def main(block_attention, hierarchical, nade, num_layers, dropout, input_dropout, input_dropout_token, per_head_dim, num_heads, local_position_embedding_dim, position_ff_dim, enc_dec_conditioning, lr, batch_size, num_epochs, action, loss_on_last_frame, mixup, midi_input, temperature, num_batches, label_smoothing, scheduled_training, dataset_type, conditioning, double_conditioning, instrument_presence_in_encoder, cpc_config_name, num_examples_sampled, suffix, subdivision, sequence_size, velocity_quantization, max_transposition, group_instrument_per_section): # Use all gpus available gpu_ids = [int(gpu) for gpu in range(torch.cuda.device_count())] print(gpu_ids) config = get_config() num_layers_l = [2, 3, 4, 5, 6] enc_dec_conditionings_l = ['split', 'single'] sequence_sizes_l = [3, 5, 7] grid_search = False if grid_search: configs = list( itertools.product( *[num_layers_l, enc_dec_conditionings_l, sequence_sizes_l])) write_suffix = True else: configs = [(num_layers, enc_dec_conditioning, sequence_size)] write_suffix = False for this_config in configs: num_layers, enc_dec_conditioning, sequence_size = this_config if write_suffix: this_suffix = f'{suffix}_{num_layers}_{enc_dec_conditioning}_{sequence_size}' else: this_suffix = suffix # Get dataset dataset_manager = DatasetManager() dataset, processor_decoder, processor_encoder, processor_encodencoder = \ dataset_import.get_dataset(dataset_manager, dataset_type, subdivision, sequence_size, velocity_quantization, max_transposition, num_heads, per_head_dim, local_position_embedding_dim, block_attention, group_instrument_per_section, nade, cpc_config_name, double_conditioning, instrument_presence_in_encoder) reduction_flag = dataset_type in [ 'reduction', 'reduction_small', 'reduction_large', 'reduction_categorical', 'reduction_categorical_small', 'reduction_midiPiano', 'reduction_midiPiano_small' ] if not conditioning: print("NO CONDITIONING ????!!!!!!!!!!!!") model = Transformer(dataset=dataset, data_processor_encodencoder=processor_encodencoder, data_processor_encoder=processor_encoder, data_processor_decoder=processor_decoder, num_heads=num_heads, per_head_dim=per_head_dim, position_ff_dim=position_ff_dim, enc_dec_conditioning=enc_dec_conditioning, hierarchical_encoding=hierarchical, block_attention=block_attention, nade=nade, conditioning=conditioning, double_conditioning=double_conditioning, num_layers=num_layers, dropout=dropout, input_dropout=input_dropout, input_dropout_token=input_dropout_token, lr=lr, reduction_flag=reduction_flag, gpu_ids=gpu_ids, suffix=this_suffix, mixup=mixup, scheduled_training=scheduled_training) if action in ['generate', 'visualize']: model.load() overfit_flag = False elif action in [ 'generate_overfit', 'train_from_checkpoint', 'visualize_overfit' ]: model.load_overfit() overfit_flag = True model.cuda() if action in ['train', 'train_from_checkpoint']: print(f"Train the model on gpus {gpu_ids}") model.train_model(cache_dir=dataset_manager.cache_dir, batch_size=batch_size, num_epochs=num_epochs, num_batches=num_batches, label_smoothing=label_smoothing, loss_on_last_frame=loss_on_last_frame) overfit_flag = True if action in ['generate', 'generate_overfit']: print('Generation') ascii_melody = MARIO_MELODY # score, tensor_chorale, tensor_metadata = mode.generation_from_ascii( # ascii_melody=ascii_melody # ) # score.show() # score, tensor_chorale, tensor_metadata = model.generation( # num_tokens_per_beat=8, # num_beats=64 * 4, # temperature=1. # ) # score, tensor_chorale, tensor_metadata = model.generation( # num_tokens_per_beat=8, # num_beats=64 * 4, # num_experiments=4, # link_experiments=False, # temperature=1.2 # ) # score, tensor_chorale, tensor_metadata = model.plot_attentions() # score, tensor_chorale, tensor_metadata = model.unconstrained_generation( # num_tokens_per_beat=8, # num_beats=64 * 4) if dataset_type in [ 'arrangement', 'arrangement_small', 'arrangement_midiPiano', 'arrangement_midiPiano_small', 'arrangement_voice', 'arrangement_voice_small' ]: # (oppposite to standard) increasing temperature reduce agitation # Cold means all event will eventually have almost same proba # Hot accentuates spikes # Number of complete pass over all time frames in, non auto-regressive sampling schemes number_sampling_steps = 1 # Allows to override dataset quantization for generation subdivision_generation = subdivision # banned_instruments = ["Violin_1", "Violin_2", "Violoncello", "Contrabass", "Viola"] banned_instruments = [] # Used for instruments_presence model unknown_instruments = [] source_folder = f"{config['datapath']}/source_for_generation/" sources = [ { "source_path": source_folder + "mouss_tableaux_small.xml", "writing_name": "mouss_tableaux_small", "writing_tempo": "adagio", }, # {"source_path": source_folder + "guillaume_1.mid", # "writing_name": "guillaume_1", # "writing_tempo": "adagio" # }, # {"source_path": source_folder + "guillaume_2.xml", # "writing_name": "guillaume_2", # "writing_tempo": "adagio" # }, { "source_path": source_folder + "chopin_Prel_Op28_20.xml", "writing_name": "chopin_Prel_Op28_20", "writing_tempo": "largo" }, { "source_path": source_folder + "b_1_1.xml", "writing_name": "b_1_1", "writing_tempo": "adagio" }, { "source_path": source_folder + "b_3_3.xml", "writing_name": "b_3_3", "writing_tempo": "adagio" }, { "source_path": source_folder + "b_3_4.xml", "writing_name": "b_3_4", "writing_tempo": "adagio" }, { "source_path": source_folder + "b_7_2.xml", "writing_name": "b_7_2", "writing_tempo": "adagio" }, { "source_path": source_folder + "testpiano.xml", "writing_name": "testpiano", "writing_tempo": "adagio" }, { "source_path": source_folder + "schubert_21_1.xml", "writing_name": "schubert_21_1", "writing_tempo": "adagio" }, { "source_path": source_folder + "schubert_20_1.xml", "writing_name": "schubert_20_1", "writing_tempo": "adagio" }, { "source_path": source_folder + "Mozart_Nachtmusik.xml", "writing_name": "Mozart_Nachtmusik", "writing_tempo": "adagio" }, ] if overfit_flag: write_dir = model.log_dir_overfitted else: write_dir = model.log_dir if midi_input is not None: sources = [{ 'source_path': f'midi_inputs/{midi_input}', 'writing_name': f'{midi_input}', 'writing_tempo': 'adagio' }] write_dir = 'midi_inputs' for source in sources: generation_from_file( model=model, temperature=temperature, batch_size=num_examples_sampled, filepath=source["source_path"], write_dir=write_dir, write_name=source["writing_name"], banned_instruments=banned_instruments, unknown_instruments=unknown_instruments, writing_tempo=source["writing_tempo"], subdivision=subdivision_generation, number_sampling_steps=number_sampling_steps) elif dataset_type in [ 'reduction', 'reduction_large', 'reduction_small', 'reduction_categorical', 'reduction_categorical_small' ]: # Allows to override dataset quantization for generation subdivision_generation = 8 source_folder = f"{config['datapath']}/source_for_generation/" sources = [ { "source_path": source_folder + "b_7_2_orch.xml", "writing_name": "b_7_2_orch", "writing_tempo": "adagio" }, # {"source_path": source_folder + "mouss_tableaux_orch.xml", # "writing_name": "mouss_tableaux_orch", # "writing_tempo": "adagio" # }, # {"source_path": source_folder + "Debussy_SuiteBergam_Passepied_orch.xml", # "writing_name": "Debussy_SuiteBergam_Passepied_orch", # "writing_tempo": "adagio" # }, # { # "source_path": source_folder + "Romantic Concert Piece for Brass Orchestra_orch.xml", # "writing_name": "Romantic Concert Piece