def create_model(args, ncs, wopre=False): model_1 = models.create(args.arch, num_features=args.features, dropout=args.dropout, num_classes=ncs) model_1_ema = models.create(args.arch, num_features=args.features, dropout=args.dropout, num_classes=ncs) if not wopre: initial_weights = load_checkpoint(args.init_1) copy_state_dict(initial_weights['state_dict'], model_1) copy_state_dict(initial_weights['state_dict'], model_1_ema) print('load pretrain model:{}'.format(args.init_1)) # adopt domain-specific BN convert_dsbn(model_1) convert_dsbn(model_1_ema) model_1.cuda() model_1_ema.cuda() model_1 = nn.DataParallel(model_1) model_1_ema = nn.DataParallel(model_1_ema) for i, cl in enumerate(ncs): exec( 'model_1_ema.module.classifier{}_{}.weight.data.copy_(model_1.module.classifier{}_{}.weight.data)' .format(i, cl, i, cl)) return model_1, None, model_1_ema, None
def main_worker(args): global start_epoch, best_mAP cudnn.benchmark = True if not args.evaluate: sys.stdout = Logger(osp.join(args.logs_dir, 'log.txt')) else: log_dir = osp.dirname(args.resume) sys.stdout = Logger(osp.join(log_dir, 'log_test.txt')) print("==========\nArgs:{}\n==========".format(args)) # Create data loaders iters = args.iters if (args.iters > 0) else None dataset_source, num_classes, train_loader_source, test_loader_source = \ get_data(args.dataset_source, args.data_dir, args.height, args.width, args.batch_size, args.workers, args.num_instances, iters) dataset_target, _, train_loader_target, test_loader_target = \ get_data(args.dataset_target, args.data_dir, args.height, args.width, args.batch_size, args.workers, 0, iters) # Create model model = models.create(args.arch, num_features=args.features, dropout=args.dropout, num_classes=[num_classes]) model.cuda() model = nn.DataParallel(model) print(model) # Load from checkpoint if args.resume: checkpoint = load_checkpoint(args.resume) copy_state_dict(checkpoint['state_dict'], model) start_epoch = checkpoint['epoch'] best_mAP = checkpoint['best_mAP'] print("=> Start epoch {} best mAP {:.1%}".format( start_epoch, best_mAP)) # Evaluator evaluator = Evaluator(model) # args.evaluate=True if args.evaluate: print("Test on source domain:") evaluator.evaluate(test_loader_source, dataset_source.query, dataset_source.gallery, cmc_flag=True, rerank=args.rerank) print("Test on target domain:") evaluator.evaluate(test_loader_target, dataset_target.query, dataset_target.gallery, cmc_flag=True, rerank=args.rerank) return params = [] for key, value in model.named_parameters(): if not value.requires_grad: continue params += [{ "params": [value], "lr": args.lr, "weight_decay": args.weight_decay }] optimizer = torch.optim.Adam(params) lr_scheduler = WarmupMultiStepLR(optimizer, args.milestones, gamma=0.1, warmup_factor=0.01, warmup_iters=args.warmup_step) # Trainer trainer = PreTrainer(model, num_classes, margin=args.margin) # Start training for epoch in range(start_epoch, args.epochs): lr_scheduler.step() train_loader_source.new_epoch() train_loader_target.new_epoch() trainer.train(epoch, train_loader_source, train_loader_target, optimizer, train_iters=len(train_loader_source), print_freq=args.print_freq) if ((epoch + 1) % args.eval_step == 0 or (epoch == args.epochs - 1)): _, mAP = evaluator.evaluate(test_loader_source, dataset_source.query, dataset_source.gallery, cmc_flag=True) is_best = mAP > best_mAP best_mAP = max(mAP, best_mAP) save_checkpoint( { 'state_dict': model.state_dict(), 'epoch': epoch + 1, 'best_mAP': best_mAP, }, is_best, fpath=osp.join(args.logs_dir, 'checkpoint.pth.tar')) print( '\n * Finished epoch {:3d} source mAP: {:5.1%} best: {:5.1%}{}\n' .format(epoch, mAP, best_mAP, ' *' if is_best else '')) print("Test on target domain:") evaluator.evaluate(test_loader_target, dataset_target.query, dataset_target.gallery, cmc_flag=True, rerank=args.rerank)