Example #1
0
    def submit():
        global list_images
        global student_image
        global row
        global row2
        student_admno = E4.get()
        student_name = E1.get()
        student_class = E2.get()
        student_rollno = E3.get()

        if ((student_admno == '') or (not student_admno.isdigit())
                or (student_name == '') or (student_class not in classes)
                or (len(student_rollno) < 1) or (len(student_rollno) > 2)
                or (len(list_images) != 50) or (not student_rollno.isdigit())):
            showerror("Error Submit", "Something is wrong in your inputs..!!!")
            root.focus_set()
        elif (student_admno in unique_ids_list):
            showerror("Error Submit",
                      "A student in this admission number already exists")
            root.focus_set()
        elif (askyesno(
                "Confirm Submit",
                "Hope you have entered right datas.\nAre you sure to submit ?")
              ):
            global root_label
            root.lift()
            root_label.destroy()
            root_label = Label(F0, text="Photo")
            root_label.pack(pady=5)
            root.geometry("400x300+500+50")
            E1.delete(0, END)
            E2.delete(0, END)
            E3.delete(0, END)
            E4.delete(0, END)
            f = open(unique_ids, "a")
            f.write(student_admno + '\n')
            f.close()
            for sheet in book.worksheets:
                sheet['A{0}'.format(row)] = student_admno
                sheet['B{0}'.format(row)] = student_name
            book.save(os.path.join("Database", "Students", "Attendence.xlsx"))
            row += 1
            sheet2['A{0}'.format(row2)].value = student_admno
            sheet2['B{0}'.format(row2)].value = student_name
            sheet2['C{0}'.format(row2)] = "Students"
            book2.save(os.path.join("Database", "teachers_and_students.xlsx"))
            row2 += 1
            cv2.imwrite(
                os.path.join("Database", "Students", "Images", student_class,
                             student_rollno + ".jpg"), student_image)
            trainer.train(list_images, int(student_admno))
        else:
            root.focus_set()
Example #2
0
        "baseline_ptcone20",
        "baseline_ptcone30",
        "baseline_ptcone40",
        "baseline_ptvarcone20",
        "baseline_ptvarcone30",
        "baseline_ptvarcone40",
        "baseline_eflowcone20_over_pt",
        "trk_vtx_type",
    ]
    options["training_split"] = 0.7
    options["batch_size"] = 32
    options["n_epochs"] = 10
    options["n_layers"] = 3
    options["hidden_neurons"] = 256
    options["intrinsic_dimensions"] = 1024  # only matters for deep sets
    options["output_neurons"] = 2
    options["device"] = args.device
    options["save_model"] = True
    options[
        "model_save_path"] = options["output_folder"] + "test_gru_model.pth"
    options["train_BDT"] = True
    t0 = time.time()
    print("number of epochs planned:", options["n_epochs"])
    print("input data:", options["input_data"].split("/")[-1])
    print("batch_size:", options["batch_size"])
    print("device:", args.device)
    print("architecture:", options["architecture_type"])
    trainer.train(options)
    print("total runtime :", time.time() - t0)
    torch.cuda.empty_cache()
Example #3
0
data_filepath = "../colores.csv"
img_filepath = "../images/tanzania.jpg"

x = np.genfromtxt(data_filepath,
                  dtype=np.float128,
                  delimiter=",",
                  usecols=(0, 1, 2))
y = np.genfromtxt(data_filepath, dtype=np.string0, delimiter=",", usecols=(3))

class_array = []
new_y = []

for i in range(y.size):
    if y[i] not in class_array:
        class_array.append(y[i])
    new_y.append([class_array.index(y[i])])

color_length = len(class_array)
new_y = np.array(new_y, dtype=float128)

x = x / 255.
new_y = new_y / float(color_length - 1)

NN = Neural_Network(3, 11, 1)

trainer = trainer(NN)
trainer.train(x, new_y)

print(get_predominant_color(NN, img_filepath, class_array))
Example #4
0
    torch.cuda.manual_seed_all(random_seed)
    torch.backends.cudnn.deterministic = True
    torch.backends.cudnn.benchmark = False
    np.random.seed(random_seed)

    # Setting the config for each stage
    train_config = get_config(mode='train')
    dev_config = get_config(mode='dev')
    test_config = get_config(mode='test')

    print(train_config)

    # Creating pytorch dataloaders
    train_data_loader = get_loader(train_config, shuffle=True)
    dev_data_loader = get_loader(dev_config, shuffle=False)
    test_data_loader = get_loader(test_config, shuffle=False)

    # Trainer is a wrapper for model training, validating and testing

    trainer = trainer(train_config,
                      train_data_loader,
                      dev_data_loader,
                      test_data_loader,
                      is_train=True)

    # Build the model
    trainer.build()

    # Train the model (test scores will be returned based on val performance)
    trainer.train()