeat(vcfname), locations), { "reference": reference, "decompose": decompose, "leftshift": leftshift, "bcf": outputname.endswith(".bcf"), }, ) if None in res: raise Exception("One of the preprocess jobs failed") if not res: raise Exception("No blocks were processed. List of locations: %s" % str(list(locations))) concatenateParts(outputname, *res) if outputname.endswith(".vcf.gz"): runBcftools("index", "-t", outputname) else: # use bcf runBcftools("index", outputname) finally: for r in res: try: os.unlink(r) except: pass try: os.unlink(r + ".tbi") except: pass try: os.unlink(r + ".csi") except: pass