Example #1
0
def calculateMaxWind(df, dtname='ISO_TIME'):
    """
    Calculate a maximum gust wind speed based on the central pressure deficit and the 
    wind-pressure relation defined in Holland (2008). This uses the function defined in 
    the TCRM code base, and simply passes the correct variables from the data frame
    to the function
    
    This returns a `DataFrame` with an additional column (`vmax`), which represents an estimated
    0.2 second maximum gust wind speed.
    """
    LOGGER.debug("Calculating maximum wind speed")
    idx = df.num.values
    varidx = np.ones(len(idx))
    varidx[1:][idx[1:] == idx[:-1]] = 0

    dt = (df[dtname] - df[dtname].shift()).fillna(
        pd.Timedelta(seconds=0)).apply(
            lambda x: x / np.timedelta64(1, 'h')).astype('int64') % (24 * 60)
    df['vmax'] = maxWindSpeed(varidx,
                              dt.values,
                              df.lon.values,
                              df.lat.values,
                              df.pmin.values,
                              df.poci.values,
                              gustfactor=1.223)
    return df
Example #2
0
def interpolate(track, delta, interpolation_type=None):
    """
    Interpolate the records in time to have a uniform time difference between
    records. Each of the input arrays represent the values for a single TC
    event.

    :param track: :class:`Track` object containing all data for the track.
    :param delta: `float` time difference to interpolate the dataset to. Must be
                  positive.
    :param interpolation_type: Optional ['linear', 'akima'], specify the type
                               of interpolation used for the locations (i.e.
                               longitude and latitude) of the records.

    # FIXME: Need to address masking values - scipy.interpolate.interp1d
    handles numpy.ma masked arrays.
    """
    LOG.debug("Performing interpolation of TC track")
    if not hasattr(track, 'Datetime'):
        day_ = [
            datetime(*x) for x in zip(track.Year, track.Month, track.Day,
                                      track.Hour, track.Minute)
        ]
    else:
        day_ = track.Datetime

    timestep = timedelta(delta / 24.)
    try:
        time_ = np.array(
            [d.toordinal() + (d.hour + d.minute / 60.) / 24.0 for d in day_],
            dtype=float)
    except AttributeError:
        import cftime
        if isinstance(day_[0], cftime.DatetimeJulian):
            day__ = [d._to_real_datetime() for d in day_]
            time_ = np.array([
                d.toordinal() + (d.hour + d.minute / 60.) / 24. for d in day__
            ],
                             dtype=float)
        else:
            raise
    dt_ = 24.0 * np.diff(time_)
    dt = np.zeros(len(track.data), dtype=float)
    dt[1:] = dt_

    # Convert all times to a time after initial observation:
    timestep = 24.0 * (time_ - time_[0])

    newtime = np.arange(timestep[0], timestep[-1] + .01, delta)
    newtime[-1] = timestep[-1]
    _newtime = (newtime / 24.) + time_[0]
    newdates = num2date(_newtime)
    newdates = np.array([n.replace(tzinfo=None) for n in newdates])

    if not hasattr(track, 'Speed'):
        idx = np.zeros(len(track.data))
        idx[0] = 1
        # TODO: Possibly could change `np.mean(dt)` to `dt`?
        track.WindSpeed = maxWindSpeed(idx, np.mean(dt), track.Longitude,
                                       track.Latitude, track.CentralPressure,
                                       track.EnvPressure)
    # Find the indices of valid pressure observations:
    validIdx = np.where(track.CentralPressure < sys.maxsize)[0]

    # FIXME: Need to address the issue when the time between obs is less
    # than delta (e.g. only two obs 5 hrs apart, but delta = 6 hrs).

    if len(track.data) <= 3:
        # Use linear interpolation only (only a start and end point given):
        nLon = interp1d(timestep, track.Longitude, kind='linear')(newtime)
        nLat = interp1d(timestep, track.Latitude, kind='linear')(newtime)

        if len(validIdx) >= 2:
            npCentre = interp1d(timestep, track.CentralPressure,
                                kind='linear')(newtime)
            nwSpd = interp1d(timestep, track.WindSpeed, kind='linear')(newtime)

        elif len(validIdx) == 1:
            # If one valid observation, assume no change and
            # apply value to all times
            npCentre = np.ones(len(newtime)) * track.CentralPressure[validIdx]
            nwSpd = np.ones(len(newtime)) * track.WindSpeed[validIdx]

        else:
            npCentre = np.zeros(len(newtime))
            nwSpd = np.zeros(len(newtime))

