Example #1
0
    def build_model(self):

        self.get_glove()
        if not self.config['n_layers'] in [1,2]:
            print ("Only 1 or two layers are supported! ")
        
        
        self.rnn_left_ = GRU( self.config['nHidden'] , return_sequences=True , dropout=self.config['dropout'] , recurrent_dropout=self.config['recurrent_dropout'] , trainable=True  )
        self.rnn_right_ = GRU( self.config['nHidden'] , return_sequences=True , dropout=self.config['dropout'] , recurrent_dropout=self.config['recurrent_dropout']  , trainable=True )

        self.rnn_left_2 = ( GRU( self.config['nHidden'] , return_sequences=True , dropout=self.config['dropout'] , recurrent_dropout=self.config['recurrent_dropout'] , trainable=True  ))
        self.rnn_right_2 = ( GRU( self.config['nHidden'] , return_sequences=True , dropout=self.config['dropout'] , recurrent_dropout=self.config['recurrent_dropout']  , trainable=True ))
        
        if self.config['n_layers'] == 2:
            self._rnn_left_ = GRU( self.config['nHidden'] , return_sequences=True , dropout=self.config['dropout'] , recurrent_dropout=self.config['recurrent_dropout'] , trainable=True  )
            self._rnn_right_ = GRU( self.config['nHidden'] , return_sequences=True , dropout=self.config['dropout'] , recurrent_dropout=self.config['recurrent_dropout']  , trainable=True )

            self._rnn_left_2 = ( GRU( self.config['nHidden'] , return_sequences=True , dropout=self.config['dropout'] , recurrent_dropout=self.config['recurrent_dropout'] , trainable=True  ))
            self._rnn_right_2 = ( GRU( self.config['nHidden'] , return_sequences=True , dropout=self.config['dropout'] , recurrent_dropout=self.config['recurrent_dropout']  , trainable=True ))

        self.stitch_layer = CrossStitch()
        if self.config['n_layers'] == 2:
            self.stitch_layer2 = CrossStitch()


        aux_inps , aux_outs = self.getAuxM()
        prim_inps , prim_outs = self.getPrimM()

        
        self.model = Model( prim_inps+aux_inps , prim_outs+aux_outs )
        Trainer.build_model( self  )
Example #2
0
    def build_model(self):
        self.get_glove()
        self.rnn_left_ = GRU(
            self.config['nHidden'],
            return_sequences=True,
            dropout=self.config['dropout'],
            recurrent_dropout=self.config['recurrent_dropout'],
            trainable=True)
        self.rnn_right_ = GRU(
            self.config['nHidden'],
            return_sequences=True,
            dropout=self.config['dropout'],
            recurrent_dropout=self.config['recurrent_dropout'],
            trainable=True)

        if self.config['n_layers'] == 2:
            self.rnn_left_2 = GRU(
                self.config['nHidden'],
                return_sequences=True,
                dropout=self.config['dropout'],
                recurrent_dropout=self.config['recurrent_dropout'],
                trainable=True)
            self.rnn_right_2 = GRU(
                self.config['nHidden'],
                return_sequences=True,
                dropout=self.config['dropout'],
                recurrent_dropout=self.config['recurrent_dropout'],
                trainable=True)

        aux_inps, aux_outs = self.getAuxM()
        prim_inps, prim_outs = self.getPrimM()
        self.model = Model(prim_inps + aux_inps, prim_outs + aux_outs)
        Trainer.build_model(self)
Example #3
0
    def build_model(self):

        config = self.config
        embed = Embedding(self.config['vocab_size'],
                          self.config['embed_dim'],
                          mask_zero=True)

        if self.config['mode'] == 'share':
            rnn_hi = (LSTM(self.config['nHidden'], return_sequences=True))
            rnn_enhi = (LSTM(self.config['nHidden'], return_sequences=True))
        elif self.config['mode'] == 'concat':
            rnn_en = (LSTM(self.config['nHidden'], return_sequences=True))
            rnn_hi = (LSTM(self.config['nHidden'], return_sequences=True))
            rnn_enhi = (LSTM(self.config['nHidden'], return_sequences=True))

        # hi

        inp_hi = Input((self.config['sent_len'], ))
        x = embed(inp_hi)
        if self.config['mode'] == 'share':
            x = rnn_hi(x)
        if self.config['mode'] == 'concat':
            x = rnn_hi(x)
        out_hi = TimeDistributed(
            Dense(config['n_class_hi'], activation='softmax'))(x)

        # en

        inp_en = Input((self.config['sent_len'], ))
        x = embed(inp_en)
        if self.config['mode'] == 'share':
            x = rnn_hi(x)
        if self.config['mode'] == 'concat':
            x = rnn_hi(x)
        out_en = TimeDistributed(
            Dense(config['n_class_en'], activation='softmax'))(x)

        inp_enhi = Input((self.config['sent_len'], ))
        x = embed(inp_enhi)

        if self.config['mode'] == 'share':
            x_en = rnn_hi(x)
            x = x_en
            x = rnn_enhi(x)
        if self.config['mode'] == 'concat':
            x_en = rnn_en(x)
            x_hi = rnn_hi(x)
            x = Concatenate(-1)([x_en, x_hi])
            x = rnn_enhi(x)

        out_enhi = TimeDistributed(
            Dense(self.config['n_class_enhi'], activation='softmax'))(x)

        self.model = Model([inp_hi, inp_en, inp_enhi],
                           [out_hi, out_en, out_enhi])
        Trainer.build_model(self)
Example #4
0
    def build_model(self):

