def single_trait_sim(par): sim = traitsim(h=1, num_iteration=1, num_species=10, gamma1=par[0], gamma_K2=par[0], a=par[1], r=1, theta=0, K=5000, mean_trait=0, dev_trait=20, mean_pop=50, dev_pop=20, num_time=2000, replicate=0) return sim
import numpy as np from Trait_sim_in_branches_stat import traitsim from ABC_MCMC import calibrication,MCMC_ABC # Observation parameters [gamma,a] par_obs = np.array([0.1,0.1]) # Observation generated obs = traitsim(h = 1, num_iteration=1,num_species=10,gamma1=par_obs[0],gamma_K2=par_obs[0],a = par_obs[1],r = 1, theta = 0,K = 5000 , mean_trait=0,dev_trait=20,mean_pop=50,dev_pop=20, num_time=2000,replicate=1) # Calibriation step cal_size = 20000 priorpar = [0.2,0.5,0.1,0.4] collection = calibrication(samplesize = cal_size, priorpar = priorpar, obs = obs, mode='nor') np.savetxt("/home/p274981/Python_p2/calibration2w_3chains.txt",collection) #collection = np.loadtxt("/home/p274981/Python_p2/testcal.txt")
a = 0.01 h = 1 # statistics for settings for gamma1 in gamma_vec: count2 = 1 gamma_K2 = gamma1 for a in a_vec: for num_species in num_species_vec: traitdata = traitsim(num_time=num_time, num_species=num_species, num_iteration=num_iteration, gamma1=gamma1, a=a, r=r, K=K, theta=theta, mean_trait=0, dev_trait=10, mean_pop=50, dev_pop=10, gamma_K2=gamma_K2, h=h) fig = drawplot(traitdata=traitdata) par = (num_species, num_time, num_iteration, count1, count2) # # detect the current dir script_dir = os.path.dirname('__file__') results_dir = os.path.join(script_dir, 'resultes/') # file names name = "species%d-time%d-sim%d-nat%d-com%d-DRvsDK" % par file_name = "%s.pdf" % name # if dir doesn't exist, create it