        npEnv = interp1d(timestep, track.EnvPressure, kind='linear')(newtime)
        nrMax = interp1d(timestep, track.rMax, kind='linear')(newtime)

    else:
        if interpolation_type == 'akima':
            # Use the Akima interpolation method:
            try:
                import akima
            except ImportError:
                LOG.exception(("Akima interpolation module unavailable "
                               " - default to scipy.interpolate"))
                nLon = splev(newtime,
                             splrep(timestep, track.Longitude, s=0),
                             der=0)
                nLat = splev(newtime,
                             splrep(timestep, track.Latitude, s=0),
                             der=0)

            else:
                nLon = akima.interpolate(timestep, track.Longitude, newtime)
                nLat = akima.interpolate(timestep, track.Latitude, newtime)

        elif interpolation_type == 'linear':
            nLon = interp1d(timestep, track.Longitude, kind='linear')(newtime)
            nLat = interp1d(timestep, track.Latitude, kind='linear')(newtime)

        else:
            nLon = splev(newtime,
                         splrep(timestep, track.Longitude, s=0),
                         der=0)
            nLat = splev(newtime, splrep(timestep, track.Latitude, s=0), der=0)

        if len(validIdx) >= 2:
            # No valid data at the final new time,
            # would require extrapolation:
            firsttime = np.where(newtime >= timestep[validIdx[0]])[0][0]
            lasttime = np.where(newtime <= timestep[validIdx[-1]])[0][-1]

            if firsttime == lasttime:
                # only one valid observation:
                npCentre = np.zeros(len(newtime))
                nwSpd = np.zeros(len(newtime))
                npCentre[firsttime] = track.CentralPressure[validIdx[0]]
                nwSpd[firsttime] = track.WindSpeed[validIdx[0]]

            else:
                npCentre = np.zeros(len(newtime))
                nwSpd = np.zeros(len(newtime))
                _npCentre = interp1d(timestep[validIdx],
                                     track.CentralPressure[validIdx],
                                     kind='linear')(
                                         newtime[firsttime:lasttime])

                _nwSpd = interp1d(timestep[validIdx],
                                  track.Speed[validIdx],
                                  kind='linear')(newtime[firsttime:lasttime])

                npCentre[firsttime:lasttime] = _npCentre
                nwSpd[firsttime:lasttime] = _nwSpd
                npCentre[lasttime] = _npCentre[-1]
                nwSpd[lasttime] = _nwSpd[-1]

        elif len(validIdx) == 1:
            npCentre = np.ones(len(newtime)) * track.CentralPressure[validIdx]
            nwSpd = np.ones(len(newtime)) * track.WindSpeed[validIdx]
        else:
            npCentre = np.zeros(len(newtime))
            nwSpd = np.zeros(len(newtime))

        npEnv = interp1d(timestep, track.EnvPressure, kind='linear')(newtime)
        nrMax = interp1d(timestep, track.rMax, kind='linear')(newtime)

    if len(nLat) >= 2:
        bear_, dist_ = latLon2Azi(nLat, nLon, 1, azimuth=0)
        nthetaFm = np.zeros(newtime.size, dtype=float)
        nthetaFm[:-1] = bear_
        nthetaFm[-1] = bear_[-1]
        dist = np.zeros(newtime.size, dtype=float)
        dist[:-1] = dist_
        dist[-1] = dist_[-1]
        nvFm = dist / delta

    else:
        nvFm = track.Speed[-1]
        nthetaFm = track.Bearing[-1]

    nYear = [date.year for date in newdates]
    nMonth = [date.month for date in newdates]
    nDay = [date.day for date in newdates]
    nHour = [date.hour for date in newdates]
    nMin = [date.minute for date in newdates]
    np.putmask(npCentre, npCentre > 10e+6, sys.maxsize)
    np.putmask(npCentre, npCentre < 700, sys.maxsize)

    newindex = np.zeros(len(newtime))
    newindex[0] = 1
    newTCID = np.ones(len(newtime)) * track.trackId[0]

    newdata = np.empty(len(newtime),
                       dtype={
                           'names': TRACKFILE_COLS,
                           'formats': TRACKFILE_FMTS
                       })

    for key, val in zip(TRACKFILE_COLS, [
            newindex, newTCID, nYear, nMonth, nDay, nHour, nMin, newtime,
            newdates, nLon, nLat, nvFm, nthetaFm, npCentre, nwSpd, nrMax, npEnv
    ]):
        newdata[key] = val
    newtrack = Track(newdata)
    newtrack.trackId = track.trackId
    newtrack.trackfile = track.trackfile

    return newtrack