        self.get_glove()

        self.aux_w_l, self.aux_w_r = self.get_document_level_rnn_weights()
        self.rnn_left_aux_cell__ = GRUCell(64, trainable=False)
        self.rnn_right_aux_cell__ = GRUCell(64, trainable=False)

        aux_inps, aux_outs = self.getAuxM()
        prim_inps, prim_outs = self.getPrimM()

        self.model = Model(prim_inps + aux_inps, prim_outs + aux_outs)
        Trainer.build_model(self)
Example #5
0
    def build_model(self):

        config = self.config
        embed = Embedding(self.config['vocab_size'], self.config['embed_dim'])

        rnn_es = LSTM(self.config['nHidden'])
        rnn_en = LSTM(self.config['nHidden'])
        rnn_enes = LSTM(self.config['nHidden'])
        if self.config['mode'] == 'parallel':
            rnn_shared = LSTM(self.config['nHidden'], return_sequences=False)
        else:
            rnn_shared = LSTM(self.config['nHidden'], return_sequences=True)

        inp_en = Input((self.config['sent_len'], ))
        x_en = embed(inp_en)
        if self.config['mode'] == 'parallel':

            x_en_1 = rnn_en(x_en)
            x_en_2 = rnn_shared(x_en)
            x_en = Concatenate()([x_en_1, x_en_2])
        else:
            x_en = rnn_en(Concatenate()([x_en, rnn_shared(x_en)]))

        inp_es = Input((self.config['sent_len'], ))
        x_es = embed(inp_es)
        if self.config['mode'] == 'parallel':
            x_es_1 = rnn_es(x_es)
            x_es_2 = rnn_shared(x_es)
            x_es = Concatenate()([x_es_1, x_es_2])
        else:
            x_es = rnn_es(Concatenate()([x_es, rnn_shared(x_es)]))

        inp_enes = Input((self.config['sent_len'], ))
        x_enes = embed(inp_enes)
        if self.config['mode'] == 'parallel':
            x_enes_1 = rnn_enes(x_enes)
            x_enes_2 = rnn_shared(x_enes)
            x_enes = Concatenate()([x_enes_1, x_enes_2])
        else:
            x_enes = rnn_enes(Concatenate()([x_enes, rnn_shared(x_enes)]))

        out_enes = (Dense(self.config['n_class_enes'],
                          activation='softmax'))(x_enes)
        out_es = (Dense(self.config['n_class_es'], activation='softmax'))(x_es)
        out_en = (Dense(self.config['n_class_en'], activation='softmax'))(x_en)

        self.model = Model([inp_en, inp_es, inp_enes],
                           [out_en, out_es, out_enes])
        Trainer.build_model(self)
Example #6
0
    def build_model(self):

        config = self.config
        emb = Embedding(self.config['vocab_size'], self.config['embed_dim'])

        rnn_en = LSTM(self.config['nHidden'], return_sequences=True)
        if self.config['mode'] == 'concat':
            rnn_es = LSTM(self.config['nHidden'], return_sequences=True)
        rnn_enes = LSTM(self.config['nHidden'])

        inp_en = Input((self.config['sent_len'], ))
        x = emb(inp_en)
        if self.config['mode'] == 'share':
            x = rnn_en(x)
            x = Lambda(lambda x: x[:, -1])(x)
        else:
            x = rnn_en(x)
            x = Lambda(lambda x: x[:, -1])(x)
        out_en = (Dense(self.config['n_class_en'], activation='softmax'))(x)

        inp_es = Input((self.config['sent_len'], ))
        x = emb(inp_es)
        if self.config['mode'] == 'share':
            x = rnn_en(x)
            x = Lambda(lambda x: x[:, -1])(x)
        else:
            x = rnn_es(x)
            x = Lambda(lambda x: x[:, -1])(x)
        out_es = (Dense(self.config['n_class_es'], activation='softmax'))(x)

        inp_enes = Input((self.config['sent_len'], ))
        x = emb(inp_enes)
        if self.config['mode'] == 'share':
            x_es1 = rnn_en(x)
            x = x_es1
            x = rnn_enes(x)
        else:
            x_es1 = rnn_es(x)
            x_en1 = rnn_en(x)
            x = Concatenate(-1)([x_es1, x_en1])
            x = rnn_enes(x)

        out_enes = (Dense(self.config['n_class_enes'],
                          activation='softmax'))(x)

        self.model = Model([inp_en, inp_es, inp_enes],
                           [out_en, out_es, out_enes])
        Trainer.build_model(self)
Example #7
0
    def build_model(self):

        config = self.config
        embed = Embedding(self.config['vocab_size'],
                          self.config['embed_dim'],
                          mask_zero=True)

        rnn_hi = LSTM(self.config['nHidden'], return_sequences=True)
        rnn_en = LSTM(self.config['nHidden'], return_sequences=True)

        # en

        inp_en = Input((self.config['sent_len'], ))
        x = embed(inp_en)
        x = rnn_en(x)
        out_en = TimeDistributed(
            Dense(config['n_class_en'], activation='softmax'))(x)