for Brass Orchestra_orch", # "writing_tempo": "adagio" # }, # { # "source_path": source_folder + "mozart_25_1.xml", # "writing_name": "mozart_25_1", # "writing_tempo": "adagio" # }, # { # "source_path": source_folder + "mozart_25_2.xml", # "writing_name": "mozart_25_2", # "writing_tempo": "adagio" # }, # { # "source_path": source_folder + "mozart_25_3.xml", # "writing_name": "mozart_25_3", # "writing_tempo": "adagio" # }, { "source_path": source_folder + "brahms_symphony_2_1.xml", "writing_name": "brahms_symphony_2_1", "writing_tempo": "adagio" }, { "source_path": source_folder + "haydn_symphony_91_1.xml", "writing_name": "haydn_symphony_91_1", "writing_tempo": "adagio" }, { "source_path": source_folder + "mozart_symphony_183_4.xml", "writing_name": "mozart_symphony_183_4", "writing_tempo": "adagio" }, { "source_path": source_folder + "mozart_symphony_183_2.xml", "writing_name": "mozart_symphony_183_2", "writing_tempo": "adagio" }, ] for source in sources: reduction_from_file(model=model, temperature=temperature, batch_size=num_examples_sampled, filepath=source["source_path"], write_name=source["writing_name"], overfit_flag=overfit_flag, writing_tempo=source["writing_tempo"], subdivision=subdivision_generation) elif dataset_type == "lsdb": score, tensor_chorale, tensor_metadata = model.generation() score.write('xml', 'results/test.xml') elif dataset_type in ['bach', 'bach_small']: if nade and (not conditioning): scores = generation_bach_nade( model=model, temperature=temperature, ascii_melody=ascii_melody, batch_size=num_examples_sampled, force_melody=False, ) else: scores = generation_bach(model=model, temperature=temperature, ascii_melody=ascii_melody, batch_size=num_examples_sampled, force_melody=False) if overfit_flag: writing_dir = model.log_dir_overfitted else: writing_dir = model.log_dir for batch_index, score in enumerate(scores): score.write('xml', f'{writing_dir}/{batch_index}.xml') elif action in ['visualize', 'visualize_overfit']: log_dir = model.log_dir if action == 'visualize' else model.log_dir_overfitted visualize_arrangement(model, batch_size, log_dir) return
def init_app(block_attention, hierarchical, nade, num_layers, dropout, input_dropout, per_head_dim, num_heads, local_position_embedding_dim, position_ff_dim, suffix, subdivision, sequence_size, velocity_quantization, max_transposition, port): global metadatas global _subdivision global _batch_size global _banned_instruments global _temperature global _lowest_entropy_first global _context_size _subdivision = subdivision _batch_size = 1 _banned_instruments = [] _temperature = 1.2 _lowest_entropy_first = True gpu_ids = [int(gpu) for gpu in range(torch.cuda.device_count())] print(gpu_ids) dataset_manager = DatasetManager() arrangement_dataset_kwargs = { 'transpose_to_sounding_pitch': True, 'subdivision': subdivision, 'sequence_size': sequence_size, 'velocity_quantization': velocity_quantization, 'max_transposition': max_transposition, 'compute_statistics_flag': False } dataset: ArrangementDataset = dataset_manager.get_dataset( name='arrangement', **arrangement_dataset_kwargs) reducer_input_dim = num_heads * per_head_dim processor_encoder = ArrangementDataProcessor( dataset=dataset, embedding_dim=reducer_input_dim - local_position_embedding_dim, reducer_input_dim=reducer_input_dim, local_position_embedding_dim=local_position_embedding_dim, flag_orchestra=False, block_attention=False) processor_decoder = ArrangementDataProcessor( dataset=dataset, embedding_dim=reducer_input_dim - local_position_embedding_dim, reducer_input_dim=reducer_input_dim, local_position_embedding_dim=local_position_embedding_dim, flag_orchestra=True, block_attention=block_attention) _context_size = processor_decoder.num_frames_orchestra - 1 global model model = Transformer( dataset=dataset, data_processor_encoder=processor_encoder, data_processor_decoder=processor_decoder, num_heads=num_heads, per_head_dim=per_head_dim, position_ff_dim=position_ff_dim, hierarchical_encoding=hierarchical, block_attention=block_attention, nade=nade, num_layers=num_layers, dropout=dropout, input_dropout=input_dropout, conditioning=True, lr=0, gpu_ids=gpu_ids, suffix=suffix, ) model.load_overfit() model.cuda() # TODO : piano should be modifiable (by dropping mxml file ?) filepath = "/home/leo/Recherche/Databases/Orchestration/arrangement_mxml/source_for_generation/chopin_Prel_Op28_20_xs.xml" global _piano global _rhythm_piano global _orchestra global _orchestra_silenced_instruments _piano, _rhythm_piano, _orchestra, _orchestra_silenced_instruments = \ model.data_processor_encoder.init_generation_filepath(_batch_size, filepath, banned_instruments=_banned_instruments, subdivision=_subdivision) # launch the script # use threaded=True to fix Chrome/Chromium engine hanging on requests # [https://stackoverflow.com/a/30670626] local_only = False if local_only: # accessible only locally: app.run(threaded=True) else: # accessible from outside: app.run(host='0.0.0.0', port=port, threaded=True)
def main( midi_input, temperature, num_examples_sampled, suffix, ): # Use all gpus available gpu_ids = [int(gpu) for gpu in range(torch.cuda.device_count())] print(gpu_ids) hierarchical = False nade = False num_layers = 6 dropout = 0. input_dropout = 0. input_dropout_token = 0. per_head_dim = 64 num_heads = 8 local_position_embedding_dim = 8 position_ff_dim = 2048 enc_dec_conditioning = 'split' lr = 1 mixup = None scheduled_training = 0 dataset_type = 'arrangement_voice' conditioning = True double_conditioning = None subdivision = 16 sequence_size = 7 velocity_quantization = 2 max_transposition = 12 group_instrument_per_section = False reduction_flag = False instrument_presence_in_encoder = False cpc_config_name = None block_attention = False # Get dataset dataset_manager = DatasetManager() dataset, processor_decoder, processor_encoder, processor_encodencoder = \ dataset_import.get_dataset(dataset_manager, dataset_type, subdivision, sequence_size, velocity_quantization, max_transposition, num_heads, per_head_dim, local_position_embedding_dim, block_attention, group_instrument_per_section, nade, cpc_config_name, double_conditioning, instrument_presence_in_encoder) model = Transformer(dataset=dataset, data_processor_encodencoder=processor_encodencoder, data_processor_encoder=processor_encoder, data_processor_decoder=processor_decoder, num_heads=num_heads, per_head_dim=per_head_dim, position_ff_dim=position_ff_dim, enc_dec_conditioning=enc_dec_conditioning, hierarchical_encoding=hierarchical, block_attention=block_attention, nade=nade, conditioning=conditioning, double_conditioning=double_conditioning, num_layers=num_layers, dropout=dropout, input_dropout=input_dropout, input_dropout_token=input_dropout_token, lr=lr, reduction_flag=reduction_flag, gpu_ids=gpu_ids, suffix=suffix, mixup=mixup, scheduled_training=scheduled_training) model.load_overfit() model.cuda() print('Generation') # Allows to override dataset quantization for generation subdivision_generation = subdivision source = { 'source_path': f'midi_inputs/{midi_input}', 'writing_name': f'{midi_input}', 'writing_tempo': 'adagio' } write_dir = 'midi_inputs' generation_from_file(model=model, temperature=temperature, batch_size=num_examples_sampled, filepath=source["source_path"], write_dir=write_dir, write_name=source["writing_name"], banned_instruments=[], unknown_instruments=[], writing_tempo=source["writing_tempo"], subdivision=subdivision_generation, number_sampling_steps=1) return