epochs=1000, batch_size=64, verbose=2, callbacks=[early_stopping]) # generate parallel data for test Xtrain, Ytrain, Xtest, Ytest = parallel_data_generator_for_test( X_train, Y_train, X_test, Y_test, len(models)) # model evaluation print("Model Name %s" % name) print("Training...") run_test(models, parallel_model, Xtrain, Ytrain, y_train) print("Testing...") run_test(models, parallel_model, Xtest, Ytest, y_test) # parallel model saving print("Model Data and CSV Saving...") save_model(models, parallel_model, model_dir, dataset + '_' + loss_name) # intermediate feature extraction print('Intermediate Feature Extracting...') intermediate_output_tarin = feature_predict(models, model_schema, Xtrain) intermediate_output_test = feature_predict(models, model_schema, Xtest) # save feature as csv csv_save(dataset + '_' + loss_name, y_train, intermediate_output_tarin, y_test, intermediate_output_test, models, feature_dir)
Ytrain, validation_data=(Xvalid, Yvalid), epochs=1000, batch_size=64, verbose=2, callbacks=[early_stopping]) # generate parallel data for test Xtrain, Ytrain, Xtest, Ytest = parallel_data_generator_for_test( X_train, Y_train, X_test, Y_test, len(models)) # model evaluation print("Model Name %s" % name) print("Training...") run_test(models, parallel_model, Xtrain, Ytrain, y_train) print("Testing...") run_test(models, parallel_model, Xtest, Ytest, y_test) # parallel model saving print("Model Data and CSV Saving...") save_model(models, parallel_model, model_dir, dataset) # intermediate feature extraction print('Intermediate Feature Extracting...') intermediate_output_tarin = feature_predict(models, model_schema, Xtrain) intermediate_output_test = feature_predict(models, model_schema, Xtest) # save feature as csv csv_save(dataset, y_train, intermediate_output_tarin, y_test, intermediate_output_test, models, feature_dir)
validation_data=(Xvalid, Yvalid), epochs=1000, batch_size=128, verbose=2, callbacks=[early_stopping]) # model evaluation print("Model Name %s" % name) print("Training...") run_test(name, model, X_train, Y_train, y_train) print("Testing...") run_test(name, model, X_test, Y_test, y_test) # parallel model saving print("Model Data and CSV Saving...") save_model(name, model, model_dir, dataset) # intermediate feature extraction print('Intermediate Feature Extracting...') intermediate_output_tarin = feature_predict( name, model, model_schema, X_train) intermediate_output_test = feature_predict( name, model, model_schema, X_test) # save feature as csv csv_save(dataset, y_train, intermediate_output_tarin, y_test, intermediate_output_test, feature_dir) elif TRAIN_DATA == "triple_data_v1": Train = data[TRAIN_DATA]