        # hi

        inp_hi = Input((self.config['sent_len'], ))
        x = embed(inp_hi)
        x = rnn_hi(x)
        out_hi = TimeDistributed(
            Dense(config['n_class_hi'], activation='softmax'))(x)
        cell_combined = GiretTwoCell(rnn_hi.cell, rnn_en.cell,
                                     self.config['nHidden'])

        inp_enhi = Input((self.config['sent_len'], ))
        x = embed(inp_enhi)

        x_att = x
        x_att = Bidirectional(LSTM(32, return_sequences=True))(x)
        bider_h = x_att
        x_att = TimeDistributed(Dense(3, activation='softmax'))(x_att)
        x_att = Lambda(lambda x: x[..., 1:])(x_att)

        x = Concatenate(-1)([x_att, x])

        x = RNN(cell_combined, return_sequences=True)(x)
        out_enhi = TimeDistributed(
            Dense(self.config['n_class_enhi'], activation='softmax'))(x)

        self.model = Model([inp_hi, inp_en, inp_enhi],
                           [out_hi, out_en, out_enhi])
        Trainer.build_model(self)
Example #8
0
    def build_model(self):

        config = self.config
        emb = Embedding(self.config['vocab_size'], self.config['embed_dim'])
        rnn_en = LSTM(self.config['nHidden'])
        rnn_es = LSTM(self.config['nHidden'])

        inp_en = Input((self.config['sent_len'], ))
        x_en = emb(inp_en)
        x_en = rnn_en(x_en)
        out_en = Dense(self.config['n_class_en'], activation='softmax')(x_en)

        inp_es = Input((self.config['sent_len'], ))
        x_es = emb(inp_es)
        x_es = rnn_es(x_es)
        out_es = Dense(self.config['n_class_es'], activation='softmax')(x_es)

        cell_en = rnn_en.cell
        cell_es = rnn_es.cell

        cell_combined = GiretTwoCell(cell_en, cell_es, self.config['nHidden'])

        inp_enes = Input((self.config['sent_len'], ))
        x = emb(inp_enes)

        x_att = Bidirectional(LSTM(32, return_sequences=True))(x)

        bider_last = Lambda(lambda x: x[:, -1, :])(x_att)

        x_att = TimeDistributed(Dense(3, activation='softmax'))(x_att)
        x_att = Lambda(lambda x: x[..., 1:])(x_att)

        x = Concatenate(-1)([x_att, x])

        x = RNN(cell_combined)(x)

        x = Concatenate()([bider_last, x])

        out_enes = Dense(self.config['n_class_enes'], activation='softmax')(x)

        self.model = Model([inp_en, inp_es, inp_enes],
                           [out_en, out_es, out_enes])
        Trainer.build_model(self)
Example #9
0
    def build_model(self):

        config = self.config
        embed = Embedding( self.config['vocab_size']  ,  self.config['embed_dim']  , mask_zero=True)
        
        rnn = (LSTM( self.config['nHidden'] , return_sequences=True ))
        if config['n_layers'] == 2:
            rnn2 = (LSTM( self.config['nHidden'] , return_sequences=True ))

        # hi

        inp_hi = Input(( self.config['sent_len'] , ))
        x = embed(inp_hi)
        if config['n_layers'] == 2:
            x = rnn2(rnn( x ))
        else:
            x = rnn( x )
        out_hi = TimeDistributed(Dense( config['n_class_hi'] , activation='softmax'))(x)
        
        
        # en

        inp_en = Input(( self.config['sent_len'] , ))
        x = embed(inp_en)
        if config['n_layers'] == 2:
            x = rnn2(rnn( x ))
        else:
            x = rnn( x )
        out_en = TimeDistributed(Dense( config['n_class_en']  , activation='softmax'))(x)


        
        inp_enhi = Input(( self.config['sent_len'] , ))
        x = embed(inp_enhi)
        if config['n_layers'] == 2:
            x = rnn2(rnn( x ))
        else:
            x = rnn( x )
        out_enhi = TimeDistributed(Dense(  self.config['n_class_enhi'] , activation='softmax'))(x)

        
        self.model = Model( [inp_hi , inp_en , inp_enhi  ] , [ out_hi , out_en , out_enhi ] )
        Trainer.build_model( self  )
Example #10
0
    def build_model(self):
        
        assert self.config[ 'sharing_scheme' ] in [ 'parallel' , 'stacked' ] 

        self.get_glove()
        
        
        self.rnn_left_ = GRU( self.config['nHidden'] , return_sequences=True , dropout=self.config['dropout'] , recurrent_dropout=self.config['recurrent_dropout'] , trainable=True  )
        self.rnn_right_ = GRU( self.config['nHidden'] , return_sequences=True , dropout=self.config['dropout'] , recurrent_dropout=self.config['recurrent_dropout']  , trainable=True )

        self.rnn_left_2 = ( GRU( self.config['nHidden'] , return_sequences=True , dropout=self.config['dropout'] , recurrent_dropout=self.config['recurrent_dropout'] , trainable=True  ))
        self.rnn_right_2 = ( GRU( self.config['nHidden'] , return_sequences=True , dropout=self.config['dropout'] , recurrent_dropout=self.config['recurrent_dropout']  , trainable=True ))
        
        self.rnn_left_shared = ( GRU( self.config['nHidden'] , return_sequences=True , dropout=self.config['dropout'] , recurrent_dropout=self.config['recurrent_dropout'] , trainable=True  ))
        self.rnn_right_shared = ( GRU( self.config['nHidden'] , return_sequences=True , dropout=self.config['dropout'] , recurrent_dropout=self.config['recurrent_dropout']  , trainable=True ))
        
        aux_inps , aux_outs = self.getAuxM()
        prim_inps , prim_outs = self.getPrimM()

        self.model = Model( prim_inps+aux_inps , prim_outs+aux_outs )
        Trainer.build_model( self  )
Example #11
0
    def build_model(self):

        config = self.config
        emb = Embedding(self.config['vocab_size'], self.config['embed_dim'])

        if self.config['n_layers'] == 2:
            rnn = LSTM(self.config['nHidden'], return_sequences=True)
            rnn2 = LSTM(self.config['nHidden'])
        else:
            rnn = LSTM(self.config['nHidden'])

        inp_en = Input((self.config['sent_len'], ))
        x = emb(inp_en)
        if self.config['n_layers'] == 2:
            x = rnn2(rnn(x))
        else:
            x = rnn(x)
        out_en = Dense(self.config['n_class_en'], activation='softmax')(x)

        inp_es = Input((self.config['sent_len'], ))
        x = emb(inp_es)
        if self.config['n_layers'] == 2:
            x = rnn2(rnn(x))
        else:
            x = rnn(x)
        out_es = Dense(self.config['n_class_es'], activation='softmax')(x)

        inp_enes = Input((self.config['sent_len'], ))
        x = emb(inp_enes)
        if self.config['n_layers'] == 2:
            x = rnn2(rnn(x))
        else:
            x = rnn(x)
        out_enes = Dense(self.config['n_class_enes'], activation='softmax')(x)

        self.model = Model([inp_en, inp_es, inp_enes],
                           [out_en, out_es, out_enes])
        Trainer.build_model(self)
Example #12
0
    # 多卡并行模型初始化,用不着那么多显存
    if torch.cuda.device_count() > 0:
        print("Let's use", torch.cuda.device_count(), "GPUs!")
    model = nn.DataParallel(
        model).cuda()  # CUDA_VISIBLE_DEVICES=5,6设置环境可见,自动适应显卡数量

    # 训练
    best_Score_f1 = 0
    print('training')
    while True:
        # print("学习率:" + str(sch.get_lr()[0]))
        # print("学习率:" + str(opt.param_groups[0]['lr']))
        # 训练集训练
        train_f1_score_, train_accuracy_score_, loss = Trainer.train(
            model, train_data_loader, opt, ent_loss, epoch, train_logger, tqdm,
            args.apex, args.details, train_data_set.CLASS)

        # 动态改变学习率,根据epoch判断当前的学习率是否需要改变
        sch.step()
        # 验证集验证
        val_f1_score_, val_accuracy_score_, _ = Trainer.val(
            model, val_data_loader, epoch, train_logger, tqdm, args.details,
            train_data_set.CLASS)

        # 向TensorBoardX中写入log信息,这里以Acc和Loss为例
        if args.tensorboardX:
            writer.add_scalar('train_accuracy', train_accuracy_score_, epoch)
            writer.add_scalar('val_accuracy', val_accuracy_score_, epoch)
            writer.add_scalar('train_loss', loss, epoch)
Example #13
0
 def startJob(self):
     logging.info("[+]Start Job!")
     sc = get_sc(self.app_conf)
     sqlcontext = SQLContext(sc)
     #获取原始数据
     df = sqlcontext.read.json(self.app_conf["data_dir"])
     logging.info("[+]Get data success!")
     rdd = df.toJSON()
     #过滤出请求数据
     p_rdd = rdd.filter(self.filter).cache()
     #抽取参数观察序列
     p_rdd = p_rdd.flatMap(self.extract).cache()
     logging.info("[+]Begin fliter data and extrate parameters......")
     p_list = p_rdd.collect()
     logging.info("[+]Got p_rdd!")
     logging.info("[+]Train data num is:" + str(len(p_list)))
     #按照参数ID分组
     p_dict = {}
     for p in p_list:
         if p.keys()[0] not in p_dict.keys():
             p_dict[p.keys()[0]] = {}
             p_dict[p.keys()[0]]["p_states"] = [p.values()[0]["p_state"]]
             p_dict[p.keys()[0]]["p_type"] = p.values()[0]["p_type"]
             p_dict[p.keys()[0]]["p_name"] = p.values()[0]["p_name"]
         p_dict[p.keys()[0]]["p_states"].append(p.values()[0]["p_state"])
     logging.info("[+]P num is:" + str(len(p_dict)))
     #检测是否满足最小训练数
     for key in p_dict.keys():
         if len(p_dict[key]["p_states"]) < self.app_conf["min_train_num"]:
             p_dict.pop(key)
     logging.info("[+]Effective p num is:" + str(len(p_dict)))
     models = []
     logging.info("[+]Begin train models!")
     #参数训练
     trained_num = 0
     for p_id in p_dict.keys():
         data = {}
         data["p_id"] = p_id
         data["p_states"] = p_dict[p_id]["p_states"]
         trainer = Trainer(data)
         (m, p) = trainer.get_model()
         model = {}
         model["p_id"] = p_id
         model["p_type"] = p_dict[p_id]["p_type"]
         model["p_name"] = p_dict[p_id]["p_name"]
         model["model"] = pickle.dumps(m)
         model["profile"] = p
         models.append(model)
         logging.info("[+]Trained:%s,num is %s" % (p_id, trained_num))
         trained_num += 1
     logging.info("[+]Train Over!")
     #保存训练参数到HDFS
     model_df = sqlcontext.createDataFrame(models)
     logging.info("[+]Trained model num:" + str(model_df.count()))
     date = time.strftime("%Y-%m-%d_%H-%M")
     path = "hdfs://%s:8020%smodel%s.json" % (
         self.app_conf["namenode_model"], self.app_conf["model_dir"], date)
     logging.info("[+]Write model to hdfs,path is :" + path)
     model_df.write.json(path=path)
     logging.info("[+]Job over!")
     sc.stop()
Example #14
0
    def build_model(self):

        self.get_glove()

        self.rnn_left_ = GRU(
            self.config['nHidden'],
            return_sequences=True,
            dropout=self.config['dropout'],
            recurrent_dropout=self.config['recurrent_dropout'],
            trainable=True)
        self.rnn_right_ = GRU(
            self.config['nHidden'],
            return_sequences=True,
            dropout=self.config['dropout'],
            recurrent_dropout=self.config['recurrent_dropout'],
            trainable=True)

        self.rnn_left_2 = (GRU(
            self.config['nHidden'],
            return_sequences=True,
            dropout=self.config['dropout'],
            recurrent_dropout=self.config['recurrent_dropout'],
            trainable=True))
        self.rnn_right_2 = (GRU(
            self.config['nHidden'],
            return_sequences=True,
            dropout=self.config['dropout'],
            recurrent_dropout=self.config['recurrent_dropout'],
            trainable=True))

        self._rnn_left_ = GRU(
            self.config['nHidden'],
            return_sequences=True,
            dropout=self.config['dropout'],
            recurrent_dropout=self.config['recurrent_dropout'],
            trainable=True)
        self._rnn_right_ = GRU(
            self.config['nHidden'],
            return_sequences=True,
            dropout=self.config['dropout'],
            recurrent_dropout=self.config['recurrent_dropout'],
            trainable=True)

        self._rnn_left_2 = (GRU(
            self.config['nHidden'],
            return_sequences=True,
            dropout=self.config['dropout'],
            recurrent_dropout=self.config['recurrent_dropout'],
            trainable=True))
        self._rnn_right_2 = (GRU(
            self.config['nHidden'],
            return_sequences=True,
            dropout=self.config['dropout'],
            recurrent_dropout=self.config['recurrent_dropout'],
            trainable=True))

        self.stitch_layer = CrossStitch()
        self.osel = OutPutSelector()

        aux_inps, aux_outs = self.getAuxM()
        prim_inps, prim_outs = self.getPrimM()

        self.model = Model(prim_inps + aux_inps, prim_outs + aux_outs)
        Trainer.build_model(self)
Example #15
0
    def build_model(self):

        gloveSize = 100
        vocabSize = 1193515

        #nEn = env_arg("nEn" , 16 , int  )

        maxSentenceL = self.config[
            'maxSentenceL']  # self.config['maxSentenceL']
        rnn_type = self.config['rnn_type']
        nHidden = self.config['nHidden']  #env_arg("nH" , 64 , int  )
        opt_name = 'adam'
        #batch_size = self.config['batch_size'] # env_arg("batch_size" , 64 , int  )
        dropout = self.config['dropout']  # env_arg("drop" , 0.2 , float  )
        recurrent_dropout = self.config[
            'recurrent_dropout']  #  env_arg("rec_drop" , 0.2 , float  )
        lr = -1  # env_arg("lr" , -1.0 , float  ) # default keras
        # epochs =  3# env_arg("epochs" , 3 , int  )
        #exp_name =  env_arg("exp_name" , "naive_mtl" , str  )

        # Loading the weights of the pre trainid Model

        if rnn_type == 'lstm':
            rnn = LSTM
        elif rnn_type == 'gru':
            rnn = GRU

        inp = Input((maxSentenceL, ))  # left
        inp_x = inp

        embed = (Embedding(vocabSize, gloveSize, trainable=False))

        inp_x = embed(inp_x)

        inp_rev = Lambda(lambda x: K.reverse(x, axes=1))(inp_x)  # right

        rnn_left = rnn(nHidden,
                       return_sequences=True,
                       dropout=dropout,
                       recurrent_dropout=recurrent_dropout)
        rnn_right = rnn(nHidden,
                        return_sequences=True,
                        dropout=dropout,
                        recurrent_dropout=recurrent_dropout)

        left_x = rnn_left(inp_x)
        right_x = rnn_right(inp_rev)
        right_x = Lambda(lambda x: K.reverse(x, axes=1))(right_x)

        c_x = Concatenate(axis=-1)([left_x, right_x])

        c_x = GlobalAvgPool1D()(c_x)
        x = Dense(3)(c_x)
        out = Activation('softmax')(x)

        m = Model(inp, out)
        m.load_weights("./data/lr_lstm_glove_3.2ft_2_ep0.h5")

        def getM():

            # setting the weights from the pretrained model to the new model
            if rnn_type == 'lstm':
                rnn = LSTM
            elif rnn_type == 'gru':
                rnn = GRU

            rnn_left_ = rnn(nHidden,
                            return_sequences=True,
                            dropout=dropout,
                            recurrent_dropout=recurrent_dropout,
                            trainable=False)
            rnn_right_ = rnn(nHidden,
                             return_sequences=True,
                             dropout=dropout,
                             recurrent_dropout=recurrent_dropout,
                             trainable=False)

            rnn_left_2 = rnn(nHidden,
                             return_sequences=True,
                             dropout=dropout,
                             recurrent_dropout=recurrent_dropout,
                             trainable=True)
            rnn_right_2 = rnn(nHidden,
                              return_sequences=True,
                              dropout=dropout,
                              recurrent_dropout=recurrent_dropout,
                              trainable=True)

            def getPrimModel(
            ):  # will return a submodel with the shard weights and both the LSTMs

                left_i = Input((maxSentenceL, ))
                right_i = Input((maxSentenceL, ))

                left_x = left_i
                right_x = right_i

                left_x = embed(left_x)
                right_x = embed(right_x)

                left_x_1 = rnn_left_(left_x)
                right_x_1 = rnn_right_(right_x)

                rnn_left_.set_weights(rnn_left.get_weights())
                rnn_right_.set_weights(rnn_right.get_weights())

                left_x_1 = Lambda(lambda x: x[:, -1, :])(
                    left_x_1)  # coz return seq true
                right_x_1 = Lambda(lambda x: x[:, -1, :])(right_x_1)

                x = Concatenate()([left_x_1, right_x_1])
                x = Dense(3)(x)
                out = Activation('softmax')(x)

                return left_i, right_i, out

            def getAuxModel():

                inp = Input((maxSentenceL, ))  # left
                inp_x = inp
                inp_x = embed(inp_x)
                inp_rev = Lambda(lambda x: K.reverse(x, axes=1))(
                    inp_x)  # right

                left_x = rnn_left_(inp_x)
                right_x = rnn_right_(inp_rev)
                right_x = Lambda(lambda x: K.reverse(x, axes=1))(right_x)

                rnn_left_.set_weights(rnn_left.get_weights())
                rnn_right_.set_weights(rnn_right.get_weights())

                c_x = Concatenate(axis=-1)([left_x, right_x])
                c_x = GlobalAvgPool1D()(c_x)
                x = Dense(3)(c_x)
                out = Activation('softmax')(x)

                return inp, out

            left_i_prim, right_i_prim, out_prim = getPrimModel()
            inp_aux, out_aux = getAuxModel()

            m = Model([left_i_prim, right_i_prim, inp_aux],
                      [out_prim, out_aux])

            if lr > 0:
                opt = getattr(keras.optimizers, opt_name)(lr=lr)
            else:
                opt = getattr(keras.optimizers, opt_name)()

            m.compile(opt, 'categorical_crossentropy', metrics=['accuracy'])

            return m

        self.model = getM()
        Trainer.build_model(self)
Example #16
0
    def build_model(self):

        gloveSize = 100
        vocabSize = 1193515

        #nEn = env_arg("nEn" , 16 , int  )

        maxSentenceL = self.config[
            'maxSentenceL']  # self.config['maxSentenceL']
        rnn_type = self.config['rnn_type']
        nHidden = self.config['nHidden']  #env_arg("nH" , 64 , int  )
        opt_name = 'adam'
        #batch_size = self.config['batch_size'] # env_arg("batch_size" , 64 , int  )
        dropout = self.config['dropout']  # env_arg("drop" , 0.2 , float  )
        recurrent_dropout = self.config[
            'recurrent_dropout']  #  env_arg("rec_drop" , 0.2 , float  )
        lr = -1  # env_arg("lr" , -1.0 , float  ) # default keras
        # epochs =  3# env_arg("epochs" , 3 , int  )
        #exp_name =  env_arg("exp_name" , "naive_mtl" , str  )

        if glov_gob[0] is None:
            gf = h5py.File("./data/glovePrepped.h5")
            gloveVecs = np.array(gf['twitter_100_vecs'])
            glov_gob[0] = gloveVecs

        gloveVecs = glov_gob[0]

        embed = (Embedding(vocabSize,
                           gloveSize,
                           weights=[gloveVecs],
                           trainable=False))

        # Loading the weights of the pre trainid Model

        if rnn_type == 'lstm':
            rnn = LSTM
        elif rnn_type == 'gru':
            rnn = GRU

        def getM():

            # setting the weights from the pretrained model to the new model
            if rnn_type == 'lstm':
                rnn = LSTM
            elif rnn_type == 'gru':
                rnn = GRU

            rnn_left_ = rnn(nHidden,
                            return_sequences=True,
                            dropout=dropout,
                            recurrent_dropout=recurrent_dropout,
                            trainable=True)
            rnn_right_ = rnn(nHidden,
                             return_sequences=True,
                             dropout=dropout,
                             recurrent_dropout=recurrent_dropout,
                             trainable=True)

            def getPrimModel(
            ):  # will return a submodel with the shard weights and both the LSTMs

                left_i = Input((maxSentenceL, ))
                right_i = Input((maxSentenceL, ))

                left_x = left_i
                right_x = right_i

                left_x = embed(left_x)
                right_x = embed(right_x)

                left_x_1 = rnn_left_(left_x)
                right_x_1 = rnn_right_(right_x)

                left_x_1 = Lambda(lambda x: x[:, -1, :])(
                    left_x_1)  # coz return seq true
                right_x_1 = Lambda(lambda x: x[:, -1, :])(right_x_1)

                x = Concatenate()([left_x_1, right_x_1])
                x = Dense(3)(x)
                out = Activation('softmax')(x)

                return left_i, right_i, out

            left_i_prim, right_i_prim, out_prim = getPrimModel()
            inp_aux = Input(
                (maxSentenceL, ))  # dummy input # not actually do anything

            m = Model([left_i_prim, right_i_prim, inp_aux], [out_prim])

            if lr > 0:
                opt = getattr(keras.optimizers, opt_name)(lr=lr)
            else:
                opt = getattr(keras.optimizers, opt_name)()

            m.compile(opt, 'categorical_crossentropy', metrics=['accuracy'])

            return m

        self.model = getM()
        Trainer.build_model(self)
Example #17
0
    def build_model(self):

        config = self.config
        embed = Embedding(self.config['vocab_size'],
                          self.config['embed_dim'],
                          mask_zero=True)

        rnn_hi = (LSTM(self.config['nHidden'], return_sequences=True))
        rnn_en = (LSTM(self.config['nHidden'], return_sequences=True))
        rnn_enhi = (LSTM(self.config['nHidden'], return_sequences=True))

        if config['n_layers'] == 2:
            rnn_hi2 = (LSTM(self.config['nHidden'], return_sequences=True))
            rnn_en2 = (LSTM(self.config['nHidden'], return_sequences=True))
            rnn_enhi2 = (LSTM(self.config['nHidden'], return_sequences=True))

        stitch_layer = CrossStitch()
        stitch_layer.supports_masking = True

        if config['n_layers'] == 2:
            stitch_layer2 = CrossStitch()
            stitch_layer2.supports_masking = True

        def cal_cs_1l(inp):
            x = embed(inp)
            x_hi = rnn_hi(x)

            # en
            x = embed(inp)
            x_en = rnn_en(x)

            x = embed(inp)
            x_enhi = rnn_enhi(x)

            [x_hi, x_en, x_enhi] = stitch_layer([x_hi, x_en, x_enhi])

            return [x_hi, x_en, x_enhi]

        def cal_cs_2l(inp):
            x = embed(inp)
            x_hi = rnn_hi(x)

            # en
            x = embed(inp)
            x_en = rnn_en(x)

            x = embed(inp)
            x_enhi = rnn_enhi(x)

            [x_hi, x_en, x_enhi] = stitch_layer([x_hi, x_en, x_enhi])

            x_hi = rnn_hi2(x_hi)
            x_en = rnn_en2(x_en)
            x_enhi = rnn_enhi2(x_enhi)

            [x_hi, x_en, x_enhi] = stitch_layer2([x_hi, x_en, x_enhi])

            return [x_hi, x_en, x_enhi]

        if config['n_layers'] == 1:
            cal_cs = cal_cs_1l
        if config['n_layers'] == 2:
            cal_cs = cal_cs_2l

        # hi
        inp_hi = Input((self.config['sent_len'], ))
        # en
        inp_en = Input((self.config['sent_len'], ))

        inp_enhi = Input((self.config['sent_len'], ))

        [x_hi, _, _] = cal_cs(inp_hi)
        [_, x_en, _] = cal_cs(inp_en)
        [_, _, x_enhi] = cal_cs(inp_enhi)

        out_enhi = TimeDistributed(
            Dense(self.config['n_class_enhi'], activation='softmax'))(x_enhi)
        out_hi = TimeDistributed(
            Dense(config['n_class_hi'], activation='softmax'))(x_hi)

        out_en = TimeDistributed(
            Dense(config['n_class_en'], activation='softmax'))(x_en)

        self.model = Model([inp_hi, inp_en, inp_enhi],
                           [out_hi, out_en, out_enhi])
        Trainer.build_model(self)
Example #18
0
    def build_model(self):
        config = self.config
        embed = Embedding(self.config['vocab_size'],
                          self.config['embed_dim'],
                          mask_zero=True)

        rnn_hi = (LSTM(self.config['nHidden'], return_sequences=True))
        rnn_en = (LSTM(self.config['nHidden'], return_sequences=True))
        rnn_enhi = (LSTM(self.config['nHidden'], return_sequences=True))

        rnn_hi2 = (LSTM(self.config['nHidden'], return_sequences=True))
        rnn_en2 = (LSTM(self.config['nHidden'], return_sequences=True))
        rnn_enhi2 = (LSTM(self.config['nHidden'], return_sequences=True))

        stitch_layer = CrossStitch()
        stitch_layer.supports_masking = True

        osel = OutPutSelector()
        osel.supports_masking = True

        def desectOut(xx):
            l = xx.shape[-1]
            return Lambda(lambda x: [x[..., :l / 2], x[..., l / 2:]])(xx)

        def cal_cs(inp):
            x = embed(inp)
            x_hi = rnn_hi(x)

            # en
            x = embed(inp)
            x_en = rnn_en(x)

            x = embed(inp)
            x_enhi = rnn_enhi(x)

            [x_hi1, x_hi2] = desectOut(x_hi)
            [x_en1, x_en2] = desectOut(x_en)
            [x_enhi1, x_enhi2] = desectOut(x_enhi)

            [x_hi1, x_en1, x_enhi1, x_hi2, x_en2, x_enhi2
             ] = stitch_layer([x_hi1, x_en1, x_enhi1, x_hi2, x_en2, x_enhi2])

            x_hi = Concatenate()([x_hi1, x_hi2])
            x_en = Concatenate()([x_en1, x_en2])
            x_enhi = Concatenate()([x_enhi1, x_enhi2])

            x_hi_p = x_hi
            x_en_p = x_en
            x_enhi_p = x_enhi

            x_hi = rnn_hi2(x_hi)
            x_en = rnn_en2(x_en)
            x_enhi = rnn_enhi2(x_enhi)

            [x_hi1, x_hi2] = desectOut(x_hi)
            [x_en1, x_en2] = desectOut(x_en)
            [x_enhi1, x_enhi2] = desectOut(x_enhi)

            [x_hi1, x_en1, x_enhi1, x_hi2, x_en2, x_enhi2
             ] = stitch_layer([x_hi1, x_en1, x_enhi1, x_hi2, x_en2, x_enhi2])

            x_hi = Concatenate()([x_hi1, x_hi2])
            x_en = Concatenate()([x_en1, x_en2])
            x_enhi = Concatenate()([x_enhi1, x_enhi2])

            x_hi = osel([x_hi, x_hi_p])
            x_en = osel([x_en, x_en_p])
            x_enhi = osel([x_enhi, x_enhi_p])

            return [x_hi, x_en, x_enhi]

        # hi
        inp_hi = Input((self.config['sent_len'], ))
        # en
        inp_en = Input((self.config['sent_len'], ))

        inp_enhi = Input((self.config['sent_len'], ))

        [x_hi, _, _] = cal_cs(inp_hi)
        [_, x_en, _] = cal_cs(inp_en)
        [_, _, x_enhi] = cal_cs(inp_enhi)

        out_enhi = TimeDistributed(
            Dense(self.config['n_class_enhi'], activation='softmax'))(x_enhi)
        out_hi = TimeDistributed(
            Dense(config['n_class_hi'], activation='softmax'))(x_hi)

        out_en = TimeDistributed(
            Dense(config['n_class_en'], activation='softmax'))(x_en)

        self.model = Model([inp_hi, inp_en, inp_enhi],
                           [out_hi, out_en, out_enhi])
        Trainer.build_model(self)
Example #19
0
    def build_model(self):
        
        config = self.config
        
        
        embed = Embedding(  self.config['vocab_size'] , self.config['embed_dim']  )

        
        
        if self.config['n_layers'] == 2:
            rnn_es = LSTM( self.config['nHidden']  , return_sequences=True )
            rnn_en = LSTM( self.config['nHidden']  , return_sequences=True )
            rnn_enes = LSTM( self.config['nHidden'] , return_sequences=True )
        
            rnn_es2 = LSTM( self.config['nHidden'] )
            rnn_en2 = LSTM( self.config['nHidden'] )
            rnn_enes2 = LSTM( self.config['nHidden'] )
        else:
            rnn_es = LSTM( self.config['nHidden']  )
            rnn_en = LSTM( self.config['nHidden']  )
            rnn_enes = LSTM( self.config['nHidden']  )

        stitch_layer = CrossStitch()
        stitch_layer.supports_masking  = True
        
        if self.config['n_layers'] == 2:
            stitch_layer2 = CrossStitch()
            stitch_layer2.supports_masking  = True
            
            
            
        def cal_cs1l( inp ):
            x = embed(inp)
            x_es = rnn_es( x )

            # en 
            x = embed(inp)
            x_en = rnn_en( x )


            x = embed(inp)
            x_enes = rnn_enes( x )

            [ x_es , x_en, x_enes ] = stitch_layer([ x_es , x_en , x_enes ])

            return [ x_es , x_en, x_enes ]
        
        def cal_cs2l( inp ):
            x = embed(inp)
            x_es = rnn_es( x )

            # en 
            x = embed(inp)
            x_en = rnn_en( x )


            x = embed(inp)
            x_enes = rnn_enes( x )

            [ x_es , x_en, x_enes ] = stitch_layer([ x_es , x_en , x_enes ])


            x_es = rnn_es2( x_es )
            x_en = rnn_en2( x_en )
            x_enes = rnn_enes2( x_enes )

            [ x_es , x_en, x_enes ] = stitch_layer2([ x_es , x_en , x_enes ])

            return [ x_es , x_en, x_enes ]
        
        
        if self.config['n_layers'] == 2:
            cal_cs = cal_cs2l
        else:
            cal_cs = cal_cs1l


        
        inp_en = Input(( self.config['sent_len']  ,))
        inp_es = Input(( self.config['sent_len']  ,))
        inp_enes = Input(( self.config['sent_len'] ,))
        
        [ x_es , _ , _ ] = cal_cs( inp_es )
        [ _ , x_en , _ ] = cal_cs( inp_en )
        [ _ , _ , x_enes ] = cal_cs( inp_enes )
        
            
        out_enes = (Dense( self.config['n_class_enes'] , activation='softmax'))(x_enes)
        out_es = (Dense( self.config['n_class_es'] , activation='softmax'))(x_es)
        out_en = (Dense( self.config['n_class_en'] , activation='softmax'))(x_en)
            
        
        
        self.model = Model([inp_en , inp_es , inp_enes] , [out_en , out_es , out_enes] )
        Trainer.build_model( self  )
Example #20
0
# Create newtork instances
discriminator = Discriminator()
discriminator.apply(Trainer.init_weights)
generator = Generator()
generator.apply(Trainer.init_weights)

# Create trainer and initialize network weights
device = "cpu"
if torch.cuda.is_available():
    print("cuda available")
    device = "cuda:0"
    discriminator.cuda()
    generator.cuda()

# Optimizers and loss function
net_trainer = Trainer(nn.BCELoss(), device)
net_trainer.create_optimizers(discriminator.parameters(),generator.parameters())

# Number of epochs -- hardcoded
num_epochs = 200

# Testing samples -- hardcoded
num_test_samples = 16
test_noise = net_trainer.gen_noise(num_test_samples)

# Start Training
logger = Logger(model_name='DCGAN', data_name=data_name)
plotter = Plotter(num_epochs, num_batches)

for epoch in range(num_epochs):
    for n_batch, (real_batch,_) in enumerate(data_